Система отсчета, движущаяся (относительно звезд) равномерно и прямолинейно (т. е. по инерции), называется инерциальной. Очевидно, что таких систем отсчета - неисчислимое множество, поскольку любая система, движущаяся относительно некоторой инерциальной системы отсчета равномерно и прямолинейно, тоже инерциальна, Системы отсчета, движущиеся (относительно инерциальной системы) с ускорением, называются неинерциальными.

Опыт показывает, что

во всех инерциальных системах отсчета все механические процессы протекают совершенно одинаково (при одинаковых условиях).

Это положение, названное механическим принципом относительности (или принципом относительности Галилея), было сформулировано в 1636 г. Галилеем. Галилей пояснял его на примере механических процессов, совершающихся в каюте корабля, плывущего равномерно и прямолинейно по спокойному морю. Для наблюдателя, находящегося в каюте колебание маятника, падение тел и другие механические процессы протекают точно так же, как и на неподвижном корабле. Поэтому, наблюдая эти процессы, невозможно установить ни величину скорости, ни даже сам факт движения корабля. Чтобы судить о движении корабля относительно какой-либо системы отсчета (например, поверхности еоды), необходимо вести наблюдения и за этой системой (видеть, как удаляются предметы, лежащие на воде, и т. п.).

К началу XX в. выяснилось, что не только механические, но и тепловые, электрические, оптические и все другие процессы и явления природы протекают совершенно одинаково во всех инерциальных системах отсчета. На этом основании Эйнштейн в 1905 г. сформулировал обобщенный принцип относительности, названный впоследствии принципом относительности Эйнштейна:

во всех инерциальных системах отсчета все физические процессы протекают совершенно одинаково (при одинаковых условиях).

Этот принцип наряду с положением о независимости скорости распространения света в вакууме от движения источника света (см. § 20) лег в основу специальной теории относительности, разработанной Эйнштейном.

Законы Ньютона и другие рассмотренные нами законы динамики, выполняются только в инерциальных системах отсчета. В неинерциальных системах отсчета эти законы, вообще говоря, уже несправедливы. Рассмотрим простой пример, поясняющий последнее утверждение.

На совершенно гладкой платформе, движущейся равномерно и прямолинейно, лежит шар массой на этой же платформе находится наблюдатель. Другой наблюдатель стоит на Земле недалеко от места, мимо которого вскоре должна пройти платформа. Очевидно, что оба наблюдателя связаны с инерциальными системами отсчета.

Пусть теперь, в момент прохождения мимо наблюдателя, связанного с Землей, платформа начнет двигаться с ускорением а, т. е. сделается неинерциальной системой отсчета. При этом шар, ранее покоившийся относительно платформы, придет (относительно нее же) в движение с ускорением а, противоположным по направлению и равным по величине, ускорению, приобретенному платформой. Выясним, как выглядит поведение шара с точек зрения каждого из наблюдателей.

Для наблюдателя, связанного с инерциальной системой отсчета - Землей, шар продолжает двигаться равномерно и прямолинейно в полном соответствии с законом инерции (поскольку на него не действуют никакие силы, кроме силы тяжести, уравновешиваемой реакцией опоры).

Наблюдателю, связанному с неинерциальной системой отсчета - платформой, представляется иная картина: шар приходит в движение и приобретает ускорение - а без воздействия силы (поскольку наблюдатель не обнаруживает воздействия на шар каких-либо других тел, сообщающих шару ускорение). Это явно противоречит закону инерции. Не выполняется и второй закон Ньютона: применив его, наблюдатель получил бы, что (сила) а это невозможно, так как ни ни а не равны нулю.

Можно, однако, сделать законы динамики применимыми и для описания движений в неинерциальных системах отсчета, если ввести в рассмотрение силы особого рода - силы инерции. Тогда в нашем примере наблюдатель, связанный с платформой, может считать, что шар пришел в движение под действием силы инерции

Введение силы инерции позволяет записывать второй закон Ньютона (и его следствия) в обычной форме (см. § 7); только под действующей силой надо теперь понимать результирующую «обычных» сил и сил инерции

где масса тела, а - его ускорение.

Силы инерции мы назвали силами «особого рода», во-первых, потому, что они действуют только в неинерциальных системах отсчета, и, во-вторых, потому, что для них в отличие от «обычных» сил невозможно указать, действием каких именно других тел (на рассматриваемое тело) они обусловлены. Очевидно, по этой причине к силам инерции невозможно применить третий закон Ньютона (и его следствия); это является третьей особенностью сил инерции.

Невозможность указать отдельные тела, действием которых (на рассматриваемое тело) обусловлены силы инерции, не означает, конечно, что возникновение этих сил вообще не связано с действием каких-либо материальных тел. Имеются серьезные основания предполагать, что силы инерции обусловлены действием всей совокупности тел Вселенной (массой Вселенной в целом).

Дело в том, что между силами инерции и силами тяготения существует большое сходство: и те и другие пропорциональны массе тела, на которое они действуют, и потому ускорение, сообщаемое телу каждой из этих сил, не зависит от массы тела. При определенных условиях эти силы вообще невозможно различить. Пусть, например, где-то в космическом пространстве движется с ускорением (обусловленным работой двигателей) космический корабль. Находящийся в нем космонавт будет при этом испытывать силу, прижимающую его к «полу» (задней по отношению к направлению движения стенке) корабля. Эта сила создаст точно такой же эффект и вызовет у космонавта такие же ощущения, какие вызвала бы соответствующая сила тяготения.

Если космонавт считает, что его корабль движется с ускорением а относительно Вселенной, то он назовет действующую на него силу силой инерции. Если же космонавт будет считать свой корабль неподвижным, а Вселенную - несущейся мимо корабля с таким же ускорением а, то он назовет эту силу силой тяготения. И обе точки зрения будут совершенно равноправными. Никакой эксперимент, выполненный внутри корабля, не сможет доказать правильность одной и ошибочность другой точки зрения.

Из рассмотренного и других аналогичных примеров следует, что ускоренное движение системы отсчета эквивалентно (по своему действию на тела) возникновению соответствующих сил тяготения. Это положение получило название принципа эквивалентности сил тяготения и инерции (принципа эквивалентности Эйнштейна); данный принцип положен в основу общей теории относительности.

Силы инерции возникают не только в прямолинейно движущихся, но и во вращающихся неинерциальных системах отсчета. Пусть, например, на горизонтальной платформе, могущей вращаться вокруг вертикальной оси, лежит тело массой связанное с центром вращения О резиновым шнуром (рис. 18). Если платформа начнет вращаться с угловой скоростью со (и, следовательно, превратится в неинерциальную систему), то благодаря трению тело тоже будет вовлечено во вращение. Вместе с тем оно будет перемещаться в радиальном направлении от центра платформы до тех пор, пока возрастающая сила упругости растягивающегося шнура не остановит это перемещение. Тогда тело начнет вращаться на расстоянии от центра О.

С точки зрения наблюдателя, связанного с платформой, перемещение шара относительно нее обусловлено некоторой силой Это есть сила инерции, поскольку она не вызвана действием на шар других определенных тел; ее называют центробежной силой инерции. Очевидно, что центробежная сила инерции равна по величине и противоположна по направлению силе упругости растянутого шнура, играющей роль центростремительной силы, которая действует на тело, вращающееся по отношению к инерциальной системе (см. § 13) Поэтому

следовательно, центробежная сила инерции пропорциональна расстоянию тела от оси вращения.

Подчеркнем, что центробежную силу инерции не следует смешивать с «обычной» центробежной силой, упомянутой в конце § 13. Это силы различной природы, приложенные к разным объектам: центробежная сила инерции приложена к телу, а центробежная сила - к связи.

В заключение отметим, что с позиции принципа эквивалентности сил тяготения и инерции простое объяснение получает действие всех центробежных механизмов: насосов, сепараторов и т. п. (см. § 13).

Любой центробежный механизм можно рассматривать как вращающуюся неинерциальную систему, вызывающую появление поля тяготения радиальной конфигурации, которое в ограниченной области значительно превосходит поле земного тяготения. В этом поле более плотные частицы вращающейся среды или частицы, слабо связанные с ней, отходят к ее периферии (как бы идут «ко дну»).

Инерциальная система отсчёта

Инерциа́льная систе́ма отсчёта (ИСО) - система отсчёта , в которой справедлив первый закон Ньютона (закон инерции): все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся . Эквивалентной является следующая формулировка, удобная для использования в теоретической механике :

Свойства инерциальных систем отсчёта

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности , все ИСО равноправны, и все законы физики инвариантны относительно перехода из одной ИСО в другую. Это значит, что проявления законов физики в них выглядят одинаково, и записи этих законов имеют одинаковую форму в разных ИСО.

Предположение о существовании хотя бы одной ИСО в изотропном пространстве приводит к выводу о существовании бесконечного множества таких систем, движущихся друг относительно друга со всевозможными постоянными скоростями. Если ИСО существуют, то пространство будет однородным и изотропным, а время - однородным; согласно теореме Нётер , однородность пространства относительно сдвигов даст закон сохранения импульса , изотропность приведёт к сохранению момента импульса , а однородность времени - к сохранению энергии движущегося тела.

Если скорости относительного движения ИСО, реализуемых действительными телами, могут принимать любые значения, связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Галилея .

Связь с реальными системами отсчёта

Абсолютно инерциальные системы представляют собой математическую абстракцию, естественно, в природе не существующую. Однако существуют системы отсчёта, в которых относительное ускорение достаточно удалённых друг от друга тел (измеренное по эффекту Доплера) не превышает 10 −10 м/с², например, Международная небесная система координат в сочетании с Барицентрическим динамическим временем дают систему, относительные ускорения в которой не превышают 1,5·10 −10 м/с² (на уровне 1σ) . Точность экспериментов по анализу времени прихода импульсов от пульсаров, а вскоре - и астрометрических измерений, такова, что в ближайшее время должно быть измерено ускорение Солнечной системы при её движении в гравитационном поле Галактики, которое оценивается в м/с² .

С разной степенью точности и в зависимости от области использования инерциальными системами можно считать системы отсчёта, связанные с: Землёй , Солнцем , неподвижные относительно звезд.

Геоцентрическая инерциальная система координат

Применение Земли в качестве ИСО, несмотря на приближённый его характер, широко распространено в навигации . Инерциальная система координат, как часть ИСО строится по следующему алгоритму. В качестве точки O- начала координат выбирается центр земли в соответствии с принятой её моделью. Ось z – совпадает с осью вращения земли. Оси x и y находятся в экваториальной плоскости. Следует заметить, что такая система не участвует во вращении Земли.

Примечания

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Инерциальная система отсчёта" в других словарях:

    Система отсчёта, в к рой справедлив закон инерции: матер. точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта,… … Физическая энциклопедия

    ИНЕРЦИАЛЬНАЯ Система ОТСЧЁТА, смотри Система отсчета … Современная энциклопедия

    Инерциальная система отсчёта - ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЁТА, смотри Система отсчета. … Иллюстрированный энциклопедический словарь

    инерциальная система отсчёта - inercinė atskaitos sistema statusas T sritis fizika atitikmenys: angl. Galilean frame of reference; inertial reference system vok. inertiales Bezugssystem, n; Inertialsystem, n; Trägheitssystem, n rus. инерциальная система отсчёта, f pranc.… … Fizikos terminų žodynas

    Система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая… … Большая советская энциклопедия

    Система отсчёта, в к рой справедлив закон инерции, т. е. тело, свободное от воздействий со стороны др. тел, сохраняет неизменной свою скорость (по абс. значению и по направлению). И. с. о. является такая (и только такая) система отсчёта, к рая… … Большой энциклопедический политехнический словарь

    Система отсчёта, в к рой справедлив закон инерции: материальная точка, на к рую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения Любая система отсчёта, движущаяся относительно И. с. о. поступательно … Естествознание. Энциклопедический словарь

    инерциальная система отсчёта - Система отсчёта, по отношению к которой изолированная материальная точка находится в покое или движется прямолинейно и равномерно … Политехнический терминологический толковый словарь

    Система отсчёта, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчёта, движущаяся относительно инерциальной… … Энциклопедический словарь

    Система отсчёта инерциальная - система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система… … Концепции современного естествознания. Словарь основных терминов

С древнейших времен движение материальных тел не переставало волновать умы ученых. Так, например, сам Аристотель считал, что если на тело не действуют никакие силы, то такое тело всегда будет находиться в покое.

И лишь только спустя 2000 лет итальянский ученый Галилео Галилей смог исключить из формулировки Аристотеля слово «всегда». Галилей понял, что пребывание тела в состоянии покоя не является единственным следствием отсутствия внешних сил.

Тогда Галилей заявил: тело, на которое не действуют никакие силы, будет либо находиться в покое, либо двигаться равномерно прямолинейно. То есть, движение с одинаковой скоростью по прямой траектории, с точки зрения физики, равнозначно состоянию покоя.

Что есть состояние покоя?

В жизни этот факт наблюдать очень сложно, поскольку всегда имеет место сила трения, которая не дает предметам и вещам покидать свои места. Но если представить себе бесконечно длинный, абсолютно скользкий и гладкий каток, на котором стоит тело, то станет очевидно, что если придать телу импульс, то тело будет двигаться бесконечно долго и по одной прямой.

И в самом деле, на тело действую только две силы: сила тяжести и сила реакции опоры. Но расположены они на одной прямой и направлены друг против друга. Таким образом, по принципу суперпозиции, мы имеем, что общая сила, действующая на такое тело равна нулю.

Однако это идеальный случай. В жизни сила трения проявляет себя почти во всех случаях. Галилей сделал важное открытие, приравняв состояние покоя и движение с постоянной скоростью по прямой линии. Но этого было недостаточно. Оказалось, что условие это выполняется не во всех случаях.

Ясность в этот вопрос внес Исаак Ньютон, обобщивший исследования Галилея и, таким образом, сформулировавший Первый Закон Ньютона.

Первый закон Ньютона: формулируем сами

Существуют две формулировки первого закона Ньютона современная и формулировка самого Исаака Ньютона. В исходном варианте первый закон Ньютона несколько неточен, а современный вариант в попытках исправить эту неточность оказался очень запутанным и потому неудачным. Ну а так как истина всегда где-то рядом, то попытаемся найти это «рядом» и разобраться, что же представляет собой данный закон.

Современная формулировка звучит следующим образом: «Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго» .

Инерциальные системы отсчета

Инерциальными называют системы отсчета, в которых выполняется закон инерции . Закон же инерции заключается в том, что тела сохраняют свою скорость неизменной, если на них не действуют другие тела. Получается очень неудобоваримо, малопонятно и напоминает комичную ситуацию, когда на вопрос: “Где это «тут»?” отвечают: “Это здесь”, а на следующий логичный вопрос: “А где это «здесь»?” отвечают: “Это тут”. Масло масляное. Замкнутый круг.

Формулировка самого Ньютона такова: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние» .

Однако на практике этот закон выполняется не всегда. Убедиться в этом можно элементарно. Когда человек стоит, не держась за поручни, в движущемся автобусе, и автобус резко тормозит, то человек начинает двигаться вперед относительно автобуса, хотя его не понуждает к этому ни одна видимая сила.

То есть, относительно автобуса первый закон Ньютона в изначальной формулировке не выполняется. Очевидно, что он нуждается в уточнении. Уточнением и является введение инерциальных систем отсчета . То есть, таких систем отсчета, в которых первый закон Ньютона выполняется. Это не совсем понятно, поэтому попробуем перевести все это на человеческий язык.

Инерциальные и неинерциальные системы отсчета

Свойство инерции любого тела таково, что до тех пор, пока тело остается изолированным от других тел, оно будет сохранять свое состояние покоя или равномерного прямолинейного движения . «Изолированным» - это значит никак не связанным, бесконечно удаленным от других тел.

На практике это означает, что если в нашем примере за систему отсчета принять не автобус, а какую-то звезду на окраине Галактики, то первый закон Ньютона будет абсолютно точно выполняться для беспечного пассажира, не держащегося за поручни. При торможении автобуса он будет продолжать свое равномерное движение, пока на него не подействуют другие тела.

Вот такие системы отсчета, которые никак не связаны с рассматриваемым телом, и которые никак не влияют на инертность тела, называются инерциальными. Для таких систем отсчета первый закон Ньютона в его исходной формулировке абсолютно справедлив.

То есть закон можно сформулировать так : в системах отсчета, абсолютно никак не связанных с телом, скорость тела при отсутствии стороннего воздействия остается неизменной. В таком виде первый закон Ньютона легко доступен для понимания.

Проблема заключается в том, что на практике очень сложно рассматривать движение конкретного тела относительно таких систем отсчета. Мы не можем переместиться на бесконечно далекую звезду и оттуда осуществлять какие-либо опыты на Земле.

Поэтому за такую систему отсчета условно часто принимают Землю, хотя она и связана с находящимися на ней телами и влияет на характеристики их движения. Но для многих расчетов такое приближение оказывается достаточным. Поэтому примерами инерциальных систем отсчета можно считать Землю для расположенных на ней тел, Солнечную систему для ее планет и так далее.

Первый закон Ньютона не описывается какой-либо физической формулой, однако с помощью него выводятся другие понятия и определения. По сути, этот закон постулирует инертность тел. И таким образом выходит, что для инерциальных систем отсчета закон инерции и есть первый закон Ньютона.

Еще примеры инерциальных систем и первого закона Ньютона

Так, например, если тележка с шаром будет ехать сначала по ровной поверхности, с постоянной скоростью, а потом заедет на песчаную поверхность, то шар внутри тележки начнет ускоренное движение, хотя никакие силы на него не действуют (на самом деле, действуют, но их сумма равна нулю).

Происходит это от того, что система отсчета (в данном случае, тележка) в момент попадания на песчаную поверхность, становится неинерциальной, то есть перестает двигаться с постоянной скоростью.

Первый Закон Ньютона вносит важное разграничение между инерциальными и неинерциальными системами отсчета. Также важным следствием этого закона является тот факт, что ускорение, в некотором смысле, важнее скорости тела.

Поскольку движение с постоянной скоростью по прямой линии суть нахождение в состоянии покоя. Тогда как движение с ускорением явно свидетельствуют о том, что либо сумма сил, приложенных к телу, не равно нулю, либо сама система отсчета, в которой находится тело, является неинерциальной, то есть движется с ускорением.

Причем ускорение может быть как положительным (тело ускоряется), так и отрицательным (тело замедляется).

Нужна помощь в учебе?

Предыдущая тема: Относительность движения: понятие и примеры
Следующая тема:   Второй закон Ньютона: формула и определение + маленький опыт

Все системы отсчёта делят на инерциальные и неинерциальные. Инерциальная система отсчёта лежит в основе механики Ньютона. Она характеризует равномерное прямолинейное движение и состояние покоя. Неинерциальная система отсчёта связана с ускоренным движением по разной траектории. Это движение определяется по отношению к инерциальным системам отсчёта. Неинерциальная система отсчёта связана с такими эффектами, как сила инерции, центробежная и сила Кориолиса.

Все эти процессы возникают в результате движения, а не взаимодействия между телами. Законы Ньютона в неинерциальных системах отсчёта зачастую не работают. В таких случаях к классическим законам механики добавляются поправки. Силы, обусловленные неинерциальным движением, учитываются при разработке технических изделий и механизмов, в том числе тех, где присутствует вращение. В жизни мы сталкиваемся с ними, перемещаясь в лифте, катаясь на карусели, наблюдая за погодой и течением рек. Их учитывают и при расчёте движения космических аппаратов.

Инерциальные и неинерциальные системы отсчёта

Для описания движения тел инерциальные системы отсчёта подходят не всегда. В физике выделяют 2 вида систем отсчёта: инерциальные и неинерциальные системы отсчёта. Согласно механике Ньютона, любое тело может быть в состоянии покоя либо равномерного и прямолинейного движения, за исключением случаев, когда на тело оказывается внешнее воздействие. Такое равномерное движение называют движением по инерции.

Инерциальное движение (инерциальные системы отсчёта) составляет основу механики Ньютона и трудов Галилея. Если считать звёзды неподвижными объектами (что на самом деле не совсем так), то любые объекты, движущиеся относительно них равномерно и прямолинейно, будут образовывать инерциальные системы отсчёта.

В отличие от инерциальных систем отсчёта, неинерциальная система перемещается по отношению к указанной с определенным ускорением. При этом использование законов Ньютона требует дополнительных переменных, в противном случае они будут неадекватно описывать систему. Что бы ответить на вопрос, какие системы отсчёта называются неинерциальными, стоит рассмотреть пример неинерциального движения. Таким движением является вращение нашей и других планет.

Движение в неинерциальных системах отсчёта

Коперник первым показал, насколько сложным может быть движение, если в нём участвует несколько сил. До него считалось, что Земля движется сама по себе, в соответствии с законами Ньютона, и потому ее движение является инерциальным. Однако Коперник доказал, что Земля обращается вокруг Солнца, то есть совершает ускоренное движение по отношению к условно неподвижному объекту, каковым может являться звезда.

Итак, есть разные системы отсчёта. Неинерциальными называют только те, где есть ускоренное движение, которое определяется по отношению к инерциальной системе.

Земля как система отсчёта

Неинерциальная система отсчёта, примеры существования которой можно встретить практически везде, типична для тел со сложной траекторией движения. Земля вращается вокруг Солнца, что создаёт ускоренное движение, характерное для неинерциальных систем отсчёта. Однако в повседневной практике всё, с чем мы сталкиваемся на Земле, вполне согласуется с постулатами Ньютона. Всё дело в том, что поправки на неинерциальное движение для связанных с Землёй систем отсчёта, очень незначительны и большой роли для нас не играют. И уравнения Ньютона по этой же причине оказываются в целом справедливы.

Маятник Фуко

Впрочем, в некоторых случаях без поправок не обойтись. Например, известный во всём мире маятник Фуко в соборе Санкт-Петербурга совершает не только линейные колебания, но ещё и медленно поворачивается. Этот поворот обусловлен неинерциальностью движения Земли в космическом пространстве.

Впервые об этом стало известно в 1851 году после опытов французского ученого Л. Фуко. Сам эксперимент проводился не в Петербурге, а в Париже, в огромном по размерам зале. Вес шара маятника был около 30 кг, а протяжённость соединительной нити - целых 67 метров.

В тех случаях, когда для описания движения недостаточно только формул Ньютона для инерциальной системы отсчёта, в них добавляют так называемые силы инерции.

Свойства неинерциальной системы отсчёта

Неинерциальная система отсчёта совершает различные движения относительно инерциальной. Это может быть поступательное движение, вращение, сложные комбинированные движения. В литературе приводится и такой простейший пример неинерциальной системы отсчёта, как ускоренно движущийся лифт. Именно из-за его ускоренного движения мы чувствуем, как нас придавливает к полу, или, наоборот, возникает ощущение, близкое к невесомости. Законы механики Ньютона такое явление объяснить не могут. Если следовать знаменитому физику, то в любой момент на человека в лифте будет действовать одна и та же сила тяжести, а значит и ощущения должны быть одинаковы, однако, в реальности всё обстоит иначе. Поэтому к законам Ньютона необходимо добавить дополнительную силу, которая и называется силой инерции.

Сила инерции

Сила инерции является реальной действующей силой, хотя и отличается по природе от сил, связанных с взаимодействием между телами в пространстве. Она учитывается при разработке технических конструкций и аппаратов, и играет важную роль в их работе. Силы инерции измеряются различными способами, например, при помощи пружинного динамометра. Неинерциальные системы отсчёта не являются замкнутыми, поскольку силы инерции считаются внешними. Силы инерции являются объективными физическими факторами и не зависят от воли и мнения наблюдателя.

Инерциальные и неинерциальные системы отсчёта, примеры проявления которых можно найти в учебниках физики - это действие силы инерции, центробежная сила, сила Кориолиса, передача импульса от одного тела к другому и другие.

Движение в лифте

Неинерциальные системы отсчёта, силы инерции хорошо проявляют себя при ускоренном подъёме или спуске. Если лифт с ускорением движется вверх, то возникающая сила инерции стремится прижать человека к полу, а при торможении тело, наоборот, начинает казаться более лёгким. По проявлениям сила инерции в данном случае похожа на силу тяжести, но она имеет совсем другую природу. Сила тяжести - это гравитация, которая связана с взаимодействием между телами.

Центробежные силы

Силы в неинерциальных системах отсчёта могут быть и центробежными. Вводить такую силу необходимо по той же причине, что и силу инерции. Яркий пример действия центробежных сил - вращение на карусели. Тогда как кресло стремится удержать человека на своей «орбите», сила инерции приводит к тому, что тело прижимается к внешней спинке кресла. Это противоборство и выражается в появлении такого явления, как центробежная сила.

Сила Кориолиса

Действие этой силы хорошо известно на примере вращения Земли. Назвать её силой можно лишь условно, поскольку таковой она не является. Суть её действия состоит в том, что при вращении (например, Земли) каждая точка сферического тела движется по окружности, тогда как объекты, оторванные от Земли, в идеале перемещаются прямолинейно (как, например, свободно летящее в космосе тело). Поскольку линия широты является траекторией вращения точек земной поверхности, и имеет вид кольца, то любые тела, оторванные от нее и первоначально движущиеся вдоль этой линии, перемещаясь линейно, начинают всё больше отклоняться от неё в направлении более низких широт.

Другой вариант - когда тело запущено в меридиональном направлении, но из-за вращения Земли, с точки зрения земного наблюдателя, движение тела уже не будет строго меридиональным.

Сила Кориолиса оказывает большое влияние на развитие атмосферных процессов. Под её же влиянием вода сильнее ударяет в восточный берег текущих в меридиональном направлении рек, постепенно размывая его, что приводит к появлению обрывов. На западном же, напротив, откладываются осадки, поэтому он более пологий и часто заливается водой при паводках. Правда, это не единственная причина, приводящая к тому, что один берег реки выше другого, но во многих случаях она является доминирующей.

Сила Кориолиса имеет и экспериментальное подтверждение. Оно было получено немецким физиком Ф. Райхом. В эксперименте тела падали с высоты 158 м. Всего было проведено 106 таких опытов. При падении тела отклонялись от прямолинейной (с точки зрения земного наблюдателя) траектории приблизительно на 30 мм.

Инерциальные системы отсчёта и теория относительности

Специальная теория относительности Эйнштейна создавалась применительно к инерциальным системам отсчёта. Так называемые релятивистские эффекты, согласно этой теории, должны возникать в случае очень больших скоростей движения тела относительно «неподвижного» наблюдателя. Все формулы специальной теории относительности также расписаны для равномерного движения, свойственного инерциальной системе отсчёта. Первый постулат этой теории утверждает равноценность любых инерциальных систем отсчёта, т. е. постулируется отсутствие особых, выделенных систем.

Однако это ставит под сомнение возможность проверки релятивистских эффектов (как и сам факт их наличия), что привело к появлению таких явлений, как парадокс близнецов. Поскольку системы отсчёта, связанные с ракетой и Землёй, принципиально равноправны, то и эффекты замедления времени в паре "Земля - ракета" будут зависеть только от того, где находится наблюдатель. Так, для наблюдателя на ракете, время на Земле должно идти медленнее, а для человека, находящегося на нашей планете, наоборот, оно должно идти медленнее на ракете. В результате близнец, оставшийся на Земле, увидит своего прибывшего брата более молодым, а тот, кто был в ракете, прилетев, должен увидеть моложе того, кто остался на Земле. Понятно, что физически такое невозможно.

Значит, чтобы наблюдать релятивистские эффекты, нужна какая-то особая, выделенная система отсчёта. Например, предполагается, что мы наблюдаем релятивистское увеличение времени жизни мюонов, если они движутся с околосветовой скоростью относительно Земли. Это значит, что Земля должна (причём, безальтернативно) обладать свойствами приоритетной, базовой системы отсчёта, что противоречит первому постулату СТО. Приоритет возможен только в случае, если Земля является центром вселенной, что согласуется только с первобытной картиной мира и противоречит физике.

Неинерциальные системы отсчёта как неудачный способ объяснения парадокса близнецов

Попытки объяснить приоритет "земной" системы отсчёта не выдерживают никакой критики. Некоторые ученые такой приоритет связывают именно с фактором инерциальности одной и неинерциальности другой системы отсчёта. При этом систему отсчёта, связанную с наблюдателем на Земле, считают инерциальной, при том, что в физической науке она официально признана неинерциальной (Детлаф, Яворский, курс физики, 2000). Это первое. Второе - это всё тот же принцип равноправия любых систем отсчёта. Так, если космический корабль уходит от Земли с ускорением, то с точки зрения наблюдателя на самом корабле, он статичен, а Земля, напротив, улетает от него с возрастающей скоростью.

Получается, что сама Земля является особой системой отсчёта либо наблюдаемые эффекты имеют иное (не релятивистское) объяснение. Может быть, процессы связаны с особенностями постановки или интерпретации экспериментов, либо с иными физическими механизмами наблюдаемых явлений.

Заключение

Таким образом, неинерциальные системы отсчёта приводят к появлению сил, которые не нашли своего места в законах механики Ньютона. При расчётах для неинерциальных систем учёт этих сил является обязательным, в том числе, при разработке технических изделий.

Первый закон Ньютона формулируется следующим образом: тело, неподверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно . Такое тело называется свободным , а его движение – свободным движением или движением по инерции. Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при отсутствии воздействия на него других тел называется инерцией . Поэтому первый закон Ньютона называют законом инерции. Свободных тел, строго говоря, не существует. Однако естественно предположить, что чем дальше частица находится от других материальных объектов, тем меньшее воздействие они на нее оказывают. Представив себе, что эти воздействия уменьшаются, мы и приходим в пределе к представлению о свободном теле и свободном движении.

Экспериментально проверить предположение о характере движения свободной частицы невозможно, поскольку нельзя абсолютно достоверно установить факт отсутствия взаимодействия. Можно лишь с определенной степенью точности смоделировать данную ситуацию, используя экспериментальный факт уменьшения взаимодействия между удаленными телами. Обобщение ряда экспериментальных фактов, а также совпадение вытекающих из закона следствий с опытными данными доказывают его справедливость. При движении тело тем дольше сохраняет свою скорость, чем слабее на него действуют другие тела; например, скользящий по поверхности камень тем дольше движется, чем ровнее эта поверхность, то есть чем меньше воздействие на него этой поверхности.

Механическое движение относительно, и его характер зависит от системы отсчета. В кинематике выбор системы отсчета не был существенным. Не так обстоит дело в динамике. Если в какой-либо системе отсчета тело движется прямолинейно и равномерно, то в системе отсчета, движущейся относительно первой ускоренно, этого уже не будет. Отсюда следует, что закон инерции не может быть справедливым во всех системах отсчета. Классическая механика постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. Такая система отсчета называется инерциальной системой отсчета (ИСО). Содержание закона инерции, в сущности, сводится к утверждению, что существуют такие системы отсчета, в которых тело, не подвергнутое внешним воздействиям, движется равномерно и прямолинейно или покоится.



Установить, какие системы отсчета являются инерциальными, а какие – неинерциальными, можно только опытным путем. Допустим, например, что речь идет о движении звезд и других астрономических объектов в доступной нашему наблюдению части Вселенной. Выберем систему отсчета, в которой Земля считается неподвижной (такую систему мы будем называть земной). Будет ли она инерциальной?

В качестве свободного тела можно выбрать звезду. Действительно, каждая звезда, ввиду ее громадной удаленности от других небесных тел, является практически свободным телом. Однако в земной системе отсчета звезды совершают суточные вращения на небесном своде, а следовательно, движутся с ускорением, направленным к центру Земли. Таким образом, движение свободного тела (звезды) в земной системе отсчета совершается по окружности, а не по прямой линии. Оно не подчиняется закону инерции, поэтому земная система отсчета не будет инерциальной.

Следовательно, для решения поставленной задачи надо проверить на инерциальность другие системы отсчета. Выберем в качестве тела отсчета Солнце. Такая система отсчета называется гелиоцентрической системой отсчета, или системой Коперника. Координатными осями связанной с ней системы координат являются прямые, направленные на три удаленные звезды, не лежащие в одной плоскости (рис. 2.1).

Таким образом, при изучении движений, происходящих в масштабе нашей планетной системы, а также всякой другой системы, размеры которой малы по сравнению с расстоянием до тех трех звезд, которые в системе Коперника выбраны в качестве опорных, система Коперника практически является инерциальной системой отсчета.

Пример

Неинерциальность земной системы отсчета объясняется тем, что Земля вращается вокруг собственной оси и вокруг Солнца, то есть движется ускоренно относительно системы Коперника. Так как оба эти вращения происходят медленно, то по отношению к громадному кругу явлений земная система ведет себя практически как инерциальная система. Вот почему установление основных законов динамики можно начать с изучения движения тел относительно Земли, отвлекаясь от ее вращения, то есть принять Землю за приблизительно ИСО.

СИЛА. МАССА ТЕЛА

Как показывает опыт, любое изменение скорости тела возникает под влиянием других тел. В механике процесс изменения характера движения под влиянием других тел называют взаимодействием тел. Для количественной характеристики интенсивности этого взаимодействия Ньютон ввёл понятие силы. Силы могут вызывать не только изменение скорости материальных тел, но и их деформацию. Поэтому понятию силы можно дать следующее определение: сила – количественная мера взаимодействия по крайней мере двух тел, вызывающая ускорение тела или изменение его формы, или и то и другое вместе.

Примером деформации тела под действием силы является сжатая или растянутая пружина. Её легко использовать в качестве эталона силы: в качестве единицы силы берётся упругая сила, действующая в пружине, растянутой или сжатой в определённой степени. Пользуясь таким эталоном, можно сравнивать силы и изучать их свойства. Силы обладают следующими свойствами.

ü Сила является векторной величиной и характеризуется направлением, модулем (числовым значением) и точкой приложения. Силы, приложенные к одному телу, складываются по правилу параллелограмма.

ü Сила является причиной ускорения. Направление вектора ускорения параллельно вектору силы.

ü Сила имеет материальное происхождение. Нет материальных тел – нет сил.

ü Действие силы не зависит от того, находится тело в состоянии покоя или движется.

ü При одновременном действии нескольких сил тело получает такое ускорение, какое бы оно получило под действием результирующей силы .

Последнее утверждение составляет содержание принципа суперпозиции сил. В основе принципа суперпозиции лежит представление о независимости действия сил: каждая сила сообщает рассматриваемому телу одно и то же ускорение, независимо от того, действует ли только i -й источник сил или все источников одновременно. Это можно сформулировать иначе. Сила, с которой одна частица действует на другую, зависит от радиус-векторов и скоростей только этих двух частиц. Присутствие других частиц на эту силу не влияет. Это свойство называется законом независимости действия сил или законом парного взаимодействия. Область применимости этого закона охватывает всю классическую механику.

С другой стороны, для решения многих задач бывает необходимо найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такую операцию называют разложением данной силы на составляющие.

Из опыта известно, что при одинаковых взаимодействиях различные тела неодинаково изменяют свою скорость движения. Характер изменения скорости движения зависит не только от величины силы и времени её действия, а и от свойств самого тела. Как показывает опыт, для данного тела отношение каждой силы, действующей на него, к сообщаемому этой силой ускорению является величиной постоянной . Это отношение зависит от свойств ускоряемого тела и называется инертной массой тела. Таким образом, масса тела определяется как отношение силы, действующей на тело, к сообщаемому этой силой ускорению . Чем больше масса, тем большая сила требуется для сообщения телу определённого ускорения. Тело как бы сопротивляется попытке изменить его скорость.

Свойство тел, которое выражается в способности сохранять во времени своё состояние (скорость движения, направление движения или состояние покоя), называется инертностью. Мерой инертности тела является его инертная масса.При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее (рис. 2.2). Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой. В Международной системе единиц (СИ) масса тела измеряется в килограммах (кг). Понятие массы нельзя свести к более простым понятиям. Чем больше масса тела, тем меньшее ускорение оно приобретет под действием одинаковой силы. Чем больше сила, тем с большим ускорением, а следовательно, и большей конечной скоростью будет двигаться тело.

Единицей измерения силы в системе единиц СИ является Н (ньютон). Один Н (ньютон) численно равен силе, которая сообщает телу массой m = 1 кг ускорение .

Замечание.

Отношение справедливо только при достаточно малых скоростях. При увеличении скорости это отношение изменяется, возрастая со скоростью.

ВТОРОЙ ЗАКОН НЬЮТОНА

Из опыта следует, что в инерциальных системах отсчета ускорение тела пропорционально векторной сумме всех действующих на него сил и обратно пропорционально массе тела:

Второй закон Ньютона выражает связь между равнодействующей всех сил и вызываемым ей ускорением:

Здесь – изменение импульса материальной точки за время . Устремим промежуток времени к нулю:

тогда получим

Среди экстремальных видов развлечений особое место занимают прыжки с «тарзанки», или «банджи-джампинг». В местечке Джеффри Бей находится самая большая из зарегистрированных «тарзанок» – 221 м. Она даже занесена в Книгу рекордов Гиннеса. Длина веревки рассчитывается так, чтобы человек прыгая вниз, останавливался у самой кромки воды или только касался ее. Прыгающего человека удерживает упругая сила деформированного каната. Обычно тросом служат множество сплетенных вместе резиновых жил. Так что при падении трос пружинит, не давая ногам прыгуна оторваться и добавляя прыжку дополнительные ощущения. В полном соответствии со вторым законом Ньютона увеличение времени взаимодействия прыгуна с канатом приводит к ослаблению силы, действующей со стороны каната на человека.
Для того, чтобы при игре в волейбол принять мяч, летящий с большой скоростью, необходимо перемещать руки по направлению движения мяча. При этом увеличивается время взаимодействия с мячом, а, следовательно, в полном соответствии со вторым законом Ньютона уменьшается величина силы, действующей на руки.

Представленный в такой форме второй закон Ньютона содержит новую физическую величину – импульс. При скоростях, близких к скорости света в вакууме, импульс становится основной величиной, измеряемой в экспериментах. Поэтому уравнение (2.2) является обобщением уравнения движения на релятивистские скорости.

Как видно из уравнения (2.2), если , то постоянная величина, отсюда следует, что постоянна, то есть импульс, а с ним и скорость свободно движущейся материальной точки постоянны. Таким образом, формально первый закон Ньютона является следствием второго закона. Почему же тогда он выделяется в самостоятельный закон? Дело в том, что уравнение, выражающее второй закон Ньютона, только тогда имеет смысл, когда указана система отсчета, в которой оно справедливо. Выделить же такую систему отсчета позволяет первый закон Ньютона. Он утверждает, что существует система отсчета, в которой свободная материальная точка движется без ускорения. В такой системе отсчета движение всякой материальной точки подчиняется уравнению движения Ньютона. Таким образом, по существу, первый закон нельзя рассматривать как простое логическое следствие второго. Связь между этими законами более глубокая.

Из уравнения (2.2) следует, что , то есть бесконечно малое изменение импульса за бесконечно малый промежуток времени равно произведению , называемому импульсом силы. Чем больше импульс силы, тем больше изменение импульса.

ТИПЫ СИЛ

Все многообразие существующих в природе взаимодействий сводится к четырем типам: гравитационное, электромагнитное, сильное и слабое. Сильные и слабые взаимодействия существенны на столь малых расстояниях, когда законы механики Ньютона уже неприменимы. Все макроскопические явления в окружающем нас мире определяются гравитационным и электромагнитным взаимодействиями. Только для этих видов взаимодействий можно использовать понятие силы в смысле механики Ньютона. Гравитационные силы наиболее существенны при взаимодействии больших масс. Проявления электромагнитных сил чрезвычайно многообразны. Хорошо известные силы трения, упругие силы имеют электромагнитную природу. Поскольку второй закон Ньютона определяет ускорение тела независимо от природы сил, сообщающих ускорение, то в дальнейшем будем пользоваться так называемым феноменологическим подходом: опираясь на опыт, установим количественные закономерности для этих сил.

Упругие силы. Упругие силы возникают в теле, испытывающем воздействие других тел или полей, и связаны с деформацией тела. Деформации представляют собой особый вид движения, а именно перемещение частей тела относительно друг друга под действием внешней силы. При деформации тела изменяются его форма и объем. Для твердых тел различают два предельных случая деформации: упругие и пластические. Деформацию называют упругой, если она полностью исчезает после прекращения действия деформирующих сил. При пластических (неупругих) деформациях тела частично сохраняют измененную форму после снятия нагрузки.

Упругие деформации тел разнообразны. Под действием внешней силы тела могут растягиваться и сжиматься, изгибаться, скручиваться и т.д. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации. Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации.

Опыт показывает, что при малых упругих деформациях величина деформации пропорциональна вызывающей ее силе (рис. 2.3). Это утверждение носит название закона Гука .

Роберт Гук (Robert Hooke), 1635–1702

Английский физик. Родился во Фрешуотере на острове Уайт в семье священника, окончил Оксфордский университет. Еще учась в университете, работал ассистентом в лаборатории Роберта Бойля, помогая последнему строить вакуумный насос для установки, на которой был открыт закон Бойля–Мариотта. Будучи современником Исаака Ньютона, вместе с ним активно участвовал в работе Королевского общества, а в 1677 г. занял там пост ученого секретаря. Как и многие другие ученые того времени, Роберт Гук интересовался самыми разными областями естественных наук и внес вклад в развитие многих из них. В своей монографии «Микрография» он опубликовал множество зарисовок микроскопического строения живых тканей и других биологических образцов и впервые ввел современное понятие «живая клетка». В геологии он первым осознал важность геологических пластов и первым в истории занялся научным изучением природных катаклизмов. Он же одним из первых высказал гипотезу, что сила гравитационного притяжения между телами убывает пропорционально квадрату расстояния между ними, и двое соотечественников и современников, Гук и Ньютон, так до конца жизни и оспаривали друг у друга право называться первооткрывателем закона всемирного тяготения. Гук разработал и собственноручно построил целый ряд важных научно-измерительных приборов. Он, в частности, первым предложил помещать перекрестье из двух тонких нитей в окуляр микроскопа, первым предложил принять температуру замерзания воды за ноль температурной шкалы, а также изобрел универсальный шарнир (карданное сочленение).

Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид:

где – сила упругости; – изменение длины (деформация) тела; – коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ – ньютон на метр (Н/м). В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Сила упругости всегда направлена к положению равновесия. Сила упругости, которая действует на тело со стороны опоры или подвеса, называется силой реакции опоры или силой натяжения подвеса.

При . В этом случае . Следовательно, модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в два раза (если бы для такой большой деформации выполнялся закон Гука). Из (2.3) видно также, что в системе единиц СИ модуль Юнга измеряется в паскалях (). Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, , а для резины приблизительно , то есть на пять порядков меньше.

Конечно, закон Гука даже в усовершенствованной Юнгом форме не описывает всего, что происходит с твердым веществом под воздействием внешних сил. Представьте себе резиновую ленту. Если растянуть ее не слишком сильно, со стороны резиновой ленты возникнет возвращающая сила упругого натяжения, и как только вы ее отпустите, она тут же соберется и примет прежнюю форму. Если растягивать резиновую ленту дальше, то рано или поздно она утратит свою эластичность, и вы почувствуете, что сила сопротивления растяжению уменьшилась. Значит, вы перешли так называемый предел эластичности материала. Если тянуть резину и дальше, через какое-то время она вообще порвется, и сопротивление исчезнет полностью. Это значит, что пройдена так называемая точка разрыва. Иными словами, закон Гука действует только при относительно небольших сжатиях или растяжениях.