Структура и классификация систем массового обслуживания

Системы массового обслуживания

Нередко возникает необходимость в решении вероятностных задач, связанных с системами массового обслуживания (СМО), примерами которых могут быть:

Билетные кассы;

Ремонтные мастерские;

Торговые, транспортные, энергетические системы;

Системы связи;

Общность таких систем выявляется в единстве математических методов и моделей, применяемых при исследовании их деятельности.

Рис. 4.1. Основные сферы применения ТМО

На вход в СМО поступает поток требований на обслуживание. Например, клиенты или пациенты, поломки в оборудовании, телефонные вызовы. Требования поступают нерегулярно, в случайные моменты времени. Случайный характер носит и продолжительность обслуживания. Это создает нерегулярность в работе СМО, служит причиной ее перегрузок и недогрузок.

Системы массового обслуживания обладают различной структурой, но обычно в них можно выделить четыре основных элемента :

1. Входящий поток требований.

2. Накопитель (очередь).

3. Приборы (каналы обслуживания).

4. Выходящий поток.

Рис. 4.2. Общая схема систем массового обслуживания

Рис. 4.3. Модель работы системы

(стрелками показаны моменты поступления требований в

систему, прямоугольниками – время обслуживания)

На рис.4.3 а представлена модель работы системы с регулярным потоком требований. Поскольку известен промежуток между поступлениями требований, то время обслуживания выбрано так, чтобы полностью загрузить систему. Для системы со стохастическим потоком требований ситуация совершенно иная – требования приходят в различные моменты времени и время обслуживания тоже является случайной величиной, которое может быть описано неким законом распределения (рис.4.3 б).

В зависимости от правил образования очереди различают следующие СМО:

1) системы с отказами , в которых при занятости всех каналов обслуживания заявка покидает систему необслуженной;

2) системы с неограниченной очередью , в которых заявка встает в очередь, если в момент ее поступления все каналы обслуживания были заняты;

3) системы с ожиданием и ограниченной очередью , в которых время ожидания ограниченно какими-либо условиями или существуют ограничения на число заявок, стоящих в очереди.

Рассмотрим характеристики входящего потока требований.

Поток требований называется стационарным , если вероятность попадания того или иного числа событий на участок времени определенной длины зависит только от длины этого участка.

Поток событий называется потоком без последствий , если число событий, попадающих на некоторый участок времени, не зависит от числа событий, попадающих на другие.



Поток событий называется ординарным , если невозможно одновременное поступление двух или более событий.

Поток требований называется пуассоновским (или простейшим), если он обладает тремя свойствами: стационарен, ординарен и не имеет последствий. Название связано с тем, что при выполнении указанных условий число событий, попадающих на любой фиксированный интервал времени, будет распределен по закону Пуассона.

Интенсивностью потока заявок λ называется среднее число заявок, поступающих из потока за единицу времени.

Для стационарного потока интенсивность постоянна. Если τ – среднее значение интервала времени между двумя соседними заявками, то В случае пуассоновского потока вероятность поступления на обслуживание m заявок за промежуток времени t определяется по закону Пуассона:

Время между соседними заявками распределено по экспоненциальному закону с плотностью вероятности

Время обслуживания является случайной величиной и подчиняется показательному закону распределения с плотностью вероятности где μ – интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени,

Отношение интенсивности входящего потока к интенсивности потока обслуживания называется загрузкой системы

Система массового обслуживания представляет собой систему дискретного типа с конечным или счетным множеством состояний, а переход системы из одного состояния в другое происходит скачком, когда осуществляется какое-нибудь событие.

Процесс называется процессом с дискретными состояниями , если его возможные состояния можно заранее перенумеровать, и переход системы из состояния в состояние происходит практически мгновенно.

Такие процессы бывают двух типов: с дискретным или непрерывным временем.

В случае дискретного времени переходы из состояния в состояние могут происходить в строго определенные моменты времени. Процессы с непрерывным временем отличаются тем, что переход системы в новое состояние возможен в любой момент времени.

Случайным процессом называется соответствие, при котором каждому значению аргумента (в данном случае – моменту из промежутка времени проводимого опыта) ставится в соответствие случайная величина (в данном случае – состояние СМО). Случайной величиной называется величина, которая в результате опыта может принять одно, но неизвестное заранее, какое именно, числовое значение из данного числового множества.

Поэтому для решения задач теории массового обслуживания необходимо этот случайный процесс изучить, т.е. построить и проанализировать его математическую модель.

Случайный процесс называется марковским , если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

Переходы системы из состояния в состояние происходит под действием каких-то потоков (поток заявок, поток отказов). Если все потоки событий, приводящие систему в новое состояние, – простейшие пуассоновские, то процесс, протекающий в системе, будет марковским, так как простейший поток не обладает последствием: в нем будущее не зависит от прошлого.

Случайным процессом называется множество или семейство случайных величин, значения которых индексируются временным параметром. Например, число студентов в аудитории, атмосферное давление или температура в этой аудитории как функции времени являются случайными процессами.

Случайные процессы находят широкое применение при изучении сложных стохастических систем как адекватные математические модели процесса функционирования таких систем.

Основными понятиями для случайных процессов являются понятия состояния процесса иперехода его из одного состояния в другое.

Значения переменных, которые описывают случайный процесс, в данный момент времени называются состоянием случайного процесса . Случайный процесс совершает переход из одного состояния в другое, если значения переменных, задающих одно состояние, изменяются на значения, которые определяют другое состояние.

Число возможных состояний (пространство состояний) случайного процесса может быть конечным или бесконечным. Если число возможных состояний конечно или счетно (всем возможным состояниям могут быть присвоены порядковые номера), то случайный процесс называется процессом с дискретными состояниями . Например, число покупателей в магазине, число клиентов в банке в течение дня описываются случайными процессами с дискретными состояниями.

Если переменные, описывающие случайный процесс, могут принимать любые значения из конечного или бесконечного непрерывного интервала, а, значит, число состояний несчетно, то случайный процесс называется процессом с непрерывными состояниями . Например, температура воздуха в течение суток является случайным процессом с непрерывными состояниями.

Для случайных процессов с дискретными состояниями характерны скачкообразные переходы из одного состояния в другое, тогда, как в процессах с непрерывными состояниями переходы являются плавными. Далее будем рассматривать только процессы с дискретными состояниями, которых часто называют цепями .

Обозначим через g (t ) случайный процесс с дискретными состояниями, а возможные значенияg (t ), т.е. возможные состояния цепи, - через символыE 0 , E 1 , E 2 , … . Иногда для обозначения дискретных состояний используют числа 0, 1, 2,... из натурального ряда.

Случайный процесс g (t ) называетсяпроцессом с дискретным временем , если переходы процесса из состояния в состояние возможны только в строго определенные, заранее фиксированные моменты времениt 0 , t 1 , t 2 , … . Если переход процесса из состояния в состояние возможен в любой, заранее неизвестный момент времени, то случайный процесс называетсяпроцессом с непрерывным временем . В первом случае, очевидно, что интервалы времени между переходами являются детерминированными, а во втором - случайными величинами.

Процесс с дискретным временем имеет место либо, когда структура системы, которая описывается этим процессом, такова, что ее состояния могут изменяться только в заранее определенные моменты времени, либо когда предполагается, что для описания процесса (системы) достаточно знать состояния в определенные моменты времени. Тогда эти моменты можно пронумеровать и говорить о состоянии E i в момент времени t i .

Случайные процессы с дискретными состояниями могут изображаться в виде графа переходов (или состояний), в котором вершины соответствуют состояниям, а ориентированные дуги - переходам из одного состояния в другое. Если из состояния E i возможен переход только в одно состояниеE j , то этот факт на графе переходов отражается дугой, направленной из вершиныE i в вершинуE j (рис.1,а). Переходы из одного состояния в несколько других состояний и из нескольких состояний в одно состояние отражается на графе переходов, как показано на рис.1,б и 1,в.

Допущения о пуассоновском характере потока заявок и о показательном распределении времени обслуживания ценны тем, что позволяют применить в теории массового обслуживания аппарат так называемых марковских случайных процессов.

Процесс, протекающий в физической системе, называется марковским (или процессом без последействия), если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящий момент и не зависит от того, каким образом система пришла в это состояние.

Рассмотрим элементарный пример марковского случайного процесса. По оси абсцисс случайным образом перемещается точка . В момент времени точка находится в начале координат и остается там в течение одной секунды. Через секунду бросается монета; если выпал герб - точка перемещается на одну единицу длины вправо, если цифра - влево. Через секунду снова бросается монета и производится такое же случайное перемещение, и т. д. Процесс изменения положения точки (или, как говорят, «блуждания») представляет собой случайный процесс с дискретным временем и счетным множеством состояний

Схема возможных переходов для этого процесса показана на рис. 19.7.1.

Покажем, что этот процесс - марковский. Действительно, представим себе, что в какой-то момент времени система находится, например, в состоянии - на одну единицу правее начала координат. Возможные положения точки через единицу времени будут и с вероятностями 1/2 и 1/2; через две единицы - , , с вероятностями 1/4, ½, 1/4 и так далее. Очевидно, все эти вероятности зависят только от того, где находится точка в данный момент , и совершенно не зависят от того, как она пришла туда.

Рассмотрим другой пример. Имеется техническое устройство , состоящее из элементов (деталей) типов и , обладающих разной долговечностью. Эти элементы в случайные моменты времени и независимо друг от друга могут выходить из строя. Исправная работа каждого элемента безусловно необходима для работы устройства в целом. Время безотказной работы элемента - случайная величина, распределенная по показательному закону; для элементов типа и параметры этого закона различны и равны соответственно и . В случае отказа устройства немедленно принимаются меры для выявления причин и обнаруженный неисправный элемент немедленно заменяется новым. Время, потребное для восстановления (ремонта) устройства, распределено по показательному закону с параметром (если вышел из строя элемент типа ) и (если вышел из строя элемент типа ).

В данном примере случайный процесс, протекающий в системе, есть марковский процесс с непрерывным временем и конечным множеством состояний:

Все элементы исправны, система работает,

Неисправен элемент типа , система ремонтируется,

Неисправен элемент типа , система ремонтируется.

Схема возможных переходов дана на рис. 19.7.2.

Действительно, процесс обладает марковским свойством. Пусть например, в момент система находится в состоянии (исправна). Так как время безотказной работы каждого элемента - показательное, то момент отказа каждого элемента в будущем не зависит от того, сколько времени он уже работал (когда поставлен). Поэтому вероятность того, что в будущем система останется в состоянии или уйдет из него, не зависит от «предыстории» процесса. Предположим теперь, что в момент система находится в состоянии (неисправен элемент типа ). Так как время ремонта тоже показательное, вероятность окончания ремонта в любое время после не зависит от того, когда начался ремонт и когда были поставлены остальные (исправные) элементы. Таким образом, процесс является марковским.

Заметим, что показательное распределение времени работы элемента и показательное распределение времени ремонта - существенные условия, без которых процесс не был бы марковским. Действительно, предположим, что время исправной работы элемента распределено не по показательному закону, а по какому-нибудь другому - например, по закону равномерной плотности на участке . Это значит, что каждый элемент с гарантией работает время , а на участке от до может выйти из строя в любой момент с одинаковой плотностью вероятности. Предположим, что в какой-то момент времени элемент работает исправно. Очевидно, вероятность того, что элемент выйдет из строя на каком-то участке времени в будущем, зависит от того, насколько давно поставлен элемент, т. е. зависит от предыстории, и процесс не будет марковским.

Аналогично обстоит дело и с временем ремонта ; если оно не показательное и элемент в момент ремонтируется, то оставшееся время ремонта зависит от того, когда он начался; процесс снова не будет марковским.

Вообще показательное распределение играет особую роль в теории марковских случайных процессов с непрерывным временем. Легко убедиться, что в стационарном марковском процессе время, в течение которого система остается в каком-либо состоянии, распределено всегда по показательному закону (с параметром, зависящим, вообще говоря, от этого состояния). Действительно, предположим, что в момент система находится в состоянии и до этого уже находилась в нем какое-то время. Согласно определению марковского процесса, вероятность любого события в будущем не зависит от предыстории; в частности, вероятность того, что система уйдет из состояния в течение времени , не должна зависеть от того, сколько времени система уже провела в этом состоянии. Следовательно, время пребывания системы в состоянии должно быть распределено по показательному закону.

В случае, когда процесс, протекающий в физической системе со счетным множеством состояний и непрерывным временем, является марковским, можно описать этот процесс с помощью обыкновенных дифференциальных уравнений, в которых неизвестными функциями являются вероятности состояний . Составление и решение таких уравнений мы продемонстрируем в следующем на примере простейшей системы массового обслуживания.