Вопрос № 25. Математические методы прогноза .

Методы прогнозирования – научное предвидение, основанное на анализе фактических данных прошлого и настоящего исследуемого объекта. Совокупность специальных правил, приемов и методов составляет методику прогнозирования. Прогноз в системе управления является предплановой разработкой многовариантных моделей развития объекта управления. К основным методам прогнозирования относятся: экономико-математические, аналоговые, экспертные др. ^ Экономико-математические методы прогнозирования :

    линейное программирование, позволяющее сформулировать оптимизационную задачу в виде линейных ограничений (неравенств или равенств) и линейной целевой функции;

    динамическое программирование, рассчитанное на решение многоступенчатых оптимизационных задач;

    целочисленное программирование, позволяющее решать оптимизационные задачи, в том числе задачи оптимального распределения ресурсов, при дискретных (целочисленных) значениях переменных и др.;

    вероятностные и статистические модели реализуются в методах теории массового обслуживания;

    теория игр моделирование таких ситуаций, принятие решения в которых должно учитывать несовпадение интересов различных подразделений;

    имитационные модели позволяют экспериментально проверить реализацию решений, изменить исходные предпосылки, уточнить требования к ним.

Паттерн (PATTERN – Planning Assistance Through Technical Evaluation Relevance) – методика разработана в 1963 г., применяется при планировании научно-исследовательских и опытно-конструкторских разработок в условиях неопределенности (т.е. в сложных, противоречивых системах). Основные элементы структуры паттерна: выбор объекта прогноза; выявление внутренних закономерностей объекта; подготовка сценария; формулирование задачи и генеральной цели прогноза; анализ иерархии; формулирование целей; принятие внутренней и внешней структуры; анкетирование; математическая обработка данных анкетного опроса; количественная оценка структуры; верификация; разработка алгоритма распределения ресурсов; распределение ресурсов; оценка результатов распределения. Методика позволяет получить предпрогнозную ориентацию, сформировать внутреннюю структуру объекта («дерево целей»), внешнюю структуру (систему локальных критериев), разработать варианты ресурсного обеспечения элементов объекта.

Метод изыскательского прогнозирования.

Одним из основных методов, используемых в изыскательском прогнозировании, является экстраполяция временных рядов – статистических данных об интересующем нас объекте. Экстраполяционные методы основаны на предположении о том, что закон роста, имевший место в прошлом, сохранится и в будущем, с учетом поправок из-за возможного эффекта насыщения и стадий жизненного цикла объекта. К числу кривых, достаточно точно отражающих изменение прогнозируемых параметров в ряде распространенных ситуаций, является экспонента, то есть функция вида: y=a*ebt, где t-время, a и b-параметры экспоненциальной кривой. К числу наиболее известных экспоненциальных кривых, используемых при прогнозировании можно отнести кривую Перла, выведенную на основании обширных исследований в области роста организмов и популяций, и имеющую вид: Y = L/(1+a*(e-bt), где L -верхний предел переменной y.

Не менее распространена кривая Гомперца, выведенная на основании результатов исследований в области распределения дохода и уровня смертности (для страховых компаний), где k-также параметр экспоненты.

Кривые Перла и Гомперца использовались при прогнозе таких параметров, как возрастание коэффициента полезного действия паровых двигателей, рост эффективности радиостанций, рост тоннажа судов торгового флота и т.д. Как кривая Перла, так и кривая Гомперца могут быть отнесены к классу так называемых S-образных кривых. Для таких кривых характерен экспоненциальный или близкий к экспоненциальному рост на начальной стадии, а затем при приближении к точке насыщения они принимают более пологий вид.

Многие из упомянутых процессов могут быть описаны с помощью соответствующих дифференциальных уравнений, решением которых и являются кривые Перла и Гомперца. В качестве примера можно привести дифференциальное уравнение, описывающее приращение объема информации (знания) I в зависимости от числа исследователей N, среднего коэффициента продуктивности одного исследователя q в единицу времени t и С- постоянного коэффициента, характеризующего динамики изменения объема информации.

При экстраполяции используются регрессионные и феноменологические модели. Регрессионные модели строятся на базе сложившихся закономерностей развития событий с использованием специальных методов подбора вида экстраполирующей функции и определения значений её параметров. В частности, для определения параметров экстраполирующей функции может быть использован метод наименьших квадратов.

Предполагая использование той или иной модели экстраполирования, того или иного закона распределения, можно определить доверительные интервалы, характеризующие надежность прогнозных оценок. Феноменологические модели строятся исходя из условий максимального приближения к тренду процесса, с учетом его особенностей и ограничений и принятыми гипотезами о его будущем развитии.

При многофакторном прогнозе в феноменологических моделях можно присваивать большие коэффициенты весомости факторам, которые в прошлом оказывали большее влияние на развитие событий в прошлом.

Если при прогнозировании рассматривается ретроспективный период, состоящий из нескольких отрезков времени, то, в зависимости от характера прогнозируемых показателей, менее удаленных от момента прогнозирования по шкале времени и т.д. Также должен быть учтен тот факт, что нередко при прогнозировании оценки экспертов относительно близкого будущего могут отличаться излишним оптимизмом, а оценки относительно более отдаленного будущего излишним пессимизмом.

Если в прогнозируемом процессе может участвовать несколько различных технологий, каждая из которых представлена соответствующей кривой, то в качестве результирующей экспертной кривой может быть использована огибающая частных кривых, соответствующих отдельным технологиям.

Метод сценариев.

При разработке управленческих решений широкое распространение нашел метод сценариев, также дающий возможность оценить наиболее вероятный ход развития событий и возможные последствия принимаемых решений. Разрабатываемые специалистами сценарии развития анализируемой ситуации позволяют с, тем или иным уровнем достоверности определить возможные тенденции развития, взаимосвязи между действующими факторами, сформировать картину возможных состояний, к которым может прийти ситуация под влиянием тех или иных воздействий. Профессионально разработанные сценарии позволяют более полно и отчетливо определить перспективы развития ситуации, как при наличии различных управляющих воздействий, так и при их отсутствии.

С другой стороны, сценарии ожидаемого развития ситуации позволяют своевременно осознать опасности, которыми чреваты неудачные управленческие воздействия или неблагоприятное развитие событий.

В настоящее время известны различные реализации метода сценариев такие, как: получение согласованного мнения, повторяющаяся процедура независимых сценариев, использование матриц взаимодействия и др. Метод получения согласованного мнения является, по существу, одной из реализаций метода Делфи, ориентированной на получение коллективного мнения различных групп экспертов относительно крупных событий в той или иной области в заданный период будущего. К недостаткам этого метода можно отнести недостаточное внимание, уделяемое взаимозависимости и взаимодействию различных факторов, влияющих на развитие событий, динамике развития ситуации.

Метод повторяющегося объединения независимых сценариев состоит в составлении независимых сценариев по каждому из аспектов, оказывающих существенное влияние на развитие ситуации, и повторяющемся итеративном процессе согласования сценариев развития различных аспектов ситуации.

Достоинством этого метода является более углубленный анализ взаимодействия различных аспектов развития ситуации.

К его недостаткам можно отнести недостаточную разработанность и методическую обеспеченность процедур согласования сценариев.

Метод матриц взаимовлияний, разработанный Гордоном и Хелмером, предполагает определение на основании экспертных оценок потенциального взаимовлияния событий рассматриваемой совокупности.

Оценки, связывающие все возможные комбинации событий по их силе, распределению во времени и т.д., позволяют уточнить первоначальные оценки вероятностей событий и их комбинаций. К недостаткам метода можно отнести трудоемкость получения большого количества оценок и корректной их обработки.

В работе предлагается методология составления сценариев, предполагающая предварительное определение пространства, параметров, характеризующих систему. Состояние системы в момент времени t является точкой S(t) в этом пространстве параметров. Определение возможных тенденций развития ситуации позволяет определить вероятное направление эволюции положения системы в пространстве выявленных параметров S(t) в различные моменты времени в будущем S(t+l), S(t+2) и т.д.

Если управляющие воздействия отсутствуют, то предполагается, что система будет эволюционировать в наиболее вероятном направлении.

Управляющие воздействия эквивалентны воздействию сил, способных изменить направление траектории S(t). Естественно, что управляющие воздействия должны рассматриваться как с учетом ограничений накладываемых как внешними, так и внутренними факторами.

Предлагаемая технология разработки сценариев предполагает рассмотрение положения системы в дискретные моменты времени t, t+1, t+2, ... .

При этом предполагается, что точка, соответствующая системе S(t) в пространстве параметров расположенным в конусе, расширяющемся при удалении от исходного момента времени t. В некоторый момент времени t+T ожидается, что система будет расположена в сечении конуса, соответствующем моменту времени t+T.

Статистические наблюдения в социально-экономических исследованиях обычно проводятся регулярно через равные отрезки времени и представляются в виде временных рядов x t , где t = 1, 2, ..., п. В качестве инструмента статистического прогнозирования временных рядов служат трендовые регрессионные модели, параметры которых оцениваются по имеющейся статистической базе, а затем основные тенденции (тренды) экстраполируются на заданный интервал времени.

Методология статистического прогнозирования предполагает построение и испытание многих моделей для каждого временного ряда,ихсравнение на основе статистических критериев и отбор наилучшихизних для прогнозирования.

При моделировании сезонных явлений в статистических исследованиях различают два типа колебаний: мультипликативные и аддитивные. В мультипликативном случае размах сезонных колебаний изменяется во времени пропорционально уровню тренда и отражается в статистической модели множителем. При аддитивной сезонности предполагается, что амплитуда сезонных отклонений постоянна и не зависит от уровня тренда, а сами колебания представлены в модели слагаемым.

Основой большинства методов прогнозирования является экстраполяция, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы, или - в более широком смысле слова - это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему.

Наиболее известны и широко применяются трендовые и адаптивные методы прогнозирования. Среди последних можно выделить такие, как методы авторегрессии, скользящего среднего (Бокса - Дженкинса и адаптивной фильтрации), методы экспоненциального сглаживания (Хольта, Брауна и экспоненциальной средней) и др.

Для оценки качества исследуемой модели прогноза используют несколько статистических критериев.

Наиболее распространенными критериями являются следующие.

Относительная ошибка аппроксимации:

где e t = х t - - ошибка прогноза;

х t - фактическое значение показателя;

- прогнозируемое значение.

Данный показатель используется в случае сравнения точности прогнозов по нескольким моделям. При этом считают, что точность модели является высокой, когда < 10%, хорошей - при = 10-20% и удовлетворительной - при = 20-50%.

Средняя квадратическая ошибка:

(54.2)

где k - число оцениваемых коэффициентов уравнения.

Наряду с точечным в практике прогнозирования широко используют интервальный прогноз. При этом доверительный интервал чаще всего задается неравенствами

(54.3)

где t α - табличное значение, определяемое по t -распределению Стьюдента при уровне значимости α и числе степеней свободы п - k.

В литературе представлено большое число математико-статистических моделей для адекватного описания разнообразных тенденций временных рядов.

Наиболее распространенными видами трендовых моделей, характеризующих монотонное возрастание или убывание исследуемого явления, являются:

(54.4)

Правильно выбранная модель должна соответствовать характеру изменений тенденции исследуемого явления; При этом величина е t должна носить случайный характер с нулевой средней.

Кроме того, ошибки аппроксимации e t должны быть независимыми между собой и подчиняться нормальному закону распределения e t Î N (0, σ ). Независимость ошибок e t , т.е. отсутствие автокорреляции остатков, обычно проверяется по критерию Дарбина-Уотсона, основанного на статистике:

(54.5)

где e t = x t - .

Если отклонения не коррелированы, то величина DW приблизительно равна двум. При наличии положительной автокорреляции 0 ≤ DW 2, а отрицательной - 2 ≤ D W ≤ 4.

О коррелированности остатков можно также судить по коррелограмме для отклонений от тренда, которая представляет собой график функции относительно τ коэффициента автокорреляции, который вычисляется по формуле

(54.6)

где τ = 0, 1, 2 ... .

После выбора наиболее подходящей аналитической функции для тренда его используют для прогнозирования на основе экстраполяции на заданное число временных интервалов.

Рассмотрим задачу сглаживания сезонных колебаний, исходя из ряда V t = х t - , где x t - значение исходного временного ряда в момент t, а - оценка соответствующего значения тренда (t = 1, 2, ..., п ).

Так как сезонные колебания представляют собой циклический, повторяющийся во времени процесс, то в качестве сглаживающих функций используется гармонический ряд (ряд Фурье) следующего вида:

Оценки параметров α i и β i модели определяют из выражений

(54.7)

где k = п / 2 - максимально допустимое число гармоник;

ω i = 2πi / п - угловая частота i -й гармоники (i = 1, 2, ..., т).

Пусть т - число гармоник, используемых для сглаживания сезонных колебаний (т < k). Тогда оценка гармонического ряда имеетвид

(54.8)

а расчетные значения временного ряда исходного показателя определяются по формуле

54.2. Адаптивные методы прогнозирования

При использовании трендовых моделей в прогнозировании обычно предполагается, что основные факторы и тенденции прошлого периода сохранятся на период прогноза или что можно обосновать и учесть направление их изменений в перспективе. Однако в настоящее время, когда происходит структурная перестройка экономики, социально-экономические процессы даже на макроуровне становятся очень динамичными. В этой связи исследователь часто имеет дело с новыми явлениями и с короткими временными рядами. При этом устаревшие данные при моделировании часто оказываются бесполезными и даже вредными. Таким образом, возникает необходимость строить модели, опираясь в основном на малое количество самых свежих данных, наделяя модели адаптивными свойствами.

Важную роль в деле совершенствования прогнозирования должны сыграть адаптивные методы, цель которых заключается в построении самонастраивающихся моделей, которые способны учитывать информационную ценность различных членов временного ряда и давать достаточно точные оценки будущих членов данного ряда. Адаптивные модели достаточно гибки, однако на их универсальность, пригодность для любого временного ряда рассчитывать не приходится.

При построении конкретных моделей необходимо учитывать наиболее вероятные закономерности развития реального процесса. Исследователь должен закладывать в модель те адаптивные свойства, которых достаточно для слежения за реальным процессом с заданной точностью.

У истоков адаптивного направления лежит простейшая модель экспоненциального сглаживания, обобщение которой привело в появлению целого семейства адаптивных моделей. Простейшая адаптивная модель основывается на вычислении экспоненциально взвешенной скользящей средней.

Экспоненциальное сглаживание исходного временного ряда x t осуществляется по рекуррентной формуле

(54.9)

где S t - значение экспоненциальной средней в момент t, a. S t-1 - в момент t -1;

α - параметр сглаживания, адаптации, α = const, 0 < α < 1;

Выражение (54.9) можно представить в виде

В (54.10) экспоненциальная средняя в момент t выражена как экспоненциальная средняя предшествующего момента S t-1 плюс доля α отклонения текущего наблюдения х t от экспоненциальной средней S t-1 момента t - 1.

Последовательно используя рекуррентное соотношение (54.9), можно выразить экспоненциальную среднюю S t через значения временного ряда:

где S 0 - величина, характеризующая начальные условия для первого применения формулы (54.9), при t = 1.

Так как β = (1 - α) < 1, то при t 0 β t 0, и, согласно (54.11),

(54.12)

т.е. величина S t оказывается взвешенной суммой всех членов ряда. При этом веса падают экспоненциально в зависимости от давности наблюдения, откуда и название S t - экспоненциальная средняя.

Из (54.12) следует, что увеличение веса более свежих наблюдений может быть достигнуто повышением α. В то же время для сглаживания случайных колебаний временного ряда x t величину α нужно уменьшить. Два названных требования находятся в противоречии, и на практике при выборе α исходят из компромиссного решения.

Экспоненциальное сглаживание является простейшим видом самообучающейся модели с параметром адаптации α. Разработано несколько вариантов адаптивных моделей, которые используют процедуру экспоненциального сглаживания и позволяют учесть наличие у временного ряда x t тенденции и сезонных колебаний. Рассмотрим некоторыеизтаких моделей.

Адаптивная полиномиальная модель первого порядка

Рассмотрим алгоритм экспоненциального сглаживания, предполагающий наличие у временного ряда x t линейного тренда. В основе модели лежит гипотеза о том, что прогноз может быть получен по уравнению

где - прогнозируемое значение временного ряда на момент (t + τ);

, - оценки адаптивных коэффициентов полинома первого порядка в момент t;

τ - величина упреждения.

Экспоненциальные средние 1-го и 2-го порядков для модели имеют вид

(54.13)

где β = 1 - α, а оценка модельного значения ряда с периодом упреждения τ равна

(54.14)

Для определения начальных условий первоначально по данным временного ряда x t находим методом наименьших квадратов оценки линейного тренда:

и принимаем и . Тогда начальные условия определяются как:

(54.15)

Контрольные вопросы

1. Какие модели прогнозирования вы знаете и каковы их особенности?

2. В чем состоит статистический подход к прогнозированию, моделированию тенденций и сезонных явлений в стратегических исследованиях?

3. Какие трендовые модели вам известны и как оценивается их качество?

4. В чем особенность адаптивных методов прогнозирования?

5. Какимобразом осуществляется экспоненциальное сглаживание временного ряда?

1

В статье на конкретных примерах рассмотрены различные математические методы прогнозирования во времени, среди которых простая экстраполяция, методы, основанные на темпах роста, математическое моделирование. Показано, что выбор метода зависит от базы прогноза – информации за предыдущий временной период.

прогнозирование

биостатистика

1. Афанасьев В.Н., Юзбашев М.М. Анализ временных рядов и прогнозирование: Учебник. – М.: Финансы и статистика, 2001. – 228 с.

2. Петри А., Сэбин К. Наглядная статистика в медицине. – М.: ГЭОТАР-МЕД, 2003. – 144 с.

3. Садовникова Н.А., Шмойлова Р.А. Анализ временных рядов и прогнозирование: Учебное пособие. – М.: Изд. центр ЕАОИ, 2001. – 67 с.

Обычно под прогнозированием понимается процесс предсказания будущего основанное на некоторых данных из прошлого, т.е. изучается развитие интересующего явления во времени. Тогда прогнозируемая величина рассматривается как функция времени y=f(t) . Однако в медицине рассматриваются и другие виды прогноза : прогнозируется диагноз, диагностическая ценность нового теста, изменение одного фактора под действием другого и т.д.

Целью статьи было представить различные методы прогнозирования и подходы к их правильному использованию в медицине.

Материалы и методы исследования

В статье рассмотрены следующие методы прогнозирования: методы простой экстраполяции, метод скользящих средних, метод экспоненциального сглаживания, метод среднего абсолютного прироста, метод среднего темпа роста, методы прогнозирования на основе математических моделей.

Результаты исследования и их обсуждение

Как уже было отмечено, прогноз осуществляется на основании некоторой информации из прошлого (базы прогноза). Прежде чем подобрать метод прогнозирования полезно хотя бы качественно оценить динамику изучаемой величины в предыдущие моменты времени. На представленных графиках (рис. 1) видно, что она может быть различной.

Рис. 1. Примеры динамики изучаемой величины

В первом случае (график А) наблюдается относительная стабильность с небольшими колебаниями вокруг среднего значения. Во втором случае (график Б) динамика носит линейно возрастающий характер, в третьем (график В) - зависимость от времени нелинейная, экспоненциальная. Четвертый случай (график Г)- пример сложных колебаний, имеющих несколько составляющих.

Наиболее распространенным методом краткосрочного прогнозирования (1-3 временных периода), является экстраполяция, которая заключается в продлении предыдущих закономерностей на будущее. Применение экстраполяции в прогнозировании базируется на следующих предпосылках:

Развитие исследуемого явления в целом описывается плавной кривой;

Общая тенденция развития явления в прошлом и настоящем не претерпит серьезных изменений в будущем.

Первый метод из методов простой экстраполяции - это метод среднего уровня ряда. В этом методе прогнозируемый уровень изучаемой величины принимается равным среднему значению уровней ряда этой величины в прошлом. Этот метод используется, если средний уровень не имеет тенденции к изменению, или это изменение незначительно (нет явно выраженного тренда, рис. 1, график А)

где yпрог - прогнозируемый уровень изучаемой величины; yi - значение i-го уровня; n - база прогноза.

В некотором смысле отрезок динамического ряда, охваченный наблюдением, можно уподобить выборке, а значит, полученный прогноз будет выборочным, для которого можно указать доверительный интервал

где - среднеквадратичное отклонение временного ряда; tα -критерий Стъюдента для заданного уровня значимости и числа степеней свободы (n-1).

Пример. В табл. 1 приведены данные временного ряда y(t). Рассчитать прогнозное значение y на момент времени t =13 методом среднего уровня ряда.

Таблица 1

Данные временного ряда y(t)

(80+98+94+103)/4

(80+98+94+103+84)/5

(80+98+94+103+84+115)/6

(80+98+94+103+84+115+98)/7

(80+98+94+103+84+115+98+113)/8

(80+98+94+103+84+115+98+113+114)/9

(80+98+94+103+84+115+98+113+114+87)/10

(80+98+94+103+84+115+98+113+114+87+107)/11

(80+98+94+103+84+115+98+113+114+87+107+85)/12

Исходный и сглаженный ряд представлены на рис. 2, расчет y - в табл. 2.

Рис. 2. Исходный и сглаженный ряд

Таблица 2

Доверительный интервал для прогноза в момент t =13

Метод скользящих средних - это метод прогнозирования на краткосрочный период, основан на процедуре сглаживания уровней изучаемой величины (фильтрации). Преимущественно используются линейные фильтры сглаживания с интервалом m, т.е.

.

Доверительный интервал

где - среднеквадратичное отклонение временного ряда; tα - критерий Стъюдента для заданного уровня значимости и числа степеней свободы (n-1).

Пример. В табл. 3 приведены данные временного ряда y(t). Рассчитать прогнозное значение y на момент времени t =13 методом скользящих средних с интервалом сглаживания m=3.

Исходный и сглаженный ряд представлены на рис. 3, расчет y - в табл. 4.

Таблица 3

Данные временного ряда y(t)

Рис. 3. Исходный и сглаженный ряд

Таблица 4

Прогнозное значение y

Метод экспоненциального сглаживания - это метод, при котором в процессе выравнивания каждого уровня используются значения предыдущих уровней, взятых с определенным весом. По мере удаления от какого-то уровня вес этого наблюдения уменьшается. Сглаженное значение уровня на момент времени t определяется по формуле

где St - текущее сглаженное значение; yt - текущее значение исходного ряда; St - 1 - предыдущее сглаженное значение; α - сглаживающая параметр.

S0 берется равным среднему арифметическому нескольких первых значений ряда.

Для расчета α предложена следующая формула

По поводу выбора α нет единого мнения, эта задача оптимизации модели пока еще не решена. В некоторых литературных источниках рекомендуется выбирать 0,1 ≤ α ≤ 0,3.

Прогноз рассчитывается следующим образом

.

Доверительный интервал

Таблица 5

Данные временного ряда y(t)

0,3×80+(1-0,3)×90,7

0,3×98+(1-0,3) ×87,5

0,3×94+(1-0,3) ×90,6

0,3⋅103+(1-0,3) ×91,6

0,3×84+(1-0,3) ×95

0,3⋅115+(1-0,3) ×91,7

0,3×98+(1-0,3) ×98,7

0,3⋅113+(1-0,3) ×98,5

0,3⋅114+(1-0,3) ⋅102,8

0,3×87+(1-0,3) ⋅106,2

0,3⋅107+(1-0,3) ⋅100,4

0,3×85+(1-0,3) ⋅102,4

97,2+0,3× (85-97,2)

Исходный и сглаженный ряд представлены на рис. 4, расчет y - в табл. 6.

Рис. 4. Исходный и сглаженный ряд

Таблица 6

Прогнозное значение y на момент времени t =11

Следующий метод прогноза - это метод среднего абсолютного прироста Прогнозируемый уровень изучаемой величины изменяется в соответствии со средним абсолютным приростом этой величины в прошлом. Данный метод применяется, если общая тенденция в динамике линейна (для случая, приведенного на рис. 1, график Б)

где ; y0 - базовый уровень экстраполяции выбирается как среднее значение нескольких последних значений исходного ряда; - средний абсолютный прирост уровней ряда; l - число интервалов прогнози рования.

В качестве базового уровня принято усредненное значение последних значений ряда, максимально трех.

Таблица 7

Данные временного ряда y(t)

Прогноз = y0+Δl

(60+75+70)/3=68,3

(75+70+103)/3=82,7

(70+103+100)/3=91

(103+100+115)/3=106

(100+115+125)/3=113,3

(115+125+113)/3=117,7

(125+113+138)/3=125,3

(113+138+136)/3=129

(138+136+145)/3=139,7

(136+145+150)/3=143,7

143,7+8,2⋅1=151,9

143,7+8,2⋅2=160,1

143,7+8,2⋅3=168,3

Исходный и сглаженный ряд представлены на рис. 5.

Рис. 5. Исходный и сглаженный ряд

Метод среднего темпа роста

Прогнозируемый уровень изучаемой величины изменяется в соответствии со средним темпом роста данной величины в прошлом. Данный метод применяется, если общая тенденция в динамике характеризуется показательной или экспоненциальной кривой (рис. 1В)

где - средний темп роста в прошлом; l - число интервалов прогнозирования.

Прогнозная оценка будет зависеть от того, в какую сторону от основной тенденции (тренда) отклоняется базовый уровень y0, поэтому рекомендуется рассчитывать y0 как усредненное значение нескольких последних значений ряда.

Таблица 8

Данные временного ряда y(t)

62,5⋅1,081 = 67,7

(70/60)1/2 =1,08

65⋅1,081 = 70,2

(65+70+68)/3=67,7

(68/60)1/3 =1,04

67,7⋅1,041 =70,5

(70+68+82)/3=73,3

(82/60)1/4 =1,08

73,3⋅1,081 =79,3

(68+82+80)/3=76,7

(80/60)1/5 =1,06

76,7⋅1,061 =81,2

(82+80+95)/3=85,7

(95/60)1/6 =1,08

85,7⋅1,081 =92,5

(80+95+113)/3=96

(113/60)1/7 =1,09

96⋅1,091 =105,1

(95+113+135)/3=114,3

(135/60)1/8 =1,11

114,3⋅1,111 =126,5

(113+135+140)/3=129,3

(140/60)1/9 =1,10

129,3⋅1,11 =142,1

(135+140+168)/3=147,7

(168/60)1/10 =1,11

147,7⋅1,111 =163,7

(140+168205)/3=171

(205/60)1/11 =1,12

171⋅1,121 =191,2

171⋅1,122 =213,8

171⋅1,123 =239,1

Исходный и сглаженный ряд представлены на рис. 6.

Рис. 6. Исходный и сглаженный ряд

На сегодняшний день наиболее распространенным методом прогнозирования является нахождение аналитического выражения (уравнения) тренда . Тренд экстраполируемого явления - это основная тенденция временного ряда, в некоторой мере свободная от случайных воздействий.

Разработка прогноза заключается в определении вида экстраполирующей функции y=f(t), которая выражает зависимость изучаемой величины от времени на основе исходных наблюдаемых данных. Первым этапом является выбор оптимального вида функции, дающей наилучшее описание тренда. Наиболее часто используются следующие зависимости:

Линейная ;

Параболическая ;

Показательная функция ;

Проблемы нахождения коэффициентов линейной функции и прогноз на ее основе рассматриваются в разделе статистики «регрессионный анализ». Если форма кривой, описывающей тренд, имеет нелинейный характер, то задача оценки функции y=f(t) усложняется, и в этом случае необходимо привлечь к анализу специалистов по биостатистике и воспользоваться компьютерными программами по статистической обработке данных.

В большинстве реальных случаев временной ряд представляет собой сложную кривую, которую можно представить как сумму или произведение трендовой, сезонной, циклической и случайной компонент.

Тренд представляет собой плавное изменение процесса во времени и обусловлен действием долговременных факторов. Сезонный эффект связан с наличием факторов, действующих с заранее известной периодичностью (например, времена года, лунные циклы). Циклическая компонента описывает длительные периоды относительного подъема и спада, состоит из циклов переменной длительности и амплитуды (например, некоторые эпидемии имеют длительный циклический характер). Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру.

Заключение

Методы простой экстраполяции, метод скользящих средних, метод экспоненциального сглаживания являются простейшими, и в тоже время самыми приближенными - это видно из широких доверительных интервалов в приведенных примерах. Большая погрешность прогноза наблюдается в случае сильных колебаний уровней. Следует обратить внимание на то, что неправомерно использовать эти методы при наличии явной тенденции к росту (или падению) исходного временного ряда. Тем не менее, для краткосрочных прогнозов их применение бывает оправданным.

Анализ всех компонентов временного ряда и прогнозирование на их основе задача нетривиальная, рассматривается в разделе статистики «анализ временных рядов» и требует специальной подготовки.

Библиографическая ссылка

Койчубеков Б.К., Сорокина М.А., Мхитарян К.Э. МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ В МЕДИЦИНЕ // Успехи современного естествознания. – 2014. – № 4. – С. 29-36;
URL: http://natural-sciences.ru/ru/article/view?id=33316 (дата обращения: 30.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Matlab- как средство математического моделирования

Рассказывать о программах математического моделирования и возможных областях их применения можно очень долго, но мы ограничимся лишь кратким обзором ведущих программ, укажем их общие черты и различия. В настоящее время практически все современные CAE-программы имеют встроенные функции символьных вычислений. Однако наиболее известными и приспособленными для математических символьных вычислений считаются Maple, MathCad, Mathematica и MatLab. Но, делая обзор основных программ символьной математики, мы укажем и на возможные альтернативы, идеологически схожие с тем или иным пакетом-лидером.

С помощью описываемого ПО можно сэкономить массу времени и избежать многих ошибок при вычислениях. Естественно, CAE системы не ограничиваются только этими возможностями, но в данном обзоре мы сделаем упор именно на них.

Отметим только, что спектр задач, решаемых подобными системами, очень широк:

Проведение математических исследований, требующих вычислений и аналитических выкладок;

Разработка и анализ алгоритмов;

Математическое моделирование и компьютерный эксперимент;

Анализ и обработка данных;

Визуализация, научная и инженерная графика;

Разработка графических и расчетных приложений.

При этом отметим, что поскольку CAE-системы содержат операторы для базовых вычислений, то почти все алгоритмы, отсутствующие в стандартных функциях, можно реализовать посредством написания собственной программы.

Процессор Pentium II или выше;

400-550 Мбайт дискового пространства;

Операционные системы: Windows 98/Me/ NT 4.0/2000/2003 Server/2003x64/XP/XP x64.

Компания Wolfram Reseach, Inc., разработавшая систему компьютерной математики Mathematica, по праву считается старейшим и наиболее солидным игроком в этой области. Пакет Mathematica (текущая версия 5.2) повсеместно применяется при расчетах в современных научных исследованиях и получил широкую известность в научной и образовательной среде. Можно даже сказать, что Mathematica обладает значительной функциональной избыточностью (там, в частности, есть даже возможность для синтеза звука).

Несмотря на свою направленность на серьезные математические вычисления, системы класса Mathematica просты в освоении и могут использоваться довольно широкой категорией пользователей — студентами и преподавателями вузов, инженерами, аспирантами, научными работниками и даже учащимся математических классов общеобразовательных и специальных школ. Все они найдут в подобной системе многочисленные полезные возможности для применения.

При этом широчайшие функции программы не перегружают ее интерфейс и не замедляют вычислений. Mathematica неизменно демонстрирует высокую скорость символьных преобразований и численных расчетов. Программа Mathematica из всех рассматриваемых систем наиболее полна и универсальна, однако у каждой программы есть как свои достоинства, так и недостатки. А главное — у них есть свои приверженцы, которых бесполезно убеждать в превосходстве другой системы. Но те, кто серьезно работает с системами компьютерной математики, должны пользоваться несколькими программами, ибо только это гарантирует высокий уровень надежности сложных вычислений.

Отметим, что в разработках различных версий системы Mathematica, наряду с головной фирмой Wolfram Research, Inc., принимали участие другие фирмы и сотни специалистов высокой квалификации, в том числе математики и программисты. Система Mathematica является одной из самых крупных программных систем и реализует наиболее эффективные алгоритмы вычислений. К их числу, например, относится механизм контекстов, исключающий появление в программах побочных эффектов.

Система Mathematica сегодня рассматривается как мировой лидер среди компьютерных систем символьной математики для ПК, обеспечивающих не только возможности выполнения сложных численных расчетов с выводом их результатов в самом изысканном графическом виде, но и проведение особо трудоемких аналитических преобразований и вычислений. Версии системы под Windows имеют современный пользовательский интерфейс и позволяют готовить документы в форме Notebooks (записных книжек). Они объединяют исходные данные, описания алгоритмов решения задач, программ и результатов решения в самой разнообразной форме (математические формулы, числа, векторы, матрицы, таблицы и графики).

Mathematica была задумана как система, максимально автоматизирующая труд научных работников и математиков-аналитиков, поэтому она заслуживает изучения даже в качестве типичного представителя элитных и высокоинтеллектуальных программных продуктов высшей степени сложности. Однако куда больший интерес она представляет как мощный и гибкий математический инструментарий, который может оказать неоценимую помощь большинству научных работников, преподавателей университетов и вузов, студентов, инженеров и даже школьников.

С самого начала большое внимание уделялось графике, в том числе динамической, и даже возможностям мультимедиа — воспроизведению динамической анимации и синтезу звуков. Набор функций графики и изменяющих их действие опций очень широк. Графика всегда была сильной стороной различных версий системы Mathematica и обеспечивала им лидерство среди систем компьютерной математики.

В результате Mathematica быстро заняла ведущие позиции на рынке символьных математических систем. Особенно привлекательны обширные графические возможности системы и реализация интерфейса типа Notebook. При этом система обеспечивала динамическую связь между ячейками документов в стиле электронных таблиц даже при решении символьных задач, что принципиально и выгодно отличало ее от других подобных систем.

Таким образом, Mathematica — это, с одной стороны, типичная система программирования на базе одного из самых мощных проблемноориентированных языков функционального программирования высокого уровня, предназначенная для решения различных задач (в том числе и математических), а с другой — интерактивная система для решения большинства математических задач в диалоговом режиме без традиционного программирования. Таким образом, Mathematica как система программирования имеет все возможности для разработки и создания практически любых управляющих структур, организации ввода-вывода, работы с системными функциями и обслуживания любых периферийных устройств, а с помощью пакетов расширения (Add-ons) появляется возможность подстраиваться под запросы любого пользователя, (хотя рядовому пользователю эти средства программирования могут и не понадобиться — он вполне обойдется встроенными математическими функциями системы, поражающими своим обилием и многообразием даже опытных математиков).

К недостаткам системы Mathematica следует отнести разве что весьма необычный язык программирования, обращение к которому, впрочем, облегчает подробная система помощи.

Минимальные требования к системе:

Процессор Pentium III 650 МГц;

400 Мбайт дискового пространства;

Операционные системы: Windows NT 4 (SP5)/98/ME/2000/2003 Server/XP Pro/XP Home.

Программа Maple (последняя версия 10.02) — своего рода патриарх в семействе систем символьной математики и до сих пор является одним из лидеров среди универсальных систем символьных вычислений. Она предоставляет пользователю удобную интеллектуальную среду для математических исследований любого уровня и пользуется особой популярностью в научной среде. Отметим, что символьный анализатор программы Maple является наиболее сильной частью этого ПО, поэтому именно он был позаимствован и включен в ряд других CAE-пакетов, таких как MathCad и MatLab, а также в состав пакетов для подготовки научных публикаций Scientific WorkPlace и Math Office for Word.

Пакет Maple — совместная разработка Университета Ватерлоо (шт. Онтарио, Канада) и Высшей технической школы (ETHZ, Цюрих, Швейцария). Для его продажи была создана специальная компания — Waterloo Maple, Inc., которая, к сожалению, больше прославилась математической проработкой своего проекта, чем уровнем его коммерческой реализации. В результате система Maple ранее была доступна преимущественно узкому кругу профессионалов. Сейчас эта компания работает совместно с более преуспевающей в коммерции и в проработке пользовательского интерфейса математических систем фирмой MathSoft, Inc. — создательницей весьма популярных и массовых систем для численных расчетов MathCad, ставших международным стандартом для технических вычислений.

Maple предоставляет удобную среду для компьютерных экспериментов, в ходе которых пробуются различные подходы к задаче, анализируются частные решения, а при необходимости программирования отбираются требующие особой скорости фрагменты. Пакет позволяет создавать интегрированные среды с участием других систем и универсальных языков программирования высокого уровня. Когда расчеты произведены и требуется оформить результаты, то можно использовать средства этого пакета для визуализации данных и подготовки иллюстраций для публикации. Для завершения работы остается подготовить печатный материал (отчет, статью, книгу) прямо в среде Maple, а затем можно приступать к очередному исследованию. Работа проходит интерактивно — пользователь вводит команды и тут же видит на экране результат их выполнения. При этом пакет Maple совсем не похож на традиционную среду программирования, где требуется жесткая формализация всех переменных и действий с ними. Здесь же автоматически обеспечивается выбор подходящих типов переменных и проверяется корректность выполнения операций, так что в общем случае не требуется описания переменных и строгой формализации записи.

Пакет Maple состоит из ядра (процедур, написанных на языке С и хорошо оптимизированных), библиотеки, написанной на Maple-языке, и развитого внешнего интерфейса. Ядро выполняет большинство базовых операций, а библиотека содержит множество команд — процедур, выполняемых в режиме интерпретации.

Интерфейс Maple основан на концепции рабочего поля (worksheet) или документа, содержащего строки ввода-вывода и текст, а также графику.

Работа с пакетом происходит в режиме интерпретатора. В строке ввода пользователь задает команду, нажимает клавишу Enter и получает результат — строку (или строки) вывода либо сообщение об ошибочно введенной команде. Тут же выдается приглашение вводить новую команду и т.д.

Вычисления в Maple

Систему Maple можно использовать и на самом элементарном уровне ее возможностей — как очень мощный калькулятор для вычислений по заданным формулам, но главным ее достоинством является способность выполнять арифметические действия в символьном виде, то есть так, как это делает человек. При работе с дробями и корнями программа не приводит их в процессе вычислений к десятичному виду, а производит необходимые сокращения и преобразования в столбик, что позволяет избежать ошибок при округлении. Для работы с десятичными эквивалентами в системе Maple имеется специальная команда, аппроксимирующая значение выражения в формате чисел с плавающей запятой.

Система Maple предлагает различные способы представления, сокращения и преобразования выражений, например такие операции, как упрощение и разложение на множители алгебраических выражений и приведение их к различному виду. Таким образом, Maple можно использовать для решения уравнений и систем.

Maple также имеет множество мощных инструментальных средств для вычисления выражений с одной или несколькими переменными. Программу можно использовать для решения задач дифференциального и интегрального исчисления, вычисления пределов, разложений в ряды, суммирования рядов, умножения, интегральных преобразований (таких как преобразование Лапласа, Z-преобразование, преобразование Меллина или Фурье), а также для исследования непрерывных или кусочно-непрерывных функций.

Maple может вычислять пределы функций, как конечные, так и стремящиеся к бесконечности, а также распознает неопределенности в пределах. В этой системе можно решать множество обычных дифференциальных уравнений (ODE), а также дифференциальные уравнения в частных производных (PDE), в том числе задачи с начальными условиями (IVP) и задачи с граничными условиями (BVP).

Одним из наиболее часто используемых в системе Maple пакетов программ является пакет линейной алгебры, содержащий мощный набор команд для работы с векторами и матрицами. Maple может находить собственные значения и собственные векторы операторов, вычислять криволинейные координаты, находить матричные нормы и вычислять множество различных типов разложения матриц.

Программирование

Система Maple использует процедурный язык 4-го поколения (4GL). Этот язык специально предназначен для быстрой разработки математических подпрограмм и пользовательских приложений. Синтаксис данного языка аналогичен синтаксису универсальных языков высокого уровня: C, Fortran, Basic и Pascal.

Maple может генерировать код, совместимый с такими языками программирования, как Fortran или C, и с языком набора текста LaTeX, который пользуется большой популярностью в научном мире и применяется для оформления публикаций. Одно из преимуществ этого свойства — способность обеспечивать доступ к специализированным числовым программам, максимально ускоряющим решение сложных задач. Например, используя систему Maple, можно разработать определенную математическую модель, а затем с ее помощью сгенерировать код на языке C, соответствующий этой модели. Язык 4GL, специально оптимизированный для разработки математических приложений, позволяет сократить процесс разработки, а настроить пользовательский интерфейс помогают элементы Maplets или документы Maple со встроенными графическими компонентами.

Одновременно в среде Maple можно подготовить и документацию к приложению, так как средства пакета позволяют создавать технические документы профессионального вида, содержащие текст, интерактивные математические вычисления, графики, рисунки и даже звук. Вы также можете создавать интерактивные документы и презентации, добавляя кнопки, бегунки и другие компоненты, и, наконец, публиковать документы в Интернете и развертывать интерактивные вычисления в Сети, используя сервер MapleNet.

Интернет-совместимость

Maple является первым универсальным математическим пакетом, который предлагает полную поддержку стандарта MathML 2.0, управляющего как внешним видом, так и смыслом математики в Интернете. Эта эксклюзивная функция делает текущую версию MathML основным средством Интернет-математики, а также устанавливает новый уровень совместимости многопользовательской среды. TCP/IP-протокол обеспечивает динамический доступ к информации из других Интернет-ресурсов, например к данным для финансового анализа в реальном времени или к данным о погоде.

Перспективы развития

Последние версии Maple, помимо дополнительных алгоритмов и методов решения математических задач, получили более удобный графический интерфейс, продвинутые инструменты визуализации и построения графиков, а также дополнительные средства программирования (в том числе по совместимости с универсальными языками программирования). Начиная с девятой версии в пакет был добавлен импорт документов из программы Mathematica, а в справочную систему были введены определения математических и инженерных понятий и расширена навигация по страницам справки. Кроме того, было повышено полиграфическое качество формул, особенно при форматировании больших и сложных выражений, а также значительно сокращен размер MW-файлов для хранения рабочих документов Maple.

Таким образом, Maple — это, пожалуй, наиболее удачно сбалансированная система и бесспорный лидер по возможностям символьных вычислений для математики. При этом оригинальный символьный движок сочетается здесь с легко запоминающимся структурным языком программирования, так что Maple может быть использована как для небольших задач, так и для серьезных проектов.

К недостаткам системы Maple можно отнести лишь ее некоторую «задумчивость», причем не всегда обоснованную, а также очень высокую стоимость этой программы (в зависимости от версии и набора библиотек цена ее доходит до нескольких десятков тысяч долл., правда студентам и научным работникам предлагаются дешевые версии — за несколько сотен долл.).

Пакет Maple широко распространен в университетах ведущих научных держав, в исследовательских центрах и компаниях. Программа постоянно развивается, вбирая в себя новые разделы математики, приобретая новые функции и обеспечивая лучшую среду для исследовательской работы. Одно из основных направлений развития этой системы — повышение мощности и достоверности аналитических (символьных) вычислений. Это направление представлено в Maple наиболее широко. Уже сегодня Maple может выполнять сложнейшие аналитические вычисления, которые нередко не по силам даже опытным математикам.

Минимальные требования к системе:

Процессор Pentium III, 4, Xeon, Pentium M; AMD Athlon, Athlon XP, Athlon MP;

400 Мбайт дискового пространства (только для самой системы MatLab и ее Help);

Операционная система Microsoft Windows 2000 (SP3)/XP.

Система MatLab относится к среднему уровню продуктов, предназначенных для символьной математики, но рассчитана на широкое применение в сфере CAE (то есть сильна и в других областях). MatLab — одна из старейших, тщательно проработанных и проверенных временем систем автоматизации математических расчетов, построенная на расширенном представлении и применении матричных операций. Это нашло отражение и в самом названии системы — MATrix LABoratory, то есть матричная лаборатория. Однако синтаксис языка программирования системы продуман настолько тщательно, что данная ориентация почти не ощущается теми пользователями, которых не интересуют непосредственно матричные вычисления.

Несмотря на то что изначально MatLab предназначалась исключительно для вычислений, в процессе эволюции (а сейчас выпущена уже версия 7), в дополнение к прекрасным вычислительным средствам, у фирмы Waterloo Maple по лицензии для MatLab было приобретено ядро символьных преобразований, а также появились библиотеки, которые обеспечивают в MatLab уникальные для математических пакетов функции. Например, широко известная библиотека Simulink, реализуя принцип визуального программирования, позволяет построить логическую схему сложной системы управления из одних только стандартных блоков, не написав при этом ни строчки кода. После конструирования такой схемы можно детально проанализировать ее работу.

В системе MatLab также существуют широкие возможности для программирования. Ее библиотека C Math (компилятор MatLab) является объектной и содержит свыше 300 процедур обработки данных на языке C. Внутри пакета можно использовать как процедуры самой MatLab, так и стандартные процедуры языка C, что делает этот инструмент мощнейшим подспорьем при разработке приложений (используя компилятор C Math, можно встраивать любые процедуры MatLab в готовые приложения).

Библиотека C Math позволяет пользоваться следующими категориями функций:

Операции с матрицами;.

Сравнение матриц;

Решение линейных уравнений;

Разложение операторов и поиск собственных значений;

Нахождение обратной матрицы;

Поиск определителя;

Вычисление матричного экспоненциала;

Элементарная математика;

Функции beta, gamma, erf и эллиптические функции;

Основы статистики и анализа данных;

Поиск корней полиномов;

Фильтрация, свертка;

Быстрое преобразование Фурье (FFT);

Интерполяция;

Операции со строками;

Операции ввода-вывода файлов и т.д.

При этом все библиотеки MatLab отличаются высокой скоростью численных вычислений. Однако матрицы широко применяются не только в таких математических расчетах, как решение задач линейной алгебры и математического моделирования, обсчета статических и динамических систем и объектов. Они являются основой автоматического составления и решения уравнений состояния динамических объектов и систем. Именно универсальность аппарата матричного исчисления значительно повышает интерес к системе MatLab, вобравшей в себя лучшие достижения в области быстрого решения матричных задач. Поэтому MatLab давно уже вышла за рамки специализированной матричной системы, превратившись в одну из наиболее мощных универсальных интегрированных систем компьютерной математики.

Для визуализации моделирования система MatLab имеет библиотеку Image Processing Toolbox, которая обеспечивает широкий спектр функций, поддерживающих визуализацию проводимых вычислений непосредственно из среды MatLab, увеличение и анализ, а также возможность построения алгоритмов обработки изображений. Усовершенствованные методы графической библиотеки в соединении с языком программирования MatLab обеспечивают открытую расширяемую систему, которая может быть использована для создания специальных приложений, пригодных для обработки графики.

Таким образом, программу MatLab можно использовать для восстановления испорченных изображений, шаблонного распознавания объектов на изображениях или же для разработки каких-либо собственных оригинальных алгоритмов обработки изображений. Библиотека Image Processing Tollbox упрощает разработку высокоточных алгоритмов, поскольку каждая из функций, включенных в эту библиотеку, оптимизирована для максимального быстродействия, эффективности и достоверности вычислений. Кроме того, библиотека обеспечивает разработчика многочисленным инструментарием для создания собственных решений и для реализаций сложных приложений обработки графики. А при анализе изображений использование мгновенного доступа к мощным средствам визуализации помогает моментально увидеть эффекты увеличения, восстановления и фильтрации.

Среди других библиотек системы MatLab можно также отметить System Identification Toolbox — набор инструментов для создания математических моделей динамических систем, основанных на наблюдаемых входных/выходных данных. Особенностью этого инструментария является наличие гибкого пользовательского интерфейса, позволяющего организовать данные и модели. Библиотека System Identification Toolbox поддерживает как параметрические, так и непараметрические методы. Интерфейс системы облегчает предварительную обработку данных, работу с итеративным процессом создания моделей для получения оценок и выделения наиболее значимых данных. Быстрое выполнение с минимальными усилиями таких операций, как открытие/сохранение данных, выделение области возможных значений данных, удаление погрешностей, предотвращение ухода данных от характерного для них уровня.

Наборы данных и идентифицируемые модели организуются графически, что позволяет легко вызвать результаты предыдущих анализов в течение процесса идентификации системы и выбрать следующие возможные шаги процесса. Основной пользовательский интерфейс организует данные для показа уже полученного результата. Это облегчает быстрое сравнение по оценкам моделей, позволяет выделять графическими средствами наиболее значимые модели и исследовать их показатели.

А что касается математических вычислений, то MatLab предоставляет доступ к огромному количеству подпрограмм, содержащихся в библиотеке NAG Foundation Library компании Numerical Algorithms Group Ltd (инструментарий имеет сотни функций из различных областей математики, и многие из этих программ были разработаны широко известными в мире специалистами). Это уникальная коллекция реализаций современных численных методов компьютерной математики, созданных за последние три десятка лет. Таким образом, MatLab вобрала и опыт, и правила, и методы математических вычислений, накопленные за тысячи лет развития математики. Одну только прилагаемую к системе обширную документацию вполне можно рассматривать как фундаментальный многотомный электронный справочник по математическому обеспечению.

Из недостатков системы MatLab можно отметить невысокую интегрированность среды (очень много окон, с которыми лучше работать на двух мониторах), не очень внятную справочную систему (а между тем объем фирменной документации достигает почти 5 тыс. страниц, что делает ее трудно обозримой) и специфический редактор кода MatLab-программ. Сегодня система MatLab широко используется в технике, науке и образовании, но все-таки она больше подходит для анализа данных и организации вычислений, нежели для чисто математических выкладок.

Поэтому для проведения аналитических преобразований в MatLab используется ядро символьных преобразований Maple, а из Maple для численных расчетов можно обращаться к MatLab. Ведь недаром символьная математика Maple вошла составной частью в целый ряд современных пакетов, а численный анализ от MatLab и наборы инструментов (Toolboxes) уникальны. Тем не менее математические пакеты Maple и MatLab — это интеллектуальные лидеры в своих классах, это образцы, определяющие развитие компьютерной математики.

Метод экстраполяции тренда

Трендовая модель - это математическая модель, описывающая изменение прогнозируемого или анализируемого показателя только в зависимости от времени и имеющая вид: у = f(t).

Она описывает тенденцию развития (изменения) достаточно стабильной социально-экономической системы во времени, в особенности таких агрегированных показателей развития, как ВНП (ВВП), ЧНП, НД, уровень инфляции, безработицы

Метод, использующий трендовые модели в прогнозировании, называется методом экстраполяции тренда. Это один из пассивных методов прогнозирования и называется «наивным» прогнозом, так как предполагает строгую инерционность развития, которая представляется в виде проектирования прошлых тенденций в будущее, а главное - независимость показателей развития от тех или иных факторов. Ясно, что нельзя переносить тенденции, которые сформировались в прошлом, на будущее. Причины этого следующие:

а) при краткосрочном прогнозировании экстраполяция прошлых усредненных показателей приводит к тому, что пренебрегаются (или остаются незамеченными) необычные отклонения в обе стороны от тенденций. В то же время для текущего (краткосрочного) прогноза или плана основной задачей является предвидение этих отклонений;

б) при долгосрочном прогнозировании используется такой высокий уровень агрегирования, при котором не учитываются изменения структуры производимой продукции, самой продукции, изменение технологии производства, особенностей рынков, т.е. все то, что составляет главные задачи стратегического планирования.

Социально-экономическая система в отличие от замкнутой физической системы - открытая и реагирующая система, изменяющаяся в зависимости от внешних условий и ввода новых переменных. Поэтому если анализ ситуаций на основе ретроспективного взгляда может быть более или менее успешным, то прогнозирование будущего, как правило, оказывается неудачным. Важно то, что детальный и внимательный анализ хода развития в прошлом почти всегда выявляет спады деловой активности, которые прекращаются и ликвидируются не пассивным ожиданием «естественных сил», восстанавливающих равновесие, а энергичными управленческими усилиями государственных органов, направленными на преодоление неблагоприятных обстоятельств.

Статистический анализ, проводимый с целью экстраполяции, зачастую нацелен на выявление характера противодействия со стороны управленческого аппарата, предотвращающего ожидаемые спады. Необходимо, чтобы при анализе ставилась и решалась задача выявления характера государственного регулирования, государственной экономической политики, эффективности различных мероприятий в различных условиях.

Не надо пренебрегать скачкообразными колебаниями при ретроспективном анализе. Необходимо проводить анализ не только по агрегированной номенклатуре товаров, иначе можно «упустить» начало структурных сдвигов.

Резюмируя вышеназванное, можно отметить, что необходимо очень осторожно переносить тенденции, которые сформировались в прошлом, на будущее по следующим причинам:

а) в будущем может измениться эффективность многих факторов, в том числе темпы использования достижений НТП;

б) прошлое определялось не только «естественным» развитием экономических процессов, а в достаточно большой мере государственной политикой в управлении экономикой, методами государственного регулирования;

в) экстраполяция из-за высокой агрегированное™ макроэкономических показателей не выявляет изменений структуры производства, структурных сдвигов в развитии отраслей, регионов.

Многие авторы предостерегают от излишнего увлечения экстраполяцией тренда социально-экономических показателей, так как даже на микроуровне тренд считается лишь отправной базой для прогнозирования, инструментом получения «прогностического сырья». Экстраполяция тренда используется в основном в оперативном прогнозировании, а в стабильных СЭС - ив краткосрочном.

Метод эконометрического моделирования

Одним из важнейших инструментов анализа и прогноза социально-экономических систем является метод эконометрического моделирования, который наиболее эффективен в случае систем с устойчивыми, стабильными тенденциями развития. Рассмотрим различные модификации эконометрической модели (ЭКМ).

ЭКМ может состоять из одного уравнения регрессии (стохастического уравнения) с одним фактором. Например:

у = а0 + а1 x1 - линейное уравнение,

где а0 - свободный член, а1 - коэффициент регрессии.

Классический пример - кейнсианская модель:

Сn = f (D0), или Сn = а0 +axD0 ,

где Сn - потребительский спрос, D0 - личный располагаемый доход прогнозируемого года.

ЭКМ может состоять из одного регрессионного уравнения с несколькими факторами, т. е. многофакторного уравнения. Например:

у = а0 + a1xl+a2x2+...+anxn , где п - число факторов.

ЭКМ может состоять из нескольких регрессионных уравнений. Эти уравнения называются одновременными, так как решаются как бы в одно и то же время последовательно друг за другом. При этом они могут быть взаимоувязаны, т.е. результирующие переменные первого

уравнения используются как факторы для нахождения результирующей переменной второго уравнения. Уравнения регрессии могут быть и независимы друг от друга. При этом каждое уравнение решается самостоятельно, независимо от других уравнений.

Система линейных взаимоувязанных уравнений выглядит так:

x4 = y0 + y1x1 + y2x2.

В этой эконометрической модели х1, x2 и х4 - эндогенные переменные, моделируемые в рамках данной ЭКМ, а x2 - экзогенный показатель, прогнозируемый вне данной ЭКМ (в рамках другой модели или экспертным путем). Классическим примером ЭКМ, состоящей из независимых уравнений, является модель равновесия совокупного спроса и совокупного предложения.

В ЭКМ могут использоваться и трендовые модели, например, один или несколько экзогенных показателей, изменения которых во времени носит «плавный» характер, могут быть спрогнозированы по трендовой модели y = f(t). Хотя можно считать, что это - внемодельное прогнозирование, так как прогнозируется экзогенный фактор. В рамках расчетов по ЭКМ для прогнозирования экзогенных переменных используются также методы экспертных оценок.

Наряду с регрессионными уравнениями, описывающими вероятностные (стохастические) процессы, в ЭКМ включаются и так называемые дефинщионные уравнения, или тождества. Например, в модели прогнозируются государственные (Jg) и частные (Jp) инвестиции двумя независимыми регрессионными уравнениями, а третье уравнение позволяет рассчитать прогнозное значение общих инвестиций:

J = Jg+Jp - это тождество.

В ЭКМ используются и так называемые «уравнения равновесия», по форме похожие на тождества. Например, уравнение, выражающее условие равновесия на товарном рынке: AD = AS - совокупный спрос равен совокупному предложению.

В общем случае ЭКМ называют системой регрессионных уравнений и тождеств. Некоторые авторы называют регрессионные уравнения «объясняющими» уравнениями, так как изменение значений совокупности факторов-аргументов объясняют изменение результирующей переменной, вернее, часть общего реального изменения. Чем больше объясняемая часть, тем лучше (адекватнее) регрессионное уравнение объясняет реальность.

Тогда напрашивается вопрос, какая разница между методом экстраполяции тренда и эконометрическим методом? Дело в том, что если выявленные зависимости между функцией (У) и факторами-аргументами (X) используются без изменения, т. е. экстраполируются, разница только в том, что эконометрический метод позволяет провести содержательный анализ зависимости исследуемого (прогнозируемого) показателя от того или иного показателя, а экстраполяция тренда отражает только изменение изучаемого показателя во времени. Но основное отличие заключается в том, что эконометрические модели позволяют разрабатывать варианты развития социально-экономического объекта путем изменений условий его функционирования (активное прогнозирование), приводящих к различным значениям эндогенных факторов, изменению трендов их соотношений путем варьирования значений экзогенных факторов, также отличных от тенденций их изменения во времени.

Как правило, варианты развития отличаются различными значениями экзогенных факторов, так как они не моделируются в рамках ЭКМ, они неуправляемы, и интервал их возможных значений в будущем определяется методом экспертных оценок.

Варианты могут отличаться и различными значениями инструментов государственного регулирования, количеством и уровнем налогов, учетной ставкой, нормой обязательных резервов.

Рассмотрев сущность и содержание ЭКМ, перейдем к конкретному описанию порядка (алгоритма) разработки ЭКМ, используя опыт моделирования Японии13.

1. Прежде чем приступить к процессу разработки ЭКМ, ставится цель (цели), ради достижения которой разрабатывается ЭКМ. Например, при разработке долгосрочной модели Японии на 20-летний период прогнозирования ставилась такая общая для всех моделей этого типа цель, как выявление перспектив роста производства СЭС в физическом выражении (в неизменных ценах) на основе данных, содержащихся в счетах национального дохода. В то же время ставилась и конкретная цель - исследовать тенденцию таких компонентов основных фондов, как государственные и частные инвестиции в жилищное строительство и установить их связь с общим ростом экономики. Акцент на эти компоненты основных фондов продиктован тем, что для Японии они являются наиболее существенными факторами, определяющими долговременное развитие СЭС, и тем обстоятельством, что вторая цель может быть достигнута только в долгосрочном периоде из-за длительности формирования и сроков службы этих компонентов. Цели модели Японии на 10-летний период прогнозирования в основном совпадают с целями модели 20-летнего периода, но первая преследует и другие специфические цели, а именно: -

исследовать тенденции по двум секторам экономики, изменения их роли в экономике и рассмотреть их влияние на общий рост СЭС в целом; -

объяснить структуру чистого экспорта в долгосрочном плане; -

обеспечить долгосрочный прогноз с большей степенью детализации, чем это делается в модели на 20-летний период.

Если долгосрочные модели позволяют представить пути развития СЭС на уровне высокоагрегированных макропоказателей, то среднесрочные модели (4-7 лет) обычно преследуют цель отразить результаты влияния социально-экономической политики государства на наиболее важные показатели развития СЭС. Это поможет правительству количественно оценить разные направления в социально-экономической политике и определить лучший вариант с точки зрения общественного благосостояния.

Могут быть представлены и более конкретные цели. Например, в среднесрочной модели Японии ставятся такие цели:

Объяснение движения цен; -

объяснение движения уровней заработной платы; -

обеспечение необходимого контроля любых расхождений между целями, предусмотренными планом, и фактической ситуацией, которая может сложиться в ходе выполнения плана.

2. После определения целей прогнозирования разрабатывается схема причинно-следственных связей в моделях. Это позволяет определить необходимый набор регрессионных уравнений и тождеств, комплекс экзогенных и эндогенных факторов, в том числе управляющих и управляемых, определить алгоритм прогнозных расчетов, взаимосвязи между показателями развития СЭС страны. Эту схему можно назвать и логико-информационной, потому что она отражает логику прогнозирования и информационные взаимосвязи между блоками модели и отдельными ее уравнениями. При этом структурные (функциональные) уравнения и тождества должны сопрягаться со структурой системы национальных счетов. Например, в модели Японии 20-летнего периода упреждения для прогнозирования ВНП применяется производственная функция, а для прогнозирования общего объема капитала используется функция сбережений. Предложение рабочей силы определяется, вернее, задается экзогенно. Вводится параметр, характеризующий уровень технического прогресса в широком смысле как функция времени (/).

Другая специфика модели заключается в том, что весь капитал распределяется также экспертным методом (экзогенно) между частными и государственными секторами, при этом в производственной функции используется только частный основной капитал, а также в том, что чистый экспорт определяется также экзогенно. Каждая модель имеет свою специфику, которая определяется особенностями страны, подходом той или иной группы прогнозистов к решению задач прогнозирования, их опытом и искусством (см. подробнее гл. 6).

3. Далее, получив систему функциональных уравнений и тождеств, отражающих взаимосвязи между показателями развития СЭС, с помощью аппарата корреляционно-регрессионного анализа определяются коэффициенты регрессии (а1) при факторах-аргументах уравнений, т.е. данная ЭКМ решается путем использования метода наименьших квадратов или других более сложных и точных методов.

С этой целью вначале определяется прогнозное значение экзогенной переменной (в случае однофакторного уравнения) или экзогенных переменных (в случае многофакторного уравнения), которые являются факторами для определения первого эндогенного (вычисляемого посредством моделирования) переменного. Далее значение этого эндогенного переменного используется как фактор для второго уравнения регрессии. Если кроме этого фактора во втором уравнении имеются и экзогенные факторы, то опять прогнозируются их значения и используются для расчета второго уравнения. Таким образом решается вся система уравнений ЭКМ.

Первый фактор (фактор первого уравнения) обычно выбирается из тех существенных факторов развития, которые изменяются достаточно «плавно» и его можно определить методом экстраполяции тренда. Другим подходом к выбору первого фактора является его значимость для развития СЭС, когда его значение в прогнозируемом периоде является определяющим, и поэтому оно может быть интерпретировано как цель развития. Другими словами, значение первого экзогенного показателя как цели (норматива) прогнозист устанавливает на основании гипотезы развития СЭС. Например, решение ЭКМ может начинаться с гипотезы, что ВНП страны будет расти в течение прогнозного периода на 3% в год. В долгосрочной модели Японии на 20-летний период в качестве такого фактора был определен ВНП страны.

Но в качестве первой переменной может быть использована и так называемая предопределенная переменная (показатель развития предыдущего года по отношению к прогнозному году). Например, в долгосрочной модели Японии на 10-летний период упреждения ВНП определяется эндогенно, а экзогенными показателями послужили площадь обрабатываемой земли, а также такие показатели, как частный капитал в сельском хозяйстве и частный капитал в перерабатывающих отраслях за предыдущий год по отношению к прогнозируемому.

4. На следующей стадии определяется так называемый доверительный интервал использования полученных результатов.

5. Далее проверяется степень адекватности модели изучаемому процессу (объекту) по годам предпрогнозного периода. Проверка проводится в два этапа. Вначале в уравнения модели вставляются значения факторов (эндогенных и экзогенных) определенного года предпрогнозного периода, данные стат. отчетности по которому были использованы в ретроспективной матрице (расчетного периода), затем решается система уравнений модели.

Обычно проверку проводят по данным нескольких лет (желательно относительно спокойных, когда СЭС не испытывала особых потрясений).

Допустим, в формировании ретроспективной матрицы в 2000 г. для прогнозирования периода 2001-2005 гг. были использованы данные до 1998 г. включительно. Ввиду того, что разработанная ЭКМ отражает тенденции развития СЭС именно в этом ретроспективном периоде, адекватность модели реальности проверяется по годам базового периода и обязательно по конечному, 1998 году. Это - проверка «ex-post базовая». Далее проводится проверка «ex-post внебазовая». С этой целью в модели используются данные статотчетности, полученные в январе-феврале 2000 г. за 1999 г., т.е. не участвующие в разработке ЭКМ.

Возможна и проверка «ex-post внебазовая» по данным 2000 г., года предпрогнозного периода, когда формируются окончательные варианты прогноза. Для этого используются данные отчетности за I квартал 2000 г. и проводится оперативный прогноз на 9 месяцев 2000 г. Данные прогноза 2000 г. вводятся в прогнозную модель. По результатам проверок с участием экспертов проводится корректировка как самой модели, так и ее элементов, в особенности экзогенных факторов.

В дальнейшем по истечении каждого года прогнозного периода с целью верификации используются отчетные данные этих лет. Такая проверка моделей называется «ex-ante».

Схематически это представлено на рис. 3.3.

1990 ex-post базовая 1999-2000 ex-ante 2005

ретроспективный переход ex-post

внебазовая

прогнозный период

допрогнозный период

Рис. 3.3. Различные периоды верификации прогнозов

Важно помнить, что статистические модели хоть и позволяют получить качественную интерпретацию теоретических положений, но в силу вероятностного (стохастического) характера эти интерпретации не могут восприниматься как строгие доказательства или опровержения теоретических положений. Если имеется расхождение между теорией и результатами математических расчетов, то это скорее свидетельствует о некорректности математических расчетов. Обычно регрессионные уравнения, которые вступают в явное противоречие с экономической теорией, исключаются из ЭКМ.

Кроме того, объектом пересмотра должны явиться и переменные экономической политики (инструментальные переменные). Такая процедура наиболее целесообразна в тех случаях, когда предполагается периодически пересматривать первоначальный план, т.е.

Сделать среднесрочный государственный план «скользящим», как можно ближе к действительности.

Необходимость системы проверок основана на постулате: если модель не может удовлетворительно воспроизвести прошлое развитие (движение) системы, нет никаких оснований полагать, что она сможет воспроизвести будущее и ее можно использовать для прогнозирования. Но не надо забывать, что ЭКМ отражает тенденцию развития СЭС, т.е. она как бы «усредняет», «сглаживает» кривую развития СЭС в многомерном пространстве.

Если расчетный (ретроспективный) период равен 10-15 годам и в последние годы тенденции развития существенно изменились, то ЭКМ этого не покажет. Проверка ЭКМ по последним годам предпрогнозного периода позволит выявить эти изменения. Если они носят стабильный, долговременный характер, связанный, например, с началом кризисной ситуации в стране, на мировом рынке или, наоборот, подъемом экономики (переходом СЭС из одной фазы развития в другую), то с использованием метода экспертных оценок необходимо изменение уравнений регрессии модели, вплоть до введения новых факторов развития со своими коэффициентами регрессии. Но в этом случае уже теряется грань между эконометрическими и имитационными моделями, которые будут рассмотрены ниже.

Таким образом, при разработке эконометрических прогнозов, несмотря на то что в их основе лежит математическая модель, большую роль играет эффективное использование других методов прогнозирования, умение исследователя поставить достижения экономической теории на службу прогноза. Эконометрические прогнозы представляют собой синтез различных методов прогнозирования.

Ввиду того что основу ЭКМ составляет система регрессионных уравнений, рассмотрим основные требования к ним.

1. Адекватность формы связи уравнения изучаемому объекту. Форма связи обычно задается самим прогнозистом в соответствии с его представлением об объекте прогнозирования, но также она может быть выбрана с использованием различных оценочных коэффициентов уравнения. Однако не всегда возможно использование линейной (аддитивной) формы связи, поэтому в ЭКМ различных стран часто используется и степенная (мультипликативная) форма связи. Например, широко известна производственная функция Кобба-Дугласа и его модификации.

Желательно свести модель к линейной форме, так как весь аппарат корреляционно-регрессионного анализа ориентирован на линейность связей:

Y = a0 + a1X1 + a2X2 + … + anXn

Но если выбирается степенная связь типа:

Y = a0X1a1+ X2a2 + … + Xnan

то можно свести ее к линейной форме, логарифмируя:

InY = In a0 + a1 In X1 + a2 In X2 + … + an In Xn

2. Существенность факторов-аргументов. Установление комплекса наиболее существенных факторов, влияющих на значение результирующего показателя (функции), в основном зависит от знаний прогнозиста или целой их группы и привлекаемых экспертов. Экономическая теория в силу своих возможностей дает представление о факторах, влияющих на значение различных макроэкономических показателей. Аппарат корреляционно-регрессионного анализа позволяет количественно оценить существенность каждого фактора как в абсолютном, так и относительном выражении (в процентах от общего влияния факторов). 3.

Прогнозируемость факторов, т.е. достаточный уровень надежности внемодельного предсказания или возможность получения прогнозных значений факторов посредством их моделирования. 4.

Отсутствие большой тесноты связи между факторами - мультиколлинеарности.

Сначала для установления отсутствия мультиколлинеарности рассчитываются парные коэффициенты корреляции между всеми факторами попарно. Если линейная связь между двумя факторами достаточно тесная, то прогнозист по своему усмотрению оставляет один из факторов для дальнейшего исследования.

Ввиду того что определение «порогового» значения тесноты связи для установления мультиколлинеарности довольно субъективно, в качестве ее критерия может быть принято следующее соображение. 5.

Значимость коэффициентов регрессии (aj), т.е. их существенное отличие от нуля. Для того чтобы ЭКМ имела смысл, необходимо, чтобы все коэффициенты регрессии, кроме свободного члена (ао), обязательно были значимыми. Значимость определяется согласно критериям корреляционно-регрессионного анализа. Если это необходимо и обосновано, проводится корректировка коэффициентов регрессии.

6. Соответствие уравнения регрессии стандартным требованиям. В этом случае оценка также проводится по соответствующим критериям корреляционно-регрессионного аппарата. Если уравнение не соответствует стандартным требованиям, оно должно быть скорректировано или исключено из ЭКМ.

Рассмотрение особенностей эконометрических моделей позволяет сформулировать преимущества моделирования по сравнению с другими методами разработки прогнозов.

В числе основных преимуществ выделим: 1)

учет взаимовлияния различных факторов; 2)

возможность учета воздействия внешних (экзогенных) факторов по отношению к модели экономических и неэкономических факторов; 3)

получение взаимосбалансированных многовариантных прогнозов по большому количеству показателей; 4)

совместное использование различных методов на базе моделей; 5)

другие преимущества эконометрических моделей целиком определяются развитием вычислительной техники.

Благодаря использованию ЭВМ можно, во-первых, увеличивать размерность моделей, рассматривая одновременно все более тонкие экономические взаимосвязи. Важно отметить при этом, что модельные расчеты позволяют получать прогнозы не просто по большому количеству показателей (последнее возможно и на основе моделей временных рядов), а сбалансированные, взаимоувязанные в непротиворечивую систему. Это является одним из самых ярких преимуществ моделей. Если эксперты способны разработать непротиворечивые прогнозы, как правило, для нескольких показателей (опросы и обследования охватывают десятки переменных), то эконометрические модели в настоящее время позволяют без особого напряжения регулярно прогнозировать развитие огромного числа показателей (1-3 тыс. в рамках одной модели). Во-вторых, автоматизация расчетов открывает возможность разработки не только базового, наиболее вероятного прогноза, но также и альтернативных вариантов развития экономики с учетом изменений каких-либо внешних или внутренних условий. Многовариантность прогнозов повышает научный уровень социально-экономического прогнозирования в целом, так как позволяет оценивать не одну, а несколько наиболее вероятных траекторий развития.

Такой подход не может быть реализован на основе использования временных рядов и экономических обследований, где для получения вариантов прогнозов необходимо вводить существенные изменения и корректировки. Многовариантные экспертные прогнозы встречаются чаще, но они не могут конкурировать с ЭКМ ни по количеству уравнений, ни по номенклатуре используемых переменных.

Рассмотрим подробнее такое важное преимущество ЭКМ, как учет влияния внешнеэкономических факторов. Реальное развитие СЭС подвержено сильнейшему взаимодействию большого числа факторов, которые часто не могут быть описаны в рамках изучаемой модели. Так, например, при разработке макромоделей любой конкретной страны необходимо учитывать внешнеэкономические условия, которые, естественно, не определяются переменными, входящими в номенклатуру этой модели. В силу этого ряд переменных не может быть адекватно определен внутри моделей и, следовательно* должен вводиться в нее извне. От внешнеэкономической ситуации зависят прежде всего такие показатели, как экспорт товаров и капитала, миграция рабочей силы. Поэтому эти показатели обычно вводятся в модель экзогенно. Важной группой внешних переменных являются и те, которые зависят от неэкономических (политических, социальных и др.) факторов. В частности, динамика государственных расходов определяется не только требованиями эффективного развития, но в большей степени политическими устремлениями администрации. Учет этих устремлений в модели может быть осуществлен лишь посредством экзогенного использования факторов через внутреннее взаимовлияние модельных переменных.

Необходимо отметить, что, обладая определенными преимуществами по сравнению с другими методами прогнозирования, эконометрические модели отнюдь не лишены недостатков.

Являясь более удобным инструментом прогнозирования, они не разрешают и не могут разрешить его принципиальные проблемы. Прежде всего, модели не способствуют повышению точности прогнозирования поворотных точек развития. Они более пригодны для экстраполяции сложившихся тенденций развития, чем для распознавания изменений в них. По этой причине прогнозирование экономического роста на базе моделей возможно лишь посредством введения внешних переменных и различных корректировок параметров. Кроме того, сложность и неодназначность интерпритации результатов, требование соблюдения необходимой точности прогнозов усложняют их применение в реальных расчетах.

Другим важным недостатком прогнозирования на базе эконометрических моделей является высокая стоимость таких исследований, требующих использования банков данных, ЭВМ, квалифицированных специалистов по разработке и эксплуатации этих моделей.

Имитационная модель

В социально-экономических исследованиях довольно широко распространен метод прогнозирования слабо структурированных проблем, причинно-следственные связи которых недостаточно изучены для построения удовлетворительной теории. В таком случае используется метод имитационного моделировании

Социально-экономическая система любой страны из-за большого количества факторов, участвующих в описании ее функционирования, тем более в условиях постиндустриальной фазы, усложняющей связи между факторами, вызывающими нестабильность и неопределенность ее развития, является объектом со слабо структурируемыми связями.

Поэтому для исследования и прогнозирования таких объектов строится система математических зависимостей, необязательно вытекающих из строгих теоретических предпосылок. С помощью определенных формальных приемов эта система математических зависимостей идентифицируется с реальным объектом. Убедившись в том, что построенная система воспроизводит хотя бы часть свойств реального объекта, на вход системы подают воздействия, характеризующие внешние условия (например, экзогенные факторы и управляющие, в том числе инструментальные переменные), и получают (снимают) последствия этих воздействий на выходе системы. Таким образом получают варианты поведения модели объекта.

Если объектом изучения является некоторая переменная Y, то строится модель, в основе построения которой лежит предположение, что на Y воздействует X вектор, составленный из определенного количества переменных k в соответствии с функциональным соотношением:

Частным случаем функционального соотношения между Y и X является простая линейная модель:

где Qi - некоторые параметры.

Модель можно сделать еще более реалистичной (и тем самым более сложной), если включить в нее нелинейные зависимости между Y и X, а также случайные величины, каждую со своим весом и своей функцией распределения в зависимости от времени.

Дальнейшее усложнение модели связано с введением логических переменных, разного рода ограничений, запаздываний, описывающих механизм обратной связи.

Ясно, что такую модель нельзя исследовать аналитическими методами.

Поскольку имитационные модели могут учитывать и неформализованные связи и характеристики прогнозируемой системы, они способны наиболее адекватно отобразить ее развитие. Однако именно описание таких неформализованных характеристик и представляет основную трудность при построении имитационных моделей.

Особенно важно, что динамические имитационные модели позволяют делать выводы об основных чертах развития системы, которые не зависят существенно от начальных условий. Эти выводы затем детализируются с помощью других методов прогнозирования.

Имитационные модели предназначены для получения информации о моделируемой системе и выработки в последующем соответствующих оценок, пригодных для формирования решений. В качестве примера рассмотрим имитационную модель согласования производства и потребления в многоотраслевой экономике, представленную на рис. 3.4.

Система имеет два формализованных блока: блок имитации материального производства и блок имитации сферы потребления. В системе предусмотрен экспериментатор, который может распоряжаться несколькими параметрами управления: распределением между отраслями капитальных вложений, темпами накопления, оплатой труда - зарплатоемкостью единицы продукции, оптовыми и розничными ценами.

Рис. 3.4. Структура имитационной модели

Экспериментатор осуществляет активный диалог с ЭВМ. Используется информация о корректировочных показателях расчетного спроса на вид продукции и его конечного производства отраслью. Если показатель превышает единицу, значит, спрос на продукт выше предложения, если меньше единицы - то, наоборот. Корректировочные показатели и темпы роста валовой продукции по отраслям анализируются экспериментатором с позиции их допустимости. Если они нуждаются в изменении, экспериментатор может менять тот или иной параметр управления.

Например, меняется распределение капиталовложений или совокупный доход населения (через отраслевые коэффициенты зарплатоемкости), или масштаб цен. Блоками определяются новые корректировочные показатели. Как только экспериментатор приходит к выводу о достижении удовлетворительного соотношения производства и потребления, он переводит систему к расчетам на следующий год.

Таким образом, работа человеко-машинной имитационной системы позволяет находить варианты прогноза, обеспечивающие наилучшее соответствие между денежными доходами населения и объемами предлагаемых товаров и услуг. Варьирование управляющих параметров, оценка промежуточных и выбор окончательного решения возлагаются на экспериментатора, множество возможных вариантов решения рассчитывается на ЭВМ.

Имитационная деловая игра представляет собой дальнейшее развитие имитационной системы и включает наряду с основными ее элементами (имитационной моделью и средствами анализа и обработки результатов имитации) специальные инструктивные и другие средства, которые регламентируют воздействия экспертов-экспериментаторов, являющихся в игре лицами, принимающими решения и заинтересованными в достижении наилучших результатов функционирования моделируемой системы в будущем.

Игрокам должна предоставляться возможность осуществлять в произвольные моменты времени запрос информации из широкого класса данных. При создании игровой имитационной модели следует прежде всего разработать систему мотивации игроков и сценарий игры: описание ролей при этом содержится в должностных инструкциях. Часть моделей такого рода рассчитана на использование компьютеров, часть - на безмашинную имитацию.

Игровые имитационные модели могут строиться для объектов любого уровня: от участка цеха до СЭС. Создание хорошей модели требует больших затрат времени (до нескольких лет) и обходится недешево, прогнозирование с ее помощью, т.е. проведение игры, также требует серьезных усилий, так как число участников игры может доходить до нескольких сотен. Однако эти затраты оправданы, ибо такие модели дают возможность получить прогноз там, где никакой другой метод не работает.

Имитационное моделирование имеет ряд преимуществ:

возможность применять к реально функционирующим объектам более адекватные модели и почти неограниченно экспериментировать с моделью при различных допущениях;

сравнительно легкое привнесение в модель факторов неопределенности, многих случайных переменных;

сравнительно легкое отражение динамики процессов, временных параметров, сроков, запаздываний.

Процесс прогнозирования на основе имитационного моделирования состоит из нескольких основных этапов:

1. Постановка задачи исследования, изучение прогнозируемой системы, сбор эмпирической информации, выделение основных проблем моделирования. 2.

Формирование имитационной модели, выбор структуры и принципов описания модели и ее подмоделей, допустимых упрощений, из меряемых параметров и критериев качества моделей. 3.

Оценка адекватности имитационной модели, проверка достоверности и пригодности моделирующего алгоритма по степени согласованности и допустимости результатов контрольных экспериментов с входными данными. 4.

Планирование многовариантных экспериментов, выбор функциональных характеристик прогнозируемой системы для исследования, определение методов обработки результатов экспериментов. 5.

Работа с моделью, проведение расчетов и имитационных экспериментов. 6.

Анализ результатов, формирование выводов по данным моделирования, окончательная разработка прогноза.

В имитационном эксперименте основной задачей каждого участника является конструирование из возможных вариантов некоторой стратегии, обеспечивающей достижение наилучших результатов.

Вопросы для самоконтроля

Какие методы относятся к логическим? Дайте их краткую характеристику. 2.

Для каких целей применяется метод исторических аналогий? 3.

В каких случаях разрабатывается сценарий развития СЭС? 4.

Назовите случаи использования метода экстраполяции тренда. 5.

Что такое форма связи? Приведите примеры различных форм связей. 6.

Постройте структурную схему имитационной модели. 7.

В каких случаях используется эконометрическое моделирование? Приведите несколько примеров эконометрических моделей.