По характеру функционирования САР разделяют на 4 класса: Системы автоматической стабилизации характеризуются тем что в процессе работы системы задающее воздействие остается постоянным. Системы программного регулирования задающее воздействие изменяется по заранее установленному закону как функция времени и координат системы. Следящие системы задающее воздействие является величиной переменной но математическое описание по времени не может быть установлено т. Адаптивные или самонастраивающиеся системы такие системы автоматически...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №2. Классификация и Требования, предъявляемые к САР. Линейные и нелинейные САР. Общий метод линеаризации

(Слайд 1)

2.1. Классификация САР

(Слайд 2)

САР классифицируются по различным признакам. По характеру функционирования САР разделяют на 4 класса:

  • Системы автоматической стабилизации (характеризуются тем, что в процессе работы системы задающее воздействие остается постоянным). Пример: стабилизатор скорости вращения двигателя.
  • Системы программного регулирования (задающее воздействие изменяется по заранее установленному закону, как функция времени и координат системы). Пример: автопилот.
  • Следящие системы (задающее воздействие является величиной переменной, но математическое описание по времени не может быть установлено, т.к. источником сигнала является внешнее воздействие, закон перемещения которого заранее не известен). Пример: радиолокационная станция сопровождения самолета.
  • Адаптивные или самонастраивающиеся системы (такие системы автоматически выбирают оптимальный закон регулирования и могут в процессе работы изменять характеристики регулятора). Пример: компьютерная игра с нелинейным сюжетом.

(Слайд 3)

Так же САР разделяют по характеру сигналов в устройстве управления:

  • Непрерывные (входной и выходной сигнал непрерывные функции времени). Пример: компараторы, операционные усилители.
  • Релейные (если в системе имеется хотя бы один элемент с релейной характеристикой). Пример: различные реле, аналоговые ключи и мультиплексоры.
  • Импульсные (характеризуется наличием хотя бы одного импульсного элемента). Пример: тиристоры, цифровые схемы.

Все САР можно разделить по зависимости выходных характеристик от входных на линейные и нелинейные .

2.2. Требования предъявляемые к САР

(Слайд 4)

1. Регулируемая величина должна поддерживаться на заданном уровне независимо от возмущения. Переходный процесс представляется динамической характеристикой, по которой можно судить о качестве работы системы.

2. Должно выполняться условие устойчивости, т.е. система должна обладать запасом устойчивости.

3. Быстродействие – время переходного процесса, характеризующее быстроту реакции системы.

(Слайд 5)

4. Должны выполняться нормы перерегулирования. Для определения величины перерегулирования используются два основных параметра:

  • Коэффициент перерегулирования

где y m – максимальное отклонение выходной величины во время переходного процесса, y ∞ – значение выходной величины в установившемся режиме. Допустимое значение  = 0  25 % .

(Слайд 6)

  • Мера колебательности процесса – число колебаний за время переходного процесса (не более 2-х)

5. Должны выполнение требования статической точности. Если в системе процессы случайные, то для обеспечения точности вводятся вероятностные характеристики.

2. 3 . Линейные и нелинейные САР

Динамические процессы в системах регулирования описываются дифференциальными уравнениями.

(Слайд 7)

В линейных системах процессы описываются при помощи линейных дифференциальных уравнений. В нелинейных системах процессы описываются уравнениями, содержащими какие-либо нелинейности . Расчеты линейных систем хорошо разработаны и более просты для практического применения. Расчеты же нелинейных систем часто связаны с большими трудностями.

Чтобы система регулирования была линейной, необходимо (но недостаточно) иметь статические характеристики всех звеньев в виде прямых линий. В действительности реальные статические характеристики в большинстве случаев не являются прямолинейными. Поэтому, чтобы рассчитать реальную систему как линейную, необходимо все криволинейные статические характеристики звеньев на рабочих участках, которые используются в данном процессе регулирования, заменить прямолинейными отрезками. Это называется линеаризацией . Большинство систем непрерывного регулирования поддаётся такой линеаризации.

(Слайд 8)

Линейные системы разделяются на обыкновенные линейные системы и на особые линейные системы. К первым относятся такие системы, все звенья которых описываются обыкновенными линейными дифференциальными уравнениями с постоянными коэффициентами.

(Слайд 9)

К особым линейным системам относятся:

а) системы с переменными по времени параметрами , которые описываются линейными дифференциальными уравнениями с переменными коэффициентами;

б) системы с распределёнными параметрами , где приходится иметь дело с уравнениями в частных производных, и системы с временным запаздыванием, описываемые уравнениями с запаздывающим аргументом;

(Слайд 10)

в) импульсные системы , где приходится иметь дело с разностными уравнениями.

(Слайд 11)

Рис. 2.1. Характеристики нелинейных элементов

В нелинейных системах при анализе процесса регулирования приходится учитывать нелинейность статической характеристики хотя бы в одном её звене или какие-то нелинейные дифференциальные зависимости в уравнениях динамики системы. Иногда нелинейные звенья специально вводятся в систему для обеспечения наибольшего быстродействия или других желаемых качеств.

К нелинейным системам относятся прежде всего релейные системы, так как релейная характеристика (рис. 2.1, а и б ) не может быть заменена одной прямой линией. Нелинейным будет звено, в характеристике которого имеется зона нечувствительности (рис. 2.1, в ).

Явления насыщения или механического ограничения хода приводят к характеристике с ограничением линейной зависимости на концах (рис. 2.1, г ). Эта характеристика также должна считаться нелинейной, если рассматриваются такие процессы, когда рабочая точка выходит за пределы линейного участка характеристики.

К нелинейным зависимостям относятся также гистерезисная кривая (рис. 2.1, д ), характеристика зазора в механической передаче (рис. 2.1, е), сухое трение (рис. 2.1, ж ), квадратичное трение (рис. 2.1, и ) и др. В последних двух характеристиках x 1 обозначает скорость перемещения, а x 2 – силу или момент трения.

Нелинейной является вообще любая криволинейная зависимость между выходной и входной величинами звена (рис. 2.1, к ). Это нелинейности простейшего типа. Кроме того, нелинейности могут входить в дифференциальные уравнения в виде произведения переменных величин и их производных, а также в виде более сложных функциональных зависимостей.

Не все нелинейные зависимости поддаются простой линеаризации. Так, например, линеаризация не может быть сделана для характеристик, изображенных на рис. 2.1, а или на рис. 2.1, е. Подобные сложные случаи будут рассмотрены в разд. 9.

2.4. Общий метод линеаризации

(Слайд 12)

В большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения его обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X 1 и X 2 , а внешнее возмущение – через F (t ).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

. (2.1)

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

(Слайд 13)

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х 1 , которое обозначим Х 10 . В процессе регулирования (рис. 2.3) переменная Х 1 будет иметь значения

где обозначает отклонение переменной X 1 от установившегося значения Х 10 .

Аналогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем:

а также

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х 10 , Х 20 и F 0 . Тогда уравнение (2.1) может быть записано для установившего состояния в виде

. (2.2)

(Слайд 15)

Разложим левую часть уравнения (2.1) в ряд Тейлора

(2.3)

где  – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных

; ; ; .

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

(Слайд 16)

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в этом уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях:

(2.4)

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют собой некоторые постоянные коэффициенты в том случае, если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

(Слайд 17)

Получение уравнения (2.4) является целью проделанной линеаризации. В теории автоматического регулирования принято записывать уравнения всех звеньев так, чтобы в левой части уравнения была выходная величина, а все остальные члены переносятся в правую часть. При этом все члены уравнения делятся на коэффициент при выходной величине. В результате уравнение (2.4) принимает вид

, (2.5)

где введены следующие обозначения

(Слайд 18)

Кроме того, для удобства принято все дифференциальные уравнения записывать в операторной форме с обозначениями

И т.д.

Тогда дифференциальное уравнение (2.5) запишется в виде

, (2.6)

Эту запись будем называть стандартной формой записи уравнения динамики звена.

Коэффициенты Т 1 и Т 2 имеют размерность времени – секунды. Это вытекает из того, что все слагаемые в уравнении (2.6) должны иметь одинаковую размерность, а например, размерность (или p x 2 ) отличается от размерности х 2 на секунду в минус первой степени (с -1 ). Поэтому коэффициенты Т 1 и Т 2 называют постоянными времени .

Коэффициент k 1 имеет размерность выходной величины, деленную на размерность входной. Он называется коэффициентом передачи звена. Для звеньев, у которых выходная и входная величины имеют одинаковую размерность, используются также следующие термины: коэффициент усиления – для звена, представляющего собой усилитель или имеющего в своем составе усилитель; передаточное число – для редукторов, делителей напряжения, масштабирующих устройств и т. п.

Коэффициент передачи характеризует статические свойства звена, так как в установившемся состоянии. Следовательно, он определяет крутизну статической характеристики при малых отклонениях. Если изобразить всю реальную статическую характеристику звена, то линеаризация дает или. Коэффициент передачи k 1 будет представлять собой тангенс угла наклона касательной в той точке C (см. рис. 2.3), от которой отсчитываются малые отклонения х 1 и х 2 .

Из рисунка видно, что проделанная выше линеаризация уравнения справедлива для процессов регулирования, захватывающих такой участок характеристики АВ , на котором касательная мало отличается от самой кривой.

(Слайд 19)

Кроме того, отсюда вытекает другой, графический способ линеаризации. Если известна статическая характеристика и точка C , определяющая установившееся состояние, около которого происходит процесс регулирования, то коэффициент передачи в уравнении звена определяется графически из чертежа по зависимости k 1 = tg  c учетом масштабов чертежа и размерности x 2 . Во многих случаях графический метод линеаризации оказывается более удобным и быстрее приводит к цели.

(Слайд 20)

Размерность коэффициента k 2 равна размерности коэффициента передачи k 1 , умноженной на время. Поэтому часто уравнение (2.6) записывают в виде

где – постоянная времени.

Постоянные времени Т 1 , Т 2 и Т 3 определяют динамические свойства звена. Этот вопрос будет рассмотрен подробно ниже.

Коэффициент k 3 представляет собой коэффициент передачи по внешнему возмущению.

PAGE 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

13570. Линейные и нелинейные режимы лазерного нагрева 333.34 KB
Линейные режимы лазерного нагрева Для анализа линейных режимов лазерного нагрева рассмотрим процессы воздействия ЛИ на полупространство экспоненциально спадающим с глубиной тепловым источником. Поэтому идеализация свойств тепловых источников часто допускаемая в расчетных схемах для уменьшения математических трудностей может приводить к заметным отклонениям расчетных данных от экспериментальных. Для непрозрачных материалов в большинстве случаев нагрева ЛИ источники тепла могут считаться поверхностными коэффициент поглощения α 104  105...
16776. Требования, предъявляемые к налоговой политике государства в условиях кризиса 21.72 KB
Требования предъявляемые к налоговой политике государства в условиях кризиса Для развития предпринимательской деятельности в современных экономических условиях необходимо наличие определенных условий в том числе: - наличие эффективной налоговой системы стимулирующей развитие предпринимательства; - наличие определенной совокупности прав и свобод выбор вида хозяйственной деятельности планирование источников финансирования доступ к ресурсам организация и управление компанией и т. Таким образом для поступательного развития...
7113. Метод гармонической линеаризации 536.48 KB
Метод гармонической линеаризации Поскольку этот метод является приближённым то полученные результаты будут близки к истине только при выполнении определённых допущений: Нелинейная система должна содержать только одну нелинейность; Линейная часть системы должна представлять собой фильтр низких частот ослабляющий высшие гармоники возникающие в предельном цикле; Метод применим только к автономным системам. Изучается свободное движение системы то есть движение при ненулевых начальных условиях в отсутствие внешних воздействий....
12947. МЕТОД ГАРМОНИЧЕСКОЙ ЛИНЕАРИЗАЦИИ 338.05 KB
Переходя непосредственно к рассмотрению метода гармонической линеаризации будем считать что исследуемая нелинейная система приведена к виду показанному на. Нелинейный элемент может иметь любую характеристику лишь бы она была интегрируемой без разрывов второго рода. Преобразование данной переменной для примера нелинейным элементом с зоной нечувствительности показано на рис.
2637. Аппликационные лекарственные препараты. Общая характеристика. Классификация. Основные требования. Технология нанесения адгезивов на подложку при производстве аппликационных лекарственных препаратов 64.04 KB
Аппликационные лекарственные препараты – пластыри мозольные лейкопластыри перцовые пластыри кожные клеи – жидкие пластыри пленки ТТС и др. Общая характеристика и классификация пластырей Пластыри Emplstr лекарственная форма для наружного применения обладающая способностью прилипать к коже оказывающая действие на кожу подкожные ткани и в ряде случаев общее воздействие на организм. Пластыри одна из старейших лекарственных форм известная с очень древних времен прародители современных препаратов четвертого поколения...
7112. НЕЛИНЕЙНЫЕ СИСТЕМЫ 940.02 KB
Физические законы движения окружающего нас мира таковы что все объекты управления нелинейны. Другие нелинейности называемые структурными вводятся в систему преднамеренно для получения требуемых характеристик системы. Если нелинейности выражены слабо то поведение нелинейной системы незначительно отличается от поведения линейной системы. Создать точную модель реальной системы невозможно.
21761. Общий пантеон богов древней Мессопотамии. Боги древнего Шумера 24.7 KB
Древняя религия народов Месопотамии, несмотря на собственный консерватизм, постепенно, в ходе общественного развития, претерпевала изменения, отражаюшие в себе и политические, и социально-экономические процессы, происходящие на территории Месопотамии.
11507. формированиЕ финансового результата и общий анализ финансово-хозяйственной деятельности организации 193.55 KB
Для более глубокого ознакомления с деятельностью любого предприятия возникает необходимость в изучении его со всех возможных сторон в формировании наиболее объективного мнения как о положительных так и отрицательных сторонах в работе в выявлении наиболее уязвимых мест и способах их устранения. Для проведения финансового анализа используют специальный инструментарий так называемые финансовые коэффициенты. Используя необходимую информацию объективно и наиболее точно оценить финансовое состояние организации его прибыли и убытки изменения...
13462. Статистический анализ рисковых активов. Нелинейные модели 546.54 KB
Однако реальные данные для многих финансовых временных рядов показывают что линейные модели не всегда адекватно отражают истинную картину поведения цен. Если иметь ввиду разложение Дуба в котором привлекаются условные математические ожидания вполне естественным является предположение о том что условные распределения являются гауссовскими...
4273. Линейные математические модели 3.43 KB
Линейные математические модели. Выше отмечалось, что любая математическая модель может рассматриваться как некоторый оператор А, который является алгоритмом или определяется совокупностью уравнений - алгебраических...
Назначение сервиса . Онлайн-калькулятор используется для нахождения минимума функции двух переменных методом непосредственной линеаризации.
Количество нелинейных ограничений, {g i (x), h i (x)} нет ограничений 1 2 3 4
Количество линейных ограничений нет ограничений 1 2 3 4
Правила ввода функций:
  1. Все переменные выражаются через x 1 ,x 2
  2. Все математические операции выражаются через общепринятые символы (+,-,*,/,^). Например, x 1 2 +x 1 x 2 , записываем как x1^2+x1*x2 .

Все рассматриваемые ниже методы основываются на разложении нелинейной функции общего вида f(x) в ряд Тейлора до членов первого порядка в окрестности некоторой точки x 0:

где – отбрасываемый член второго порядка малости.
Таким образом, функция f(x) аппроксимируется в точке x 0 линейной функцией:
,
где x 0 – точка линеаризации.
Замечание . Линеаризацию следует использовать с большой осторожностью, поскольку иногда она дает весьма грубое приближение.

Общая задача нелинейного программирования

Рассмотрим общую задачу нелинейного программирования:

Пусть x t – некоторая заданная оценка решения. Использование непосредственной линеаризации приводит к следующей задаче:

Эта задача представляет собой ЗЛП. Решая ее, находим новое приближение x t +1 , которое может и не принадлежать допустимой области решений S.
Если , то оптимальное значение линеаризованной целевой функции, удовлетворяющее неравенству:

может не быть точной оценкой истинного значения оптимума.
Для сходимости к экстремуму достаточно, чтобы для последовательности точек { x t }, полученных в результате решения последовательности подзадач ЛП, выполнялось следующее условие:
значение целевой функции и невязки по ограничениям в точке x t +1 должно быть меньше их значений в точке x t .

Пример №1 .

Построим допустимую область S (см. рис.).


Допустимая область S состоит из точек кривой h(x)=0, лежащей между точкой (2;0), определяемой ограничением x 2 ≥0, и точкой (1;1), определяемой ограничением g(x) ≥0.
В результате линеаризации задачи в точке x 0 =(2;1) получаем следующую ЗЛП:

Здесь представляет собой отрезок прямой , ограниченный точками (2.5; 0.25) и (11/9; 8/9). Линии уровня линеаризованной целевой функции представляют собой прямые с наклоном -2, тогда как линии уровня исходной целевой функции – окружности с центром в точке (0;0). Ясно, что решением линеаризованной задачи является точка x 1 =(11/9; 8/9). В этой точке имеем:

так что ограничение–равенство нарушается. Произведя новую линеаризацию в точке x 1 , получаем новую задачу:


Новое решение лежит на пересечении прямых и и имеет координаты x 2 =(1.0187; 0.9965). Ограничение– равенство () все еще нарушается, но уже в меньшей степени. Если произвести еще две итерации, то получим очень хорошее приближение к решению x * =(1;1), f(x *)=2

Таблицa - Значения целевой функции для некоторых итераций:

Итерация f g h
0 5 3 –1
1 2,284 0,605 –0,0123
3 2,00015 3,44×10 -4 –1,18×10 -5
Оптимум 2 0 0

Из таблицы видно, что значения f,g и h монотонно улучшаются. Однако такая монотонность характерна для задач, функции которых являются "умеренно" нелинейными. В случае функций с ярко выраженной нелинейностью монотонность улучшения нарушается и алгоритм перестает сходиться.
Существует три способа усовершенствования методов непосредственной линеаризации:
1. Использование линейного приближения для отыскания направления спуска.
2. Глобальная аппроксимация нелинейной функции задачи при помощи кусочно–линейчатой функции.
3. Применение последовательных линеаризаций на каждой итерации для уточнения допустимой области S.

Нв себя, L(0)=0, и дифференцируем по Фреше. Одним из классич. методов решения (1), связанным с линеаризацией (1), является итерационный метод Ньютона - Канторовича, в к-ром при известном приближении и n новое приближение и n+ 1 определяется как решение линейного уравнения

с итерационным параметром подлежащим выбору. При реализации упомянутых методов следует учитывать и приближенность решения систем (напр., как следствие применения вспомогательных итерационных методов) (см., напр., , , ). При рассмотрении нелинейных задач на собственные значения (задач нахождения точек бифуркации), напр. вида

идея линеаризации (5), сводящая исследование задачи (5) к исследованию линейной задачи на собственные значения

оказалась весьма плодотворной (см. - ). Часто используется та или иная линеаризация и в сеточных методах решения нестационарных нелинейных задач (см., напр., - ), проводимая за счет известных решений в моменты времени до t n и дающая линейные уравнения для решения в следующий дискретный (t - шаг по времени). Лит. : Красносельский М. А. [и др.], Приближенное решение операторных уравнений, т. 1, М., 1969 ; К о л л а т ц Л., Функциональный анализ и , пер. с нем., М., 1969; О р т е г а Д ж., Р е й н б о л д т В., Итерационные методы решения нелинейных систем уравнений со многими неизвестными, пер. с англ., М., 1975; Б е л л м а н Р., К а л а б а Р., Квазилинеаризация и нелинейные краевые задачи, пер. с англ., М., 1968; П о б е д р я Б. Б., в кн.: Упругость и неупругость, в. 3, М., 1973, с. 95-173; О д е н Д ж., Конечные элементы в нелинейной механике сплошных сред, пер. с англ., М., 1976; Зенкевич О., Метод конечных элементов в технике, пер. с англ., М., 1975; С в и р с к и й И. В., Методы типа Бубнова - Галеркияа и последовательных приближений, М., 1968; М и х л и н С. Г., Численная реализация вариационных методов, М., 1966; Futik S., Kratochvil A., Necas I., "Acta Univ. Corolinae. Math, et Phys.", 1974, v. 15, № 1-2, p. 31-33; Амосов А. А., Бахвалов Н. С., О с и-п и к Ю. И.; "Ж. вычисл. матем. и матем. физики", 1980, т. 20, № 1, с. 104-11; Е i s е n s t a t S. С., S с h u l t z М. Н., S h е r m a n А. Н., "Lect. Notes Math.", 1974, № 430, p. 131 - 53; Дьяконов Е. Г., в кн.: Численные методы механики сплошной среды, т. 7, № 5, М., 1976, с. 14-78; В о р о в и ч И. И., в кн.: Проблемы гидродинамики и механики сплошной среды. К шестидесятилетию акад. Л. И. Седова, М., 1969; Бергер М. С., в кн.: Теория ветвления и нелинейные задачи на собственные значения, пер. с англ., М., 1974, с. 71-128; Скрыпник И. В., Нелинейные эллиптические уравнения высшего порядка, К., 1973; Ладыженская О. А., Математические вопросы динамики вязкой несжимаемой жидкости, 2 изд., М., 1970; Дьяконов Е. Г., Разностные методы решения краевых задач, в. 2 - Нестациопарные задачи, М., 1972; Р и в к и н д В. Я., У р а л ь ц е в а Н. Н., в кн.: Проблемы математического анализа, в. 3, Л., 1972, с. 69-111; Fairweather G., Finite element Galerkin methods for differential equations, N. Y., 1978. ; L u s k i n M., "SIAM J. Numer. Analysis", 1979, v. 16, № 2, p. 284-99.

Е. Г. Дьяконов.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ЛИНЕАРИЗАЦИИ МЕТОДЫ" в других словарях:

    функциональная группа - 2.1.8. функциональная группа: Группа, состоящая из нескольких функциональных блоков, электрически взаимосвязанных между собой для выполнения заданных функций. Источник …

    Численные методы решения методы, заменяющие решение краевой задачи решением дискретной задачи (см. Линейная краевая задача;численные методы решения и Нелинейное уравнение;численные методы решения). Во многих случаях, особенно при рассмотрении… … Математическая энциклопедия

    Численные методы раздел вычислительной математики, посвященный методам отыскания экстремальных значений функционалов. Численные методы В. и. принято разделять на два больших класса: непрямые и прямые методы. Непрямые методы основаны на… … Математическая энциклопедия

    У этого термина существуют и другие значения, см. Наследование. Диаграмма наследования классов в виде ромба. Ромбовидное наследование (… Википедия

    Прогноз - (Forecast) Определение прогноза, задачи и принципы прогнозирования Определение прогноза, задачи и принципы прогнозирования, методы прогнозирования Содержание Содержание Определение Основные понятия прогностики Задачи и принципы прогнозирования… … Энциклопедия инвестора

    Приближенные методы решения методы получения аналитич. выражений (формул), либо численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения (д. у.) или системы для одного или нескольких… … Математическая энциклопедия

    Численные методы решения итерационные методы решения нелинейных уравнений. Под нелинейными уравнениями понимаются (см. ) алгебраические и трансцендентные уравнения вида где х действительное число, нелинейная функция, а под системой… … Математическая энциклопедия

    Ур ния, не обладающие свойством линейности; применяются в физике как матем. модели нелинейных явлений в разл. сплошных средах. Н. у. м. ф. важная часть матем. аппарата, используемого в фундам. физ. теориях: теории тяготения и квантовой теории… … Физическая энциклопедия

    - (от лат. linearis линейный), один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной. Методы… … Википедия

    статическая - 3.7 статическая нагрузка: Внешнее воздействие, которое не вызывает ускорений деформируемых масс и сил инерции. Источник … Словарь-справочник терминов нормативно-технической документации

Книги

  • Прогнозирование надёжности технологических процессов, инструмента и машин в обработке металлов давлением , Л. Г. Степанский. Пособие соответствует программе курса "Теория автоматического управления" . Рассмотрены математические модели и методы анализа устойчивости дискретных систем. Изложены методы гармонической и…

Гармоническая линеаризация.

Назначение метода гармонической линеаризации .

Идея метода гармонической линеаризации была предложена в 1934г. Н. М. Крыловым и Н. Н. Боголюбовым. Применительно к системам автоматического управления этот метод разработан Л. С. Гольдфарбом и Е. П. Поповым. Другие названия этого ме­тода и его модификаций - метод гармонического баланса, метод описывающих функций, метод эквивалентной линеаризации.

Метод гармонической линеаризации - это метод исследова­ния автоколебаний. Он позволяет определять условия существования и параметры возможных автоколебаний в нелинейных си­стемах.

Знание параметров автоколебаний позволяет представить картину возможных процессов в системе и, в частности, определить условия устойчивости. Предположим, например, что в результате исследования автоколебаний в некоторой нелинейной системе мы получили зависимость амплитуды этих автоколебаний А от коэффициента передачи k линейной части системы, показанную на рис.12.1, и знаем, что автоколебания устойчивы.

Из графика следует, что при большом значении коэффициента передачи k, когда k > k кр, в системе существуют автоколебания. Их амплитуда уменьшается до нуля при уменьшении коэффициента передачи k до k кр. На рис.12.1 стрелками условно показан характер переходных процессов при разных значениях k : при k > k кр переходный процесс, вызванный начальным отклонением, стягивается к автоколебаниям. Из рисунка видно, что при k < k кр, система оказывается устойчивой. Таким образом, k кр – это критическое по условию устойчивости значение коэффициента передачи. Его превышение приводит к тому, что исходный режим системы становится неустойчивым и в ней возникают автоколебания. Следовательно, знание условий существования автоколебаний в системе позволяет определить и условия устойчивости.

Идея гармонической линеаризации.

Рассмотрим нелинейную систему, схема которой представлена на рис.12.2, а. Система состоит из линейной части с передаточной функцией W л (s ) и нелинейного звена НЛ с конкретно заданной характеристикой . Звено с коэффициентом - 1 показывает, что обратная связь в системе отрицательна. Полагаем, что в системе существуют автоколебания, амплитуду и частоту которых мы хотим найти. В рассматриваемом режиме входная величина Х нелинейного звена и выходная Y являются периодическими функциями времени.

Метод гармонической линеаризации основан на nредnоложении, что колебания на входе нелинейного звена являются синусоидальны.ми ,т. е. что

, (12.1)

где А амплитуда и - частота этих автоколебаний, а - возможная в общем случае постоянная составляющая, когда автоколебания несимметричны.

В действительности автоколебания в нелинейных системах всегда несинусоидальны вследствие искажения их формы нели­нейным звеном. Поэтому указанное исходное предположение озна­чает, что метод гармонической линеаризации является принципиально приближенным и область его применения ограничена случаями, когда автоколебания на входе нели­нейного звена достаточно близки к синусоидальным. Для того чтобы это имело место, линейная часть системы должна не пропу­скать высших гармоник автоколебаний, т. е. являться фильтром нижних частот . Последнее иллюстрируется рис. 12.2, б. Если, например, частота автоколебаний равна , то линейная часть с показанной на рис. 12.2, б АЧХ будет играть роль фильтра нижних частот для этих колебаний, так как уже вторая гармоника, частота которой равна 2 , практически не пройдет на вход нелинейного звена. Следовательно, в этом случае метод гармонической линеаризации применим.

Если частота автоколебаний равна , линейная часть будет свободно пропускать вторую, третью и другие гармоники автоколебаний. В этом случае нельзя утверждать, что колебания на входе нелинейного звена будут достаточно близки к синусоидальным, т.е. необходимая для применения метода гармонической линеаризации предпосылка не выполняется.

Для того чтобы установить, является ли линейная часть си­стемы фильтром нижних частот и тем самым определить примени­мость метода гармонической линеаризации, необходимо знать частоту автоколебаний. Однако ее можно узнать только в резуль­тате использования этого метода. Таким образом, пpимeнимocть метода гармонической лuнеарuзацuu прuходuтся определять уже в конце uсследованuя в порядке проверки.

Заметим при этом, что если в результате этой проверки гипо­теза о том, что линейная часть системы играет роль фильтра ниж­них частот, не подтверждается, это не означает еще неверности полученных результатов, хотя, разумеется, ставит их под сом­нение и требует дополнительной проверки каким-либо другим методом.

Итак, предположив, что линейная часть системы есть фильтр нижних частот, считаем, что автоколебания на входе нелинейного звена синусоидальны, т.е имеют вид (12.1). Колебания на выходе этого звена будут при этом уже несинусоидальными вследствие их искажения нелинейностью. В качестве примера на рис. 12.3 построена кривая на выходе нелинейного звена для определенной амплитуды входного чисто синусоидального сигнала по характеристике звена, приведенной там же.

Рис.12.3. Прохождение гармонического колебания через нелинейное звено.

Однако, поскольку мы считаем, что линейная часть системы пропускает только основную гармонику автоколебаний, имеет смысл интересоваться только этой гармоникой на выходе нелинейного звена. Поэтому разложим выходные колебания в ряд Фурье и отбросим высшие гармоники. В результате получим:

;

; (12.3)

;

.

Перепишем выражение (12.2) в более удобном для последующего использования виде, подставив в него получающиеся из (12.1) следующие выражения для и :

Подставив эти выражения в (12.2), будем иметь:

(12.4)

. (12.5)

Здесь введены обозначения:

. (12.6)

Дифференциальное уравнение (12.5) справедливо для синусоидального входного сигнала (12.1) и определяет выходной сигнал нелинейного звена без учета высших гармоник.

Коэффициенты в соответствии с выражениями (12.3) для коэффициентов Фурье являются функциями постоянной составляющей , амплитуды А и частоты автоколебаний на входе нелинейного звена. При фиксированных А , и уравнение (12.5) является линейным. Таким образом, если отбросить высшие гармоники, то для фиксированного гармонического сигнала исходное нелинейное звено может быть заменено эквивалентным линейным, описываемым уравнением (12.5). Эта замена и называется гармонической линеаризацией .

На рис. 12.4 условно изображена схема этого звена, состоящая из двух параллельных звеньев.

Рис. 12.4. Эквивалентное линейное звено, полученное в результате гармонической линеаризации.

Одно звено () пропускает постоянную составляющую, а другое – только синусоидальную составляющую автоколебаний.

Коэффициенты называются коэффициентами гармонической линеаризации или гармоническими коэффициентами передачи : - коэффициент передачи постоянной составляющей, а - два коэффициента передачи синусоидальной составляющей автоколебаний. Эти коэффициенты определяются нелинейностью и значениями и по формулам (12.3). Существуют определенные по этим формулам готовые выра­жения для для ряда типовых нелинейных звеньев. Для этих и вообще всех безынерционных нелинейных звеньев вели­чины не зависят от и являются функциями только амплитуды А и .

В

Рис. 2.2. Звено САР

большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения его обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X 1 иX 2 , а внешнее возмущение – через F(t).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х 1 , которое обозначим Х 10 . В процессе регулирования (рис. 2.3) переменная Х 1 будет иметь зна­чениягде
обозначает отклонение переменнойX 1 от установившегося значения Х 10 .

А

Рис. 2.3. Процесс регулирования в звене

налогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем: а также
.

Далее можно записать:
;
и
, так как
и

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х 10 , Х 20 и F 0 . Тогда уравнение (2.1) может быть записано для установившего состояния в виде

Разложим левую часть уравнения (2.1) в ряд Тейлора

где  – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных
.

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в этом уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях:

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют собой некоторые постоянные коэффициенты в том случае, если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

Получение уравнения (2.4) является целью проделанной линеаризации. В теории автоматического регулирования принято записывать уравнения всех звеньев так, чтобы в левой части уравнения была выходная величина, а все остальные члены переносятся в правую часть. При этом все члены уравнения делятся на коэффициент при выходной величине. В результате уравнение (2.4) принимает вид

где введены следующие обозначения

. (2.6)

Кроме того, для удобства принято все дифференциальные уравнения записывать в операторной форме с обозначениями

Тогда дифференциальное уравнение (2.5) запишется в виде

Эту запись будем называть стандартной формой записи уравнения динамики звена.

Коэффициенты Т 1 и Т 2 имеют размерность времени – секунды. Это вытекает из того, что все слагаемые в уравнении (2.8) должны иметь одинаковую размерность, а например, размерность(илиpx 2) отличается от размерности х 2 на секунду в минус первой степени (
). Поэтому коэффициенты Т 1 и Т 2 называютпостоянными времени .

Коэффициент k 1 имеет размерность выходной величины, деленную на размерность входной. Он называетсякоэффициентом передачи звена. Для звеньев, у которых выходная и входная величины имеют одинаковую размерность, используются также следующие термины: коэффициент усиления – для звена, представляющего собой усилитель или имеющего в своем составе усилитель; передаточное число – для редукторов, делителей напряжения, масштабирующих устройств и т. п.

Коэффициент передачи характеризует статические свойства звена, так как в установившемся состоянии
. Следовательно, он определяет крутизну статической характеристики при малых отклонениях. Если изобразить всю реальную статическую характеристику звена
, то линеаризация дает
или
. Коэффициент передачи k 1 будет представлять собой тангенс угла наклона касательной в той точкеC(см. рис. 2.3), от которой отсчитываются малые отклонения х 1 и х 2 .

Из рисунка видно, что проделанная выше линеаризация уравнения справедлива для процессов регулирования, захватывающих такой участок характеристики АВ, на котором касательная мало отличается от самой кривой.

Кроме того, отсюда вытекает другой, графический способ линеаризации. Если известна статическая характеристика и точка C, определяющая установившееся состояние, около которого происходит процесс регулирования, то коэффициент передачи в уравнении звена определяется графически из чертежа по зависимости k 1 = tgcучетом масштабов чертежа и размерностиx 2 . Во многих случаяхграфический метод линеаризации оказывается более удобным и быстрее приводит к цели.

Размерность коэффициента k 2 равна размерности коэффициента передачи k 1 , умноженной на время. Поэтому часто уравнение (2.8) записывают в виде

где
– постоянная времени.

П

Рис. 2.4. Двигатель независимого возбуждения

остоянные времени Т 1 , Т 2 и Т 3 определяют динамические свойства звена. Этот вопрос будет рассмотрен подробно ниже.

Коэффициент k 3 представляет собой коэффициент передачи по внешнему возмущению.

В качестве примера линеаризации рассмотрим электрический двигатель, управляемый со стороны цепи возбуждения (рис. 2.4).

Для нахождения дифференциального уравнения, связывающего приращение скорости с приращением напряжения на обмотке возбуждения, запишем закон равновесия электродвижущих сил (эдс) в цепи возбуждения, закон равновесия эдс в цепи якоря и закон равновесия моментов на валу двигателя:

;

.

Во втором уравнении для упрощения опущен член, соответствующий эдс самоиндукции в цепи якоря.

В этих формулах R В и R Я – сопротивления цепи возбуждения и цепи якоря; І В и І Я – токи в этих цепях; U В и U Я – напряжения, приложенные к этим цепям; В – число витков обмотки возбуждения; Ф – магнитный поток; Ω – угловая скорость вращения вала двигателя; М – момент сопротивления от внешних сил;J– приведенный момент инерции двигателя; С Е и С М – коэффициенты пропорциональности.

Допустим, что до появления приращения напряжения, приложенного к обмотке возбуждения, существовал установившийся режим, для которого уравнения (2.10) запишутся следующим образом:

(2.11)

Если теперь напряжение возбуждения получит приращение U В = U В0 + ΔU В, то все переменные, определяющие состояние системы, также получат приращения. В результате будем иметь: І В = І В0 + ΔІ В; Ф = Ф 0 + ΔФ; I Я = I Я0 + ΔІ Я; Ω = Ω 0 + ΔΩ.

Подставляем эти значения в (2.10), отбрасываем малые высшего порядка и получаем:

(2.12)

Вычитая из уравнений (2.12) уравнения (2.11), получим систему уравнений для отклонений:

(2.13)

В

Рис. 2.5. Кривая намагничивания

этих уравнениях введен коэффициент пропорциональности между приращением потока и приращением тока возбуждения
определяемый из кривой намагничивания электродвигателя (рис. 2.5).

Совместное решение системы (2.13) даёт

где коэффициент передачи, ,

; (2.15)

электромагнитная постоянная времени цепи возбуждения, с,

(2.16)

где L B = a B – динамический коэффициент самоиндукции цепи возбуждения; электромагнитная постоянная времени двигателя, с,

. (2.17)

Из выражений (2.15) – (2.17) видно, что рассматриваемая система является по существу нелинейной, так как коэффициент передачи и «постоянные» времени, на самом деле – не постоянны. Их можно считать постоянными только приближенно для какого-то определенного режима при условии малости отклонений всех переменных от установившихся значений.

Интересным является частный случай, когда в установившемся режиме U B0 = 0; І B0 = 0; Ф 0 = 0 и Ω 0 = 0. Тогда формула (2.14) приобретает вид

. (2.18)

В этом случае статическая характеристика будет связывать приращение ускорения двигателя
и приращение напряжения в цепи возбуждения.