На первый взгляд вам может показаться, что обладающий небольшой энергией электрон с превеликим трудом протискивается через твердый кристалл. Атомы в нем уложены так, что их центры отстоят один от другого лишь на несколько ангстрем, а эффективный диаметр атома при рассеянии электронов составляет примерно или около этого. Иначе говоря, атомы, если их сравнивать с промежутками между ними, очень велики, так что можно ожидать, что средний свободный пробег между столкновениями будет порядка нескольких ангстрем, а это практически равно нулю. Следует ожидать, что электрон почти тотчас же влетит в тот или иной атом. Тем не менее перед нами самое обычное явление природы: когда решетка идеальна, электрону ничего не стоит плавно пронестись сквозь кристалл, почти как сквозь вакуум. Странный этот факт - причина того, что металлы так легко проводят электричество; кроме того, он позволил изобрести множество весьма полезных устройств. Например, благодаря ему транзистор способен имитировать радиолампу. В радиолампе электроны движутся свободно через вакуум, в транзисторе они тоже движутся свободно, но только через кристаллическую решетку. Механизм того, что происходит в транзисторе, будет описан в этой главе; следующая глава посвящена применениям этих принципов в различных практических устройствах.

Проводимость электронов в кристалле - один из примеров очень общего явления. Через кристаллы могут странствовать не только электроны, но и другие «объекты». Так, атомные возбуждения тоже могут путешествовать аналогичным способом. Явление, о котором мы сейчас будем говорить, то и дело возникает при изучении физики твердого состояния.

Мы уже неоднократно разбирали примеры систем с двумя состояниями. Представим себе на этот раз электрон, который может находиться в одном из двух положений, причем в каждом из них он оказывается в одинаковом окружении. Предположим также, что имеется определенная амплитуда перехода электрона из одного положения в другое и, естественно, такая же амплитуда перехода обратно, в точности, как в гл. 8, § 1 (вып. 8) для молекулярного иона водорода. Тогда законы квантовой механики приводят к следующим результатам. У электрона возникнет два возможных состояния с определенной энергией, причем каждое состояние может быть описано амплитудой того, что электрон пребывает в одном из двух базисных положений. В каждом из состояний определенной энергии величины этих двух амплитуд постоянны во времени, а фазы меняются во времени с одинаковой частотой. С другой стороны, если электрон сперва был в одном положении, то со временем он перейдет в другое, а еще позже вернется в первое положение. Изменения амплитуды похожи на движение двух связанных маятников.

Рассмотрим теперь идеальную кристаллическую решетку и вообразим, что в ней электрон может расположиться в некоторой «ямке» возле определенного атома, имея определенную энергию. Допустим также, что у электрона имеется некоторая амплитуда того, что он перескочит в другую ямку, которая находится неподалеку, возле другого атома. Это чем-то напоминает систему с двумя состояниями, но с добавочными осложнениями. После того как электрон достигает соседнего атома, он может перейти в совершенно новое место или вернуться в исходную позицию. Все это похоже не столько на пару связанных маятников, сколько на бесконечное множество маятников, связанных между собой. Это чем-то напоминает одну из тех машин (составленных из длинного ряда стержней, прикрепленных к закрученной проволоке), с помощью которых на первом курсе демонстрировалось распространение волн.

Если у вас имеется гармонический осциллятор, связанный с другим гармоническим осциллятором, который в свою очередь связан со следующим осциллятором, который и т.д..., и если вы создадите в одном месте какую-то нерегулярность, то она начнет распространяться, как волна по проволоке. То же самое возникает и в том случае, если вы поместите электрон возле одного из атомов в длинной их цепочке.

Как правило, задачи по механике легче всего решать на языке установившихся волн; это проще, чем анализировать последствия отдельного толчка. Тогда появляется какая-то картина смещений, которая распространяется по кристаллу, как волна с заданной, фиксированной частотой. То же самое происходит с электроном, и по той же причине, потому что электрон описывается в квантовой механике похожими уравнениями.

Но нужно помнить одну вещь: амплитуда для электрона быть в данном месте это амплитуда, а не вероятность. Если бы электрон просто просачивался из одного места в другое, как вода через дырочку, то его поведение было бы совсем иным. Если бы, скажем, мы соединили два бачка с водой тоненькой трубочкой, по которой вода из одного бачка по капле перетекала в другой, то уровни воды выравнивались бы по экспоненте. С электроном же происходит просачивание амплитуды, а не монотонное переливание вероятностей. А одно из свойств мнимого члена (множителя в дифференциальных уравнениях квантовой механики) - что он меняет экспоненциальное решение на колебательное. И то, что после этого происходит, ничуть не походит на то, как вода перетекает из одного бачка в другой.

Теперь мы хотим квантовомеханический случай проанализировать количественно. Пусть имеется одномерная система, состоящая из длинной цепи атомов (фиг. 11.1,а). (Кристалл, конечно, трехмерен, но физика в обоих случаях очень близка; если вы разберетесь в одномерном случае, то сможете разобраться и в том, что бывает в трех измерениях.) Мы хотим знать, что случится, если в эту линию атомов поместить отдельный электрон. Конечно, в реальном кристалле таких электронов мириады. Но большинство их (в непроводящем кристалле почти все) занимает в общей картине движения свое место, каждый вертится вокруг своего атома, и все оказывается совершенно установившимся. А мы хотим рассуждать о том, что будет, если внутрь поместить лишний электрон. Мы не будем думать о том, что делают прочие электроны, потому что будем считать, что на то, чтобы изменить их энергию, потребуется очень много энергии возбуждения. Мы собираемся добавить электрон и создать как бы новый слабо связанный отрицательный ион. Следя за тем, что поделывает этот лишний электрон, мы делаем приближение, пренебрегая при этом внутренним механизмом атомов.

Фиг. 11.1. Базисные состояния электрона в одномерной решетке.

Ясно, что этот электрон сможет перейти к другому атому, перенося в новое место отрицательный ион. Мы предположим, что (в точности, как и в случае электрона, «прыгавшего» от протона к протону) электрон может с какой-то амплитудой «прыгать» от атома к его соседям с любой стороны.

Как же описывать такую систему? Что считать разумными базисными состояниями? Если вы вспомните, что мы делали, когда у электрона было только две возможные позиции, вы сможете догадаться. Пусть в нашей цепочке все расстояния между атомами одинаковы, и пусть мы их пронумеруем по порядку, как на фиг. 11.1,а. Одно базисное состояние - когда электрон находится возле атома №6; другое базисное состояние - когда электрон находится возле №7, или возле №8, и т. д.; -е базисное состояние можно описать, сказав, что электрон находится возле атома №. Обозначим это базисное состояние . Из фиг. 11.1 ясно, что подразумевается под тремя базисными состояниями:

С помощью этих наших базисных состояний можно описать любое состояние нашего одномерного кристалла, задав все амплитуды того, что состояние находится в одном из базисных состояний, т. е. амплитуду того, что электрон расположен близ данного частного атома. Тогда состояние можно записать в виде суперпозиции базисных состояний:

. (11.1)

Кроме того, мы хотим еще предположить, что когда электрон находится близ одного из атомов, то имеется некоторая амплитуда того, что он просочится к тому атому, что слева, или к тому, что справа. Возьмем простейший случай, когда считается, что он может просочиться только к ближайшим соседям, а к следующему соседу он сможет дойти в два приема. Примем, что амплитуды того, что электрон перепрыгнет от одного атома к соседнему, равны (за единицу времени).

Изменим на время обозначения, и амплитуду , связанную с -м атомом, обозначим через . Тогда (11.1) будет иметь вид

Если бы вы знали каждую из амплитуд в данный момент, то, взяв квадраты их модулей, можно было бы получить вероятность того, что вы увидите электрон, взглянув в этот момент на атом .-й ямки. Как обычно, считается постоянным (не зависящим от ).

Для полного описания поведения любого состояния надо для каждой из амплитуд иметь по одному уравнению типа (11.3). Поскольку мы намерены рассмотреть кристалл с очень большим количеством атомов, то допустим, что состояний имеется бесконечно много, атомы тянутся без конца в обе стороны. (При конечном числе атомов придется специально обращать внимание на то, что случается на концах.) А если количество наших базисных состояний бесконечно велико, то и вся система наших гамильтоновых уравнений бесконечна! Мы напишем только часть ее:

(11.4)

Определить доминирующие признаки классификации объекта локализации и разработать математическую модель под задачи анализа изображений мимики.

Задачи

Поиск и анализ способов локализации лица, определение доминирующих признаков классификации, разработка математической модели оптимальной под задачи распознавания движения мимики.

Тема

Помимо определения оптимального цветового пространства для построения выделяющихся объектов на заданном классе изображения, которая проводилась на предыдущем этапе исследования, немаловажное значение также играет определение доминирующих признаков классификации и разработка математической модели изображений мимики.

Для решения данной задачи необходимо, прежде всего, задать системе особенности модификации задачи обнаружения лица видеокамерой, а затем уже проводить локализацию движения губ.

Что касается первой задачи, то следует выделить две их разновидности:
Локализация лица (Face localization);
Отслеживание перемещения лица (Face tracking) .
Так как перед нами стоит задача разработки алгоритма распознавания мимики, то логично предположить, что данную систему будет использовать один пользователь, который не слишком активно будет двигать головой. Следовательно, для реализации технологии распознавания движения губ необходимо взять за основу упрощенный вариант задачи обнаружения, где на изображении присутствует одно и только одно лицо.

А это значит, что поиск лица можно будет проводить сравнительно редко (порядка 10 кадров/сек. и даже менее). Вместе с тем, движения губ говорящего во время разговора являются достаточно активными, а, следовательно, оценка их контура должна проводиться с большей интенсивностью.

Задача поиска лица на изображении может быть решена существующими средствами. Сегодня имеются несколько методов обнаружения и локализации лица на изображении, которые можно разделить на 2 категории:
1. Эмпирическое распознавание;
2. Моделирование изображения лица. .

К первой категории относятся методы распознавания «сверху-вниз» на основе инвариантных свойств (invariant features) изображений лица, опираясь на предположение, что существуют некоторые признаки присутствия лиц на изображении инвариантные относительно условий съемки. Данные методы можно разделить на 2 подкатегории:
1.1. Обнаружение элементов и особенностей (features), которые характерны для изображения лица (края, яркость, цвет, характерная форма черт лица и др.) , .;
1.2. Анализ обнаруженных особенностей, вынесение решения о количестве и расположении лиц (эмпирический алгоритм, статистика взаимного расположения признаков, моделирование процессов визуальных образов, применение жестких и деформируемых шаблонов и т.д.) , .

Для корректной работы алгоритма необходимо создание базы данных особенностей лица с последующим тестированием. Для более точной реализации эмпирических методов могут быть использованы модели, которые позволяют учесть возможности трансформации лица, а, следовательно, имеют либо расширенный набор базовых данных для распознавания, либо механизм, позволяющий моделировать трансформацию на базовых элементах. Сложности с построением базы данных классификатора ориентированных на самый различный спектр пользователей с индивидуальными особенностями, чертами лица и так далее, способствует снижению точности распознавания данного метода.

Ко второй категории относятся методы математической статистики и машинного обучения. Методы этой категории опираются на инструментарий распознавания образов, рассматривая задачу обнаружения лица, как частный случай задачи распознавания. Изображению ставится некий вектор признаков, который используется для классификации изображений на два класса: лицо/не лицо. Самый распространенный способ получения вектора признаков это использование самого изображения: каждый пиксель становится компонентом вектора, превращая изображение n×m в вектор пространства R^(n×m), где n и m – целые положительные числа. . Недостатком такого представления является чрезвычайно высокая размерность пространства признаков. Достоинство этого метода стоит в исключении из всей процедуры построение классификатора участия человека, а также возможность тренировки самой системы под конкретного пользователя. Поэтому использование методов моделирования изображения для построения математической модели локализации лица является оптимальным для решения нашей задачи.

Что касается сегментирования профиля лица и отслеживания положение точек губ по последовательности кадров, то для решения данной задачи также следует использовать математические методы моделирования. Имеются несколько способов определения движения мимики, самыми известными из них являются использование математической модели на основе активных контурных моделей:

Локализация области мимики на основе математической модели активных контурных моделей

Активный контур (змейка) – это деформирующаяся модель, шаблон которой задан в форме параметрической кривой, инициализированный вручную набором контрольных точек, лежащих на открытой или замкнутой кривой на входном изображении.

Для адаптации активного контура к изображению мимики необходимо провести соответствующую бинариризацию исследуемого объекта, то есть его преобразование в разновидность цифровых растровых изображений, а затем уже следует проводить соответствующую оценку параметров активного контура и вычисление вектора признаков.

Активная контурная модель определяется как:
Множество точек N;
Внутренних областей энергии интереса (internal elastic energy term);
Внешних областей энергии интереса (external edge based energy term).

Для улучшения качества распознавания выделяются два цветовых класса – кожа и губы. Функция принадлежности цветовому классу имеет значение в диапазоне от 0 до 1.

Уравнение активной контурной модели (змейки) представляется выражающейся формулой v(s) как:

Где E – это энергия змейки (активной контурной модели). Первые два терма описывают энергию регулярности активной контурной модели (змейки). В нашей полярной координатной системе v(s) = , s от 0 до 1. Третье слагаемое – энергия, относящаяся ко внешней силе, полученной из изображения, четвертое – с силой давления.

Внешняя сила определяется, исходя из вышеописанных характеристик. Она способна сдвинуть контрольные точки к некоторому значению интенсивности. Она вычисляется как:

Множитель градиента (производная) вычисляется в точках змейки вдоль соответствующей радиальной линии. Сила увеличивается, если градиент отрицательный и уменьшается в обратном случае. Коэффициент перед градиентом – это весовой фактор, зависящий от топологии изображения. Сжимающая сила – это просто константа, используется ½ от минимального весового коэффициента. Наилучшая форма змейки получается при минимизации энергетического функционала после некоторого числа итераций.

Рассмотрим основные операции обработки изображения более подробно. Для простоты предположим, что мы уже каким-то образом выделили область рта диктора. В этом случае основные операции по обработке полученного изображения, которые нам необходимо выполнить, представлены на рис. 3.

Заключение

Для определения доминирующих признаков классификации изображения в ходе проведения исследовательской работы было выявлены особенности модификации задачи обнаружения лица видеокамерой. Среди всех методов локализации лица и обнаружения исследуемой области мимики наиболее подходящими под задачи создания универсальной системы распознавания для мобильных устройств являются методы моделирования изображения лица.
Разработка математической модели изображений движения мимики основана на системе активных контурных моделей бинаризации исследуемого объекта. Так как данная математическая модель позволяет после смены цветового пространства с RGB в цветовую модель YCbCr осуществлять эффективное преобразование интересуемого объекта, для последующего его анализа на основе активных контурных моделей и выявления четких границ мимики после соответствующих итераций изображения.

Список использованных источников

1. Вежневец В., Дягтерева А. Обнаружение и локализация лица на изображении. CGM Journal, 2003
2. Там же.
3. E. Hjelmas and B.K. Low, Face detection: A survey, Journal of Computer vision and image understanding, vol.83, pp. 236-274, 2001.
4. G. Yang and T.S. Huang, Human face detection in complex background, Pattern recognition, vol.27, no.1, pp.53-63, 1994
5. K. Sobottka and I. Pitas, A novel method for automatic face segmentation, facial feature extraction and tracking, Signal processing: Image communication, Vol. 12, №3, pp. 263-281, June, 1998
6. F. Smeraldi, O. Cormona, and J.Big.un., Saccadic search with Gabor features applied to eye detection and real-time head tracking, Image Vision Comput. 18, pp. 323-329, 200
7. Гомозов А.А., Крюков А.Ф. Анализ эмпирических и математических алгоритмов распознавания человеческого лица. Network-journal. Московский энергетический институт (Технический университет). №1 (18), 2011

Продолжение следует

Математическое моделирование – процесс установления соответствия реальной системе S мат модели M и исследование этой модели, позволяющее получить хар-ки реальной системы. Применение мат модел-ния позволяет иссл-ть объекты, реальные эксперименты над которыми затруднены или невозможны.

Аналит-е моделирование - процессы функц-ия элем-в записываются в виде мат-х соотношений (алгебр-х, интегральных, диффер-х, логич-х и т.д.). Мат. модель может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относ-но искомых величин, допускающую получение нужного результата чисто анал-ми методами. Под этим понимается получения явных формул вида

<искомая величина> =<аналитическое выражение>, либо получение урав-й известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Численное мод-е использует методы вычис-й матем-ки и позволяет получить лишь приближенные решения. Решение задачи бывает менее полным, чем в анал-м мод-и. Принципиальный недостаток численного мод-я закл-ся в автом-й реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имит-е мод-ие - воспроизведение на ЭВМ (имитация) процесса функц-я исследуемой системы с соблюдением логической и временной послед-ти реальных событий. Для имит- мод-я характерно воспроизведение событий , происходящих в системе (описываемых моделью) с сохр их логической структуры и временной последовательности . Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в опред-е моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте, т.е. на натуре.

12.Получение случайных чисел с произвольным законом распределения методом обратных функций. М-д обр ф-ий наиболее общий и универсальный способ получения чисел, подчиненных заданному закону. Стандартный метод моделирования основан на том, что интегральная функция распределения
любой непрерывной случайной величины равномерно распределена в интервале (0;1), т.е. для любой случайной величины X с плотностью распределения f (x ) случайная величина равномерно распределена на интервале (0;1).

Тогда случайную величину X с произвольной плотностью распределения f (x ) можно рассчитать по следующему алгоритму:1. Необходимо сгенерировать случайную величину r (значение случайной величины R), равномерно распределенную в интервале (0;1). 2. Приравнять сгенерированное случайное число известной функции распределения F(X) и получить уравнение
. 3. Решая уравнение X=F -1 (r), находим искомое значение X

Графическое решение

.

Дополнительно к вопросу 11.

Рассмотрим пример, характеризующий различие рассмотренных видов моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Аналитическое моделирование. Оно возможно лишь при условии, что все интегралы выражаются через элементарные функции. Допустим, что

Тогда
=
=
.

С учетом этого модель (1) принимает вид

Это и есть явное аналитическое выражение относительно искомой вероятности; оно справедливо лишь при сделанных допущениях.

Численное моделирование . Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному):
.Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

Имитационное моделирование. Имитация есть воспроизведение событий, происходящих в системе, т.е. исправной работы либо отказа rаждого элемента. Если время работы системы t, а ti - время безотказной работы элемента с номером i, то: событие ti>t означает исправную работу элемента за время (0; t];

событие ti<=t означает отказ элемента к моменту t.

Заметим, что ti - случайная величина, распределенная по закону fi(t), который известен по условию.

Моделирование случайного события «исправная работа k –го элемента за время (0; t]» заключается:

1)в получении случайного числа ti, распределенного по закону fi(t);

2)в проверке истинности логического выражения ti>t. Если оно истинно, то i-й элемент исправен, если ложно – он отказал.

Алгоритм моделирования таков:

1.Положить n=0, k=0. Здесь n – счетчик числа реализаций (повторений) случайного процесса; k – счетчик числа «успехов».

2.Получить три случайных числа t1,t2,t3, распределенных соответственно по законам f1(t),f2(t),f3(t).

3.Проверить истинность логического выражения L=[(t1>t)∩ (t2>t)∩ (t3>t)] v [(t1>t)∩ (t2<=t)∩ (t3>t)] v [(t1<=t)∩ (t2>t)∩ (t3>t)]

Если L=true, то положить k=k+1 и перейти к шагу 4, иначе перейти к шагу 4.

4.Положить n=n+1.

5.Если n<=N, перейти к шагу 2; иначе вычислить и вывести P(t)=k/N. Здесь N - число реализация случайного процесса; от него зависят точность и достоверность результатов моделирования.

Еще раз подчеркнем: Значение N задают заранее по соображениям обеспечения заданной точности о достоверности статистической оценки искомой величины P(t).

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

Виды математических моделей

В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моде­лей отображать действительность, возникает их большое разнообразие, а вместе с ним - классификации. Путем обобщения существующих клас­сификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают раз­витие специальные модели (рисунок 8.1).

Рисунок 8.1 - Формальная классификация моделей

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифферен­циальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.

В зависимости от двух фундаментальных признаков построения математической модели - вида описания причинно-следственных связей и изменений их во вре­мени - различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).

Цель схемы, представленной на рисунке, - отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими;

2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

Математическая модель называется детерминистической (детерминированной) , если все ее параметры и переменные являются однозначно определяемыми ве­личинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности инфор­мации, когда параметры и переменные модели - случайные величи­ны, модель называется стохастической (вероятностной) .

Рисунок 8.2 – Классы математических моделей

Модель называется динами­ческой , если как минимум одна переменная изменяется по периодам времени, и статической , если принимается гипотеза, что переменные не изменяются по периодам времени.

В простейшем случае балансовые модели выступают в виде уравнения баланса, где в левой части располагается сумма каких-либо поступлений, а в правой - расходная часть также в виде суммы. Например, в таком виде представляется годовой бюджет организации.

На основе статистических данных могут строиться не только балан­совые, но и корреляционно-регрессионные модели.

Если функция Y зависит не только от переменных х 1 , х 2 , … х n , но и от других факторов, связь между Y и х 1 , х 2 , … х n является неточной или корреляционной в отличие от точной или функциональной связи. Корреляционными, например, в большинстве случаев являются связи, наблюда­ющиеся между выходными параметрами ОПС и факторами ее внутренней и внешней среды (см. тему 5).

Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем примене­ния статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описываю­щие данную корреляционную зависимость (уравнение регрессии).

Для нахождения численного значения параметров уравне­ния регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдель­ных точек была бы наименьшей.

Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида

y = a 1 x 1 + a 2 x 2 + … + a n x n + b .

В результате применения метода наименьших квадратов ус­танавливаются значения параметров a или a 1 , a 2 , …, a n и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.

В особую группу выделяют графоаналитиче­ские модели . Они используют различные графические изображения и поэтому обладают хорошей наглядностью.

Теория графов - одна из теорий дискретной математики, изучает графы, под которыми понимается совокупность точек и линий их соединяющих. Граф - это самостоятельный математи­ческий объект (впервые ввел Кёниг Д.). На основе теории гра­фов наиболее часто строят древовидные и сетевые модели.

Древовидная модель (дерево) - это неориентированный связ­ный граф, не содержащий петель и циклов. Примером такой модели является дерево целей.

Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжи­тельность каждой работы (рисунок 8.3).

Рисунок 8.3 - Сетевая модель производства работ

Каждая линия сетевого графика - это некоторая работа. Цифра рядом с ней означает продолжительность ее выполнения.

Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.

Сетевые модели могут быть детерминированными и стоха­стическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.

Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).

Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математическо­го программирования (линейное и нелинейное, целочисленное, ди­намическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы тео­рии массового обслуживания, теории игр (теории конфликтных си­туаций) и др.

Оптимизационные модели применяются для объемного и календар­ного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, рас­пределения потоков товарных поставок на транспортной сети и дру­гих задач управления.



Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее раз­мерности, разработаны типовые методы - метод Фогеля, метод по­тенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться ана­литические и вероятностно-статистические методы, методы динами­ческого и стохастического программирования.

В управлении особое значение придается сетевым методам плани­рования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отво­дится совершенствованию управления сложными системами с при­менением методов теории массового обслуживания (см. раздел8.3) и аппарата марков­ских процессов.

Модели марковских случайных процессов - система дифференци­альных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко исполь­зуется при математическом моделировании функционирования слож­ных систем.

Модели теории игр служат для выбора оптимальной стратегии в ус­ловиях ограниченной случайной информации или полной неопреде­ленности.

Игра - математическая модель реальной конфликтной си­туации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.

Различают «игры с природой» и «игры с противником». Исходя из ситуации опре­деляются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (кри­терий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алго­ритмических правил. При «играх с противником» для принятия реше­ний используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в свя­зи с тем, что лицу, принимающему решение, противостоит недобро­желательный противник.

Рассмотренные типы математических моделей не охватыва­ют всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классифи­кации. В.А.Кардашем была предпринята попытка создания сис­темы классификации моделей по четырем аспектам детализации (рисунок 8.4).

А - модели без пространственной дифференциации параметров;

В - модели с пространственной дифференци­ацией параметров

Рисунок 8.4 - Классификация моделей по четырем аспектам детализации

С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изу­чения целого ряда проблем управления, экономики, теории организа­ции, психологии, финансов и торговли.