После мягкой посадки масса марсохода составляла 899 кг, из них 80 кг составляла масса научного оборудования.

«Кьюриосити» превосходит своих предшественников, марсоходы и , по размерам. Их длина составляла 1,5 метра и массу 174 кг (на научную аппаратуру приходилось лишь 6,8 кг), Длина марсохода «Кьюриосити» составляет 3 метра, высота с установленной мачтой 2,1 метра и ширина 2,7 метра.

Передвижение

На поверхности планеты марсоход способен преодолеть препятствия высотой до 75 сантиметров, при этом на твёрдой ровной поверхности скорость ровера доходит до 144 метров в час. На пересечённой местности скорость ровера доходит до 90 метров в час, средняя скорость, марсохода составляет 30 метров в час.

Источник питания Curiosity

Питание марсохода обеспечивает радиоизотопный термоэлектрический генератор (РИТЭГ), такая технология успешно применялась в спускаемых аппаратах и .

РИТЭГ вырабатывает электроэнергию в результате естественного распада изотопа плутония-238. Выделяющееся при этом тепло преобразуется в электроэнергию, также тепло используется для подогрева оборудования. Это обеспечивает экономию электроэнергии, которая будет использована для передвижения ровера и функционирования его инструментов. Диоксид плутония находится в 32 керамических гранулах, каждая имеет размер примерно в 2 сантиметра.

Генератор марсохода «Кьюриосити» принадлежит к последним поколениям РИТЭГов, он создан в компании Boeing, и носит название «Multi-Mission Radioisotope Thermoelectric Generator» или MMRTG. Хотя в его основе лежит классическая технология РИТЭГов, он создан более более гибким и компактным. Он производит 125 Вт электрической энергии (что составляет 0,16 лошадиной силы), перерабатывая приблизительно 2 кВт тепловой. Со временем мощность генератора будет снижаться, но за 14 лет (минимальный срок службы) его выходная мощность понизится только до 100 Вт. За каждый марсианский день MMRTG производит 2,5 кВт·ч, что значительно превышает результаты энергоустановок роверов «Спирит» и «Оппортьюнити» - лишь 0,6 кВт.

Система отвода тепла (HRS)

Температура в регионе, в котором работает «Кьюриосити», изменяется от +30 до −127 °C. Система, отводящая тепло, перегоняет жидкость по трубам, проложенным в корпусе MSL, общей длиной 60 метров, чтобы отдельные элементы марсохода находились в оптимальном температурном режиме. Другие способы обогрева внутренних компонентов ровера заключаются в использовании тепла, выделенного приборами, также излишков тепла от РИТЭГа. При необходимости HRS также может охлаждать компоненты системы. Установленный в марсоходе криогенный теплообменник, производства израильской компании Ricor Cryogenic and Vacuum Systems, сохраняет температуру в различных отсеках аппарата на уровне в −173 °C.

Компьютер Curiosity

Марсоход находится под управлением двух одинаковых бортовых компьютеров «Rover Compute Element» (RCE) с процессором RAD750 с частотой 200 МГц; с установленной радиационностойкой памятью. Каждый компьютер оснащен 256 килобайтами EEPROM, 256 мегабайтами DRAM, и 2 гигабайтами флэш-памяти. Такое количество в разы превышает 3 мегабайта EEPROM, 128 мегабайт DRAM и 256 мегабайт флэш-памяти, которые имели марсоходы «Спирит» и «Оппортьюнити».

Система работает под управлением многозадачной ОСРВ VxWorks .

Компьютер руководит работой марсохода: например, он может изменить температуру в нужном компоненте, Он управляет фотографированием, вождением ровера, отправкой отчётов о техническом состоянии. Команды на компьютер марсохода передаются из центра управления на Земле.

Процессор RAD750 - преемник процессора RAD6000, использовавшегося в миссии Mars Exploration Rover. Он может выполнить до 400 миллионов операций в секунду, а RAD6000 только до 35 миллионов. Один из бортовых компьютеров является резервным и примет управление в случае неисправности основного компьютера.

Марсоход оснащен инерциальным измерительным устройством (Inertial Measurement Unit), фиксирующем местоположение аппарата, оно применяется как инструмент для навигации.

Связь

«Кьюриосити» оснащен двумя системами связи. Первая состоит из передатчика и приёмника X-диапазона, которые позволяют марсоходу связаться непосредственно с Землёй, со скоростью до 32 кбит/с. Диапазон второй ДМВ (UHF), в ее основе лежит программно-определяемая радиосистема Electra-Lite, разработанная в JPL специально для космических аппаратов, в том числе, для связи с искусственными марсианскими спутниками. Хотя «Кьюриосити» может связаться с Землёй напрямую, основная часть данных ретранслируется спутниками, обладающими бóльшей пропускной способностью из-за бо́льшего диаметра антенн и большей мощности передатчиков. Скорости обмена данными между «Кьюриосити» и каждым из орбитальных аппаратов может доходить до 2 Мбит/с () и 256 кбит/с (), каждый спутник поддерживать связь с «Кьюриосити» в течение 8 минут в день. Также орбитальные аппараты обладают заметно большим временным окном для связи с Землёй.

Телеметрию при посадке могли отслеживать все три спутника, находящиеся на орбите Марса: «Марс Одиссей», «Марсианский разведывательный спутник» и . «Марс Одиссей» служил ретранслятором для передачи телеметрии на Землю в потоковом режиме с задержкой в 13 минут 46 секунд.

Манипулятор Curiosity

Марсоход оснащен трёхсуставным манипулятором длиной 2,1 метра, на котором установлены 5 приборов, их общая масса составляет около 30 кг. На конце манипулятора расположена крестовидная башня-турель (turret) с инструментами, способная поворачиваться на 350 градусов, Диаметр турели с набором инструментов составляет примерно 60 см, при движении марсохода манипулятор складывается.

Два прибора турели являются контактными (in-situ) инструментами, это APXS и MAHLI. Остальные приборы отвечают за добычу и приготовление образцов для исследования, это ударная дрель, щётка и механизм для зачерпывания и просеивания образцов масиансконго грунта. Дрель оснащена 2 запасными бурами, она делает в камне отверстия диаметром 1,6 сантиметра и глубиной 5 сантиметров. Полученные манипулятором материалы также исследуются приборами SAM и CheMin, установленными в передней части марсохода.

Разница между земной и марсианской (38 % земной) силой тяжести приводит к различной степени деформации массивного манипулятора, что компенсируется специальным программном обеспечением.

Мобильность марсохода

Как и в предыдущих миссиях, Mars Exploration Rovers и Mars Pathfinder, научное оборудование в «Кьюриосити» находится на платформу с шестью колёсами, каждое из которых оснащено своим электродвигателем. В рулении участвуют два передних и два задних колеса, что позволяет роверу развернуться на 360 градусов, оставаясь на месте. Размер колес «Кьюриосити» значительно превосходит те, что применялись в предыдущих миссиях. Конструкция колеса помогает роверу поддерживать тягу, если он застрянет в песках, также колёса аппарата оставляют след, в котором с помощью кода Морзе в виде отверстий зашифрованы буквы JPL (Jet Propulsion Laboratory).

Бортовые камеры позволяют марсоходу распознавать регулярные отпечатки колёс и определять пройденное расстояние.

Диаметр кратера - свыше 150 километров, в центре располагается конус осадочных пород высотой 5,5 километров - гора Шарпа. Желтой точкой отмечено место посадки марсохода Curiosity - Bradbury Landing (Посадка Брэдбери)


Космический аппарат опустился почти в центре заданного эллипса недалеко от Aeolis Mons (Эолида, гора Шарпа) - главной научной цели миссии.

Путь Curiosity в кратере Гейла (6.08.2012 посадка - 1.08.2018, Sol 2128)

На маршруте отмечены основные участки научных работ. Белая линия - южная граница эллипса посадки. За шесть лет марсоход проехал около 20 км и прислал свыше 400 тыс. фотоснимков Красной планеты

Curiosity собрал образцы "подземного" грунта на 16 участках

(по данным NASA/JPL)

Марсоход Curiosity на хребте Веры Рубин (Vera Rubin Ridge)

С высоты хорошо видны район выветренных холмов Murray Buttes, темные пески Bagnold Dunes и равнина Aeolis Palus (Эолидское болото) перед северным валом кратера Гейла. Высокий пик стенки кратера справа снимка находится на расстоянии около 31.5 км от марсохода, а его высота составляет ~ 1200 метров
Восемь основных задач Марсианской научной лаборатории:
1.Обнаружить и установить природу марсианских органических углеродных соединений.
2.Обнаружить вещества, необходимые для существования жизни: углерод, водород,
азот, кислород, фосфор, серу.
3.Обнаружить следы возможных биологических процессов.
4.Определить химический состав марсианской поверхности.
5.Установить процесс формирования марсианских камней и почвы.
6.Оценить процесс эволюции марсианской атмосферы в долгосрочном периоде.
7.Определить текущее состояние, распределение и круговорот воды и углекислого газа.
8.Установить спектр радиоактивного излучения поверхности Марса.

Свою главную задачу - поиск условий, благоприятных когда-либо для обитания микроорганизмов - Curiosity выполнил, исследовав высохшее русло древней марсианской реки в низине . Марсоход обнаружил веские доказательства того, что на этом месте было древнее озеро и оно было пригодно для поддержания простейших форм жизни.

Марсоход Curiosity в Yellowknife Bay

На горизонте возвышается величественная гора Шарпа ( Aeolis Mons, Эолида)

(NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer)

Другими важными результатами являются:
- Оценка естественного уровня радиации во время полета на Марс и на марсианской поверхности; эта оценка необходима для создания радиационной защиты пилотируемого полета на Марс

( )

- Измерение отношения тяжелых и легких изотопов химических элементов в марсианской атмосфере. Это исследование показало, что большая часть первичной атмосферы Марса рассеялась в космосе путем утраты легких атомов из верхних слоев газовой оболочки планеты ( )

Первое измерение возраста горных пород на Марсе и оценка времени их разрушения непосредственно на поверхности под действием космической радиации. Эта оценка позволит выяснить временные рамки водного прошлого планеты, а также темпы разрушения древней органики в камнях и почве Марса

Ц ентральная насыпь кратера Гейла - гора Шарпа - была сформирована из слоистых отложений осадочных пород в древнем озере на протяжении десятков миллионов лет

Марсоход обнаружил десятикратное увеличение содержания метана в атмосфере Красной планеты и отыскал органические молекулы в пробах грунта

Марсоход Curiosity на южной границе эллипса посадки 27 июня 2014 года, Sol 672

(Снимок камеры HiRISE орбитального зонда Mars Reconnaissance Orbiter)

С сентября 2014 года по март 2015 марсоход исследовал холмистую возвышенность "Pahrump Hills" (Парампские Холмы). По мнению планетологов, она представляет собой выход коренных пород центральной горы кратера Гейла и геологически не относится к поверхности его дна. С этого времени Curiosity приступил к изучению горы Шарпа.

Вид на возвышенность "Pahrump Hills"

Отмечены места бурения плиток "Confidence Hills" ,"Mojave 2" и "Telegraph Peak". На заднем плане слева видны склоны горы Шарпа, вверху - обнажения горных пород Whale Rock, Salsberry Peak и Newspaper Rock. Вскоре MSL отправился к более высоким склонам горы Шарпа через ложбину под названием "Artist"s Drive"

(NASA/JPL)

Камера высокого разрешения HiRISE орбитального зонда Mars Reconnaissance Orbiter увидела ровер 8 апреля 2015 года с высоты 299 км.

Север сверху. Изображение охватывает область шириной около 500 метров. Светлые участки рельефа - осадочные горные породы, темные - покрыты песком

(NASA/JPL-Caltech/Univ. of Arizona)

Ровер постоянно проводит съемку местности и некоторых объектов на ней, осуществляет мониторинг окружающей среды инструментами . Навигационные камеры присматриваются и к небу в поисках облаков.

Автопортрет в окрестностях ложбины Marias Pass

31 июля 2015 года Curiosity побурил каменистую плитку "Buckskin" на участке осадочных пород с необычно высоким содержанием кремнезема. Такой тип породы впервые встретился Марсианской научной лаборатории (MSL) за три года пребывания в кратере Гейла. Взяв пробу грунта, ровер продолжил путь к горе Шарпа

(NASA/JPL)

Марсоход Curiosity у бархана Namib Dune

Крутой склон подветренной стороны Namib Dune поднимается под углом 28 градусов на высоту 5 метров. На горизонте виден северо - западный вал кратера Гейла

Номинальный технический срок эксплуатации аппарата - два земных года - 23 июня 2014 года на Sol-668, но Curiosity находится в хорошем состоянии и успешно продолжает исследования марсианской поверхности

Слоистые холмы на склонах Эолиды, таящие геологическую историю марсианского кратера Гейла и следы изменений окружающей среды Красной планеты, - будущее место работы Curiosity

Наука

Марсоход НАСА Curiosity , который работает на Марсе уже более полутора лет , успел сделать немало открытий, расширив наши знания и представления о Красной планете, особенно о ее далеком прошлом.

Марс и Земля, как оказалось, на ранних этапах существования, были весьма похожи . Появилось даже предположение, что жизнь вначале зародилась на Марсе, а затем уже попала на Землю. Однако это всего лишь догадки. Многие вещи мы не знаем наверняка, однако очень близко подходим к разгадке.

Марсоход Curiosity

1) Ранний Марс был населен живыми существами, возможно, в течение долгого времени

После того, как группа исследователей, которые работают с марсоходом Curiosity , выяснила, что когда-то в кратере Гейла текли реки и ручьи, они сообщили, что там также плескалось целое озеро . Это небольшое вытянутое озеро с пресной водой, вероятно, существовало примерно 3,7 миллиарда лет назад

Эта вода на поверхности планеты, как и подземные воды, которые ушли на глубину несколько сот метров , содержали все необходимое для зарождения микроскопической жизни.

Кратер Гейла был более теплым, влажным и обитаемым примерно 3,5 - 4 миллиарда лет назад . Именно тогда и на Земле стали появляться первые живые организмы, по мнению ученых.

Был ли Марс домом для примитивных внеземных существ? Марсоход Curiosity не может и никогда не сможет дать 100-процентно точный ответ на этот вопрос, однако открытия, которые он сделал, позволяют сделать вывод, что вероятность того, что примитивные марсиане все же существовали, очень велика.

Кратер Гейла

2) Вода когда-то текла во многих уголках Марса

Ученые еще совсем недавно не могли даже предположить, что на Марсе когда-то были бурные реки и большие водоемы жидкой воды. Наблюдения с помощью искусственных спутников, которые находятся на орбите Марса, позволяли исследователям догадываться об этом. Однако именно марсоход Curiosity помог доказать, что реки и озера действительно существовали.

Фото, сделанные марсоходом на поверхности Красной планеты, демонстрируют множество окаменелых структур , которые являются следами существовавших тут когда-то рек и ручьев, каналов, дельт и озер.

Марсоход новости

3) На Марсе найдены следы органических веществ

Поиск органических компонентов на основе углерода - одна из основных целей миссии марсохода Curiosity , задача, которую он будет выполнять и дальше. И хотя миниатюрная химическая лаборатория на его борту под названием Sample Analysis at Mars (SAM) уже обнаружила целых шесть различных органических компонентов , их происхождение пока остается загадкой.

Химическая лаборатория на борту марсохода Sample Analysis at Mars

"Нет сомнений в том, что SAM выявила органические вещества, но мы не можем сказать с уверенностью, что эти компоненты марсианского происхождения", - говорят исследователи. Существует несколько вариантов происхождения этих веществ, например, просачивание в печи SAM органических растворителей с Земли, которые необходимы для некоторых химических экспериментов.

Впрочем, поиски органики на Марсе весьма продвинулись за время работы Curiosity . Каждая новая коллекция марсианского грунта и песка содержала все большую концентрацию органических веществ, то есть различные образцы марсианского материала демонстрируют совершенно разные результаты. Если бы органика, найденная на Марсе, была земного происхождения, ее концентрация была бы более-менее стабильна .

SAM является самым сложным и важным инструментом, когда-либо работающем на другой планете. Естественно, нужно время, чтобы понять, как лучше всего с ним работать .

Марсоход 2013

4) На Марсе губительная радиация

Галактические космические лучи и солнечная радиация атакуют Марс, а высокоэнергичные частицы разбивают связи, которые позволяют живым организмам выжить . Когда прибор под названием , который измеряет уровень радиации, сделал первые измерения на поверхности Красной планеты, результаты были просто ошеломляющими .

Radiation Assessment Detector

Радиация, которую засекли на Марсе, просто губительна для микробов , которые могли жить на поверхности и на глубине несколько метров под землей. Более того, такая радиация, скорее всего, наблюдалась тут в течение последних нескольких миллионов лет .

Чтобы проверить, способны ли какие-либо живые существа выжить при таких условиях, ученые взяли в качестве модели земную бактерию Deinococcus radiodurans , которая способна выдержать невероятные дозы радиации . Если бактерии, подобные D. radiodurans, появились в те времена, когда Марс был более влажной и теплой планетой и когда на нем еще существовала атмосфера, тогда теоретически они могли выжить после долгого периода покоя.

Живучая бактерия Deinococcus radiodurans

Марсоход Curiosity 2013

5) Радиация Марса мешает нормальному протеканию химических реакций

Ученые, работающие с марсоходом Curiosity , подчеркивают, что из-за того, что радиация мешает нормальному протеканию химических реакций на Марсе, трудно обнаружить органику на его поверхности.

Используя метод радиоактивного распада , который также применяется на Земле, ученые из Калифорнийского технологического института выяснили, что поверхность в районе местности Гленелг (кратер Гейла) подвергалась влиянию радиации уже около 80 миллионов лет .

Этот новый метод может помочь находить места на поверхности планеты, которые меньше были подвержены радиации , мешающей протеканию химических реакций. Такие места могут быть в районе скал и выступов, которые обтесывались ветрами. Радиация в этих районах могла блокироваться породами, которые нависали сверху. Если исследователи найдут такие места, они начнут бурить именно там.

Марсоход последние новости

Задержки в пути

Марсоходу Curiosity сразу после приземления был задан особый маршрут , согласно которому он должен держать курс к интересной с научной точки зрения горе Шарпа высотой около 5 километров , расположенной в центре кратера Гейла . Миссия длится уже более 480 дней , а марсоходу требуется еще несколько месяцев, чтобы добраться до искомой точки.

Что же задержало марсоход? На пути к горе была обнаружена масса важной и интересной информации . В настоящее время Curiosity направляется к горе Шарпа практически без остановок, пропуская потенциально интересные места.

Найдя и проанализировав потенциально обитаемую среду на Марсе, исследователи Curiosity будут продолжать работу. Когда станет ясно, где находятся защищенные от радиации места, марсоходу будет дана команда бурить. А пока Curiosity приближается к первоначальной цели - горе Шарпа.

Фото с марсохода


Взятие образцов


Фото, сделанное марсоходом во время его работы в местности Rocknest в октябре-ноябре 2012


Автопортрет. Фото представляет собой коллаж из десятков снимков, сделанных с помощью камеры на конце руки-робота марсохода. Вдалеке виднеется гора Шарпа


Первые образцы марсианского грунта, взятые марсоходом

Яркий объект в центре снимка – скорее всего, обломок корабля, который откололся во время приземления

На расчетной орбите, все системы работают штатно. Космос-журнал уже описал задачи марсохода и второго проекта NASA по исследованию Марса , и основные вопросы, которые ставит перед человечеством красная планета . Сконцентрируемся теперь на самом марсоходе.

Цели миссии

Основная задача Curiosity - определить, была ли когда-то красная планета способна поддерживать микробную жизнь . Марсоход не рассчитан на прямой ответ на вопрос, существовала ли жизнь на Марсе, это вне способности его приборов. Но он позволит оценить возможность прошлой и текущей обитаемости планеты. Для этого были сформулированы четыре основных научных цели марсохода.

  1. Оценка биологического потенциала планеты за счет поиска органических углеродсодержащих соединений и других химических компонентов, необходимых для жизни, таких как азот, фосфор, сера и кислород.
  2. Анализ геологии места посадки марсохода, кратера Галле, для поиска наметок относительно источников энергии на Марсе.
  3. Описание эволюции атмосферы Марса (эту задачу более детально решит зонд ), ее ткущего распределения по планете, и циркуляции воды и углекислого газа.
  4. Характеристика радиационного фона на поверхности планеты, его опасности для жизни и возможности по разрушению органических молекул.

Хронология миссии

Ракета-носитель Атлас 5 вывела марсоход на расчетную орбиту в субботу. О программе перелета на эту орбиту мы уже писали ранее . Поскольку запуск произошел в запланированное время (запуск был перенесен всего на один день, хотя пусковое окно открыто до 18 декабря), марсоход достигнет цели 6 августа 2012 года. После посадки он должен проработать как минимум один марсианский год (98 земных недель). Если все пойдет так же хорошо, как с марсоходами Spirit и Opportunity , то первоначальная научная программа может быть расширена.

Параметры марсохода

Curiosity - крупнейший марсоход за всю историю исследования планеты. Его масса - 900 килограмм, длина - около 3 метров, ширина - 2.8, высота - 2.1 метра (с учетом мачты крепления камеры). Марсоход оснащен роботизированной рукой длиной 2.1 метра и имеющей пять степеней свободы.

Диаметр колес марсохода - 0.5 метра, двигательная установка позволит разгоняться до 3.5 сантиметров в секунду. При этом каждое колесо имеет независимый мотор, а пары передних и задних колес также независимое рулевое управление. Подвесная система обеспечит постоянный контакт всех колес с поверхностью планеты.

В отличие от своих предшественников, полагавшихся на солнечные панели, Curiosity оснащен ядерным источником питания. Источника хватит как минимум на один марсианский год, а может, и дольше.

Инструменты марсохода

На Curiosity установлены десять научных инструментов.

Несколько инструментов предназначены для проведения фото- и видеосъемки. MastCam предназначена для съемки панорам марсианской поверхности, MARDI предназначена исключительно для записи процесса спуска. Камера MAHLI является противоположностью MastCam, она будет снимать объекты меньше толщины человеческого волоса.

Другая группа инструментов предназначена для анализа состава поверхности Марса. Самый тяжелый из всех инструментов SAM будет искать углеродсодержащие соединения. Два инструмента будут использовать рентгеновское излучение для поверхности. CheMin будет облучать им исследуемые образцы для определения их кристаллической структуры, а APXS будет использовать рентгеновскую подсветку для спектрального анализа химического состава. При помощи бомбардировки грунта нейтронами прибор DAN будет искать воду и лед, находящиеся в подпочвенных минералах.

ChemCam - лазерный инструмент, который будет использовать луч лазера для испарения образцов на расстоянии до 7 метров. Спектр полученной пыли затем будет анализироваться спектрометром. Это позволит марсоходу исследовать образцы, до которых не дотянется его роботизированная рука.

Оставшиеся два инструмента, RAD и REMS, предназначены соответственно для анализа радиационного фона и климатических условий.

Схема посадки

Когда на Марс прилетели два предшественника Curiosity, марсоходы Spirit и Opportunity, они спустились на поверхность по баллистической траектории. Когда Curiosity начнет спуск в атмосфере, его скорость будет постепенно замедляться из-за ее сопротивления. В это время марсоход будет использовать двигательную установку для маневрирования к нужному месту посадки. Затем он раскроет парашют для лучшего замедления. Выбор наилучшей точки посадки будет выбран при помощи специального радара.

После того, как скорость снизится до необходимого значения, а сам марсоход будет находиться довольно близко к поверхности, спускаемая капсула отделится от своей верхней части с парашютом и запустит ракетные двигатели для торможения на спуске. За несколько секунд до посадки капсулы марсоход будет вынут из нее при помощи специального крана, который опустит его на поверхность, а спускаемая капсула упадет неподалеку, но на безопасном расстоянии.

Место посадки

Кратер Галле , место посадки Curiosity, имеет диаметр 154 километра. Внутри кратера находится гора высотой около 5.5 километров. Ее склоны достаточно пологи, чтобы марсоход мог на нее взобраться. Кратер был выбран потому, что он, возможно, когда-то содержал жидкую воду. Его высота - одна из наименьших на Марсе, так что если вода когда-то текла по поверхности красной планеты, то она должна была затечь и в кратер Галле. Наблюдения с орбиты подтверждают это предположение, так как там были найдены глины и сульфатные минералы, которые формируются при наличии воды. В кратере можно изучить различные слои геологических отложений и составить картину его эволюции.