За основу подсчета было взято количество еды, помещающееся в ладонях. Как сказал консультант- диетолог и представитель БДА Сиан Портер, «очевидным преимуществом использования рук в определении количества еды в том, что они всегда с вами».

Плюс, это пропорционально. Если вы крупный человек, вы будете нуждаться в большем количестве еды, но ваши руки тоже будут больше, так что они не дадут вам голодать!

Диетологи Великобритании выяснили, что даже здоровая еда, принимаемая в больших количествах, может вести к ожирению. Но какой же объем пищи считается нормальной для человека?

Исследователи из БТА выяснили, что за последние 20 лет порции в ресторанах и кафе увеличились примерно в два раза. Учитывая прошлый опыт и существующие реалии, ученые высчитали среднее количество белков, жиров и углеводов, которое человек должен употреблять в день.

Затем возник следующий вопрос: как купить нужное количество продуктов в магазинах? Не ходить же с весами за покупками?

Сиан Портер упростил вычисления, приведя все расчеты к количеству еды, помещающейся в ладонях.

Мясо

Рыба


Белая рыба, например, треска содержит в себе довольно небольшое количество жира, поэтому ее объем можно измерить с помощью всей ладони, включая пальцы.

Салат зеленый

По словам диетолога, травы должны присутствовать при каждом приеме пищи. В один прием можно съедать целую горсть, помещающуюся в обе ладони. За неделю же получается целый мешок.

Ягоды

Приемлемое количество ягод в день должно не превышать 80 граммов, что как раз помещается в ваши ладони. Тоже самое относится и к фруктам.

Овощи

Приемлемое количество овощей, например, брокколи, должно помещаться в кулак и занимать половину тарелки.

Макароны и крупы

Чтобы понять вес макарон или риса, необходимо измерять их в сухом виде. В кулаке обычно помещается 75 грамм, что и считается нормой для потребления.

Орехи

Нормой орехов и семян в день считается ровно ваша чашеобразная ладонь. Также диетолог советует есть орехи не горстью, а по одному для лучшего усвоения.

Картофель

Углеводов при приеме пищи должно быть не более 200 калорий (250 для мужчин), что как раз и помещается в одну руку.

Масло и шоколад

Любой жир: сливочное, растительное или арахисовое масло должно помещаться в чайную ложку, не более. Если чайной ложки под рукой нет, то поможет большой палец. Для измерения шоколада поможет указательный.

Сыр

Способность контролировать энергию стихии Воды. Как и любая стихийная магия, эта способность сильно влияет на характер персонажа. Маги Воды чувствительны, заботливы и терпеливы. Они хорошо приспосабливаются к новым ситуациям, отличаются гибким мышлением и уступчивостью. При этом у них хорошая память на лица и события, также они хорошо помнят обиды. Они очень целеустремленны, но в этом стремлении к цели проявляют гибкость, которая часто оказывается полезнее упрямства и настойчивости. Во время полнолуния маги Воды особенно сильны: как Луна влияет на приливы и отливы, так она влияет и на силу мага. По мере роста уровня способности маг меньше чувствует холод от воды и может дольше задерживать дыхание под водой (на Наставнике, как опытный ныряльщик, до 8-10 минут).

Совет по игре: стихийная магия Воды работает от Сакральной чакры, находящейся в области крестца – Сватхистханы, её энергия оранжевого цвета. Область концентрации энергии Воды также сопоставима с нижним даньтянем, находящимся на два цуня (две ширины ногтя большого пальца руки) ниже пупка.

Новичок

Только учится управлять Водой. Может создавать небольшую волну или притягивать Воду к себе, заставляя её, например, подняться из чашки. Хорошо чувствует себя возле водоемов или в дождливую погоду.

Способности:

- Волна – способность создать в водоеме волну примерно по пояс.
- Притяжение воды – способность заставить небольшой объем воды приблизиться к магу, на данном уровне объем воды не более полулитра.
- Заморозка воды – способность превратить небольшую лужу в лед.

Совет по игре: управление водой происходит путем концентрации на стихии, сопровождаемой движениями всего тела но, в первую очередь, движениями кистей рук. Кисть должна быть расслаблена, персонаж должен чувствовать, как по ней протекает энергия, не застаиваясь в местах возможного перенапряжения руки.

Ученик

Может создать волну высотой в человеческий рост. Притягивает к себе воду объемом до двух литров. Может частично заморозить поверхность небольшого пруда, чтобы по нему можно было пройти. Лед достаточно тонкий.

Способности:

- Полет воды – маг может поднять в воздух до полулитра воды, заставляя его перемещаться в нужном направлении. Скорость перемещения пока невелика и данное упражнение занимает почти все внимание персонажа.
- Хождение по воде – маг может идти по поверхности воды, создавая под ногами небольшие ледяные пластины. Требуется хорошо удерживать равновесие.

Совет по игре: для того, чтобы поднять Воду, персонаж должен осознать границы того объема, который он собирается перемещать. Вода контролируется сознанием и движением рук мага, которые позволяют преодолеть естественные законы земного притяжения.

Послушник

Способен создать волну, которая может опрокинуть небольшую лодку. Притягивает к себе воду объемом до пяти литров. Также может вытянуть воду из мокрой одежды или ту, что разлилась на землю или песок. Способен замораживать поднятую воду, пока без придания ей формы. Получившуюся глыбу льда можно бросить в нужную сторону.

Способности:

- Водяная пила – способность использовать струю воды как нож или пилу, разрезая даже весьма прочные предметы, весь вопрос в том, как долго придется пилить. Вода и камень точит.
- Вытягивание воды – способность вытянуть воду из мокрой ткани или влажной почвы объемом до полулитра.
- Лезвие льда – способность создать тонкую ледяную пластину с острым краем и бросить её в противника. Такая пластина может заметно оцарапать, но не нанесет серьезных увечий (не может пробить висок или перерезать сонную артерию).
- Скольжение по воде – способность скользить по воде на созданной изо льда пластине.

Совет по игре: для скольжения по воде нужно правильно перераспределять вес тела. Если маг не обладает способностями Магии Воздуха, он должен перемещаться за счет естественных или создаваемых собственной волей волн. При использовании техники «водяная пила» удобнее работать в паре с другим магом Воды, перебрасывая воду друг другу.

Младший Мастер

Создаваемая магом волна может накрыть нескольких стоящих на берегу человек. Может притянуть к себе воду объемом до пятидесяти литров. Может поднять в воздух до тридцати литров воды, направляя их в противника с достаточно хорошей скоростью.

Способности:

- Водяной хлыст – способность создать из воды хлыст, наносящий противнику повреждения. Движения хлыста подчинены воле мага.
- Спираль воды – способность окружить себя или противника водяной спиралью, затрудняющей атаки и мешающей видеть.
- Управление льдом – способность придавать льду желаемую форму, например, ската, препятствия или возвышения. Лед в общей массе не должен превышать центнера.

Совет по игре: для создания водяного хлыста магу необходимо поднять воду, собрать её между рук, затем, за счет движения рук и тела, вытянуть в хлыст, один конец которого контролируется волей мага, второй направляется подобно обычному броску воды. Нужно четко осознавать связь энергии тела и энергии воды, все движения должны проходить плавно, без мышечных зажимов.

Мастер

Создает большие волны высотой с трехэтажный дом. Может притянуть к себе воду из небольшого пруда. Может создавать два водяных хлыста одновременно. Поднимает в воздух воду объемом в сто литров. Достигает мастерства в управлении льдом – заморозка полутонны воды с приданием ей нужной формы происходит практически мгновенно.

Способности:

- Осьминог – способность окружить себя восьмью водяными щупальцами, отражающими атаки и атакующими, наподобие водяного хлыста.
- Ледяная ловушка – способность рассечь поднятую воду на тонкие пики, которые при падении создают подобие клетки вокруг противника.
- Водяная стрела – способность создать изо льда несколько острых стрел и направить их в цель.
- Подчинение тумана - способность сконденсировать воду из окружающего мага тумана.

Совет по игре: рассечение воды на стрелы или пики происходит за мгновение до её заморозки. В этот момент все внимание мага сосредоточено на применении способности. Маг может остановить летящие в цель стрелы в любой момент, заставив их зависнуть в воздухе.

Старший Мастер

Создаваемая на этом уровне волна может накрыть два-три двухэтажных дома. Маг поднимает до пяти тонн воды, при этом он может мгновенно её заморозить, придавая практически любую форму. Может добыть воду практически отовсюду – например, из почвы или растений.

Способности:

- Отступление воды – может заставить воды озера расступиться, пропуская людей по дну.
- Движение воды – способность заставить управляемый объем воды с большой скоростью перемещать мага по относительно горизонтальной поверхности. Со стороны это выглядит как волна, на гребне которой удерживается сам маг.
- Вода растений – способность вытягивать воду из растений, выделяя её из тканей и сока.

Совет по игре: заставляя воду расступиться, чтобы пройти по дну водоема, маг должен постоянно контролировать водную массу. Если он отвлечется – вода может сомкнуться над его головой.

Наставник

Может создать волну, которая накроет небольшую деревню. Может заставить расступиться воды моря или океана (над дном в том месте, где находится маг, образуется воздушный пузырь, достаточный для того, чтобы под ним находилось несколько человек). Управляет объемом воды массой до двадцати тонн. Маг получает возможность освоить магию крови, позволяющую управлять потоками крови в теле других людей.

Способности:

- Конденсация воды – способность собрать в ладони воду, сконденсировав её из воздуха. Вода, собираемая из воздуха при конденсации, обычно не превышает по объему пятисот граммов.
- Испарение - способность превратить воду в пар (это просто изменение состояния, а не кипячение или нагревание). Объем воды не превышает литра.
**- Магия крови – способность подчинить воле мага кровь других людей, позволяя управлять ими, как марионетками, но только во время полнолуния.** (Специальная способность, получение которой в обязательном порядке требует отыгрыша изучения и проявления).

Совет по игре: магия крови – очень жестокая способность, и далеко не все, обладающие ей, рады подобной возможности. Во всяком случае, ей не принято злоупотреблять.

В организме взрослого человека вода составляет 60-70% всей массы тела. При этом чем больше содержание жирового компонента, тем меньше содержание воды. И, наоборот, чем выше процент активной массы тела, тем больше в нем содержание воды. Содержание воды в разных тканях неодинаково. В соединительной и опорной тканях ее меньше, чем в печени, селезенке, где она составляет 70- 80% (таблица 17 ).

Вода поступает в организм в виде жидкости (48%) и в составе плотной пищи (40%), остальные 12% образуются в процессе метаболизма пищевых веществ. Поскольку у женщин больше жира в массе тела, у них и воды почти на 10% меньше, чем у мужчин. Организм худощавого человека содержит до 73% воды, которая считается очень константной. Эту воду принято делить на внутриклеточную жидкость и внеклеточную. Внутриклеточная жидкость составляет 40%, внеклеточная - 20% массы тела. 15% внеклеточной жидкости приходится на лимфу, синовиальную, спинномозговую жидкость и жидкость серозных оболочек. На долю внутрисосудистой жидкости приходится 5% воды. Она содержит воду плазмы и подвижную воду эритроцитов, взаимообменивающуюся с водой плазмы. При обезвоживании (дегидратации) эритроциты теряют часть воды, а при избытке воды в плазме забирают некоторое ее количество. При дегидратации происходит сгущение крови и возникают микротромбы. Поэтому опасно ограничивать себя в приеме жидкости при посещении сауны (бани), при тренировках (особенно во время соревнований) в жарком и влажном климате.

Определение объемов жидкости в составе тела чрезвычайно важно для спортсмена. Измерение (определение) общей массы воды осуществляется радиоизотопным методом (тритий, бром82 и другие радиоизотопы). Общее содержание воды можно определить по формуле Е. Osser-manetal. (1950):

% общей воды = 100 х (4,340 - 3,983/d)

где d - удельный вес тела. Е. Osserman et al. (1950) отметил, что в организме здоровых мужчин в возрасте от 18 до 46 лет содержится 71,8% воды. Е. Mellits A.D. Cheek (1970) предложили уравнение для расчета количества воды и жира в организме на основании антропометрических данных. Они обследовали людей в возрасте от 1 года до 34 лет и установили линейную зависимость содержания воды (в л) в организме от массы тела (в кг):

  • для мужчин общее содержание воды = 1,065+0,603 х (масса тела);
  • для женщин общее содержание воды = 1,874+0,493 х (масса тела).

Таблица 17. Водный обмен человека

Поступление воды

Выделение воды

источник

количество

количество

Жидкость

Почки (моча)

Плотная пища

Метаболизм (тканевое окисление)

Кожа
Кишечник (кал)

  • для мужчин, рост которых больше 132,7 см, общее содержание воды = -21,993+ 0,406 х (масса тела)+0,209 х (рост);
  • если рост человека меньше 132,7 см, то общее содержание воды в его теле = 1,927+0,465 х (масса тела)+ 0,045 х (рост);
  • для женщин, рост которых больше 110,8 см, общее содержание воды = -10,313+ 0,252 х (масса тела)+0,154 х (рост);
  • если рост меньше 110,8 см, общее содержание воды = 0,076+0,507 х (масса тела)+0,013 х (рост).

Таким образом, исследования с измерением различных антропометрических показателей у лиц, занимающихся физкультурой и спортом, позволяют контролировать рост и развитие их физической работоспособности. С точки зрения здоровья особое значение имеет оценка состояния мускулатуры и осанки.

Новов Д.Д. 1 , Илюхин С.С. 2

1 Ученик «10» А класса, 2 учитель физики,

ГБОУ «Школа № 1101», г. Москва, ул. Академика Варги, д.34

В рамках участия в ТЮФЭ «Цветные стёкла-2013», нашей школьной команде необходимо было подготовить ответ на вопрос «Фокус»: «Если доверху наполненный водой стакан накрыть листом бумаги и осторожно перевернуть, то вода из стакана не выливается. Найдите минимальное количество воды в стакане для успешного проведения опыта» .

Рис. 1. Иллюстрация проведения опыта с перевернутым стаканом заполненным водой

(рисунок из статьи ).

Хотя этот опыт и является общеизвестным и часто фигурирует в сборниках задач и популярных книгах по физике , но он не так прост, как кажется на первый взгляд. Зачастую публикуется лишь формулировка опыта без ответа на него или же автор кратко отвечает, что лист бумаги удерживает атмосферное давление, не рассуждая о том, какие силы, помимо атмосферного давления, действуют на него , причем в формулировке предлагается наполнять стакан водой до самого края , так что у читателя складывается впечатление, что опыт получается только в этом случае. Вышеописанные примеры приведены не для того, чтобы уличить авторов, а для того, чтобы читатель осознал, что «даже простейшие опыты при внимательном к ним отношении могут навести на серьезные размышления» (цитата из книги Перельмана Я.И. ).

На наш взгляд, правильным и наиболее полным является объяснение, приведенное в книге Якова Исидоровича Перельмана . Полностью его цитируем, отдавая дань уважения гению Перельмана:

89. Общеизвестен опыт с листком бумаги, которыйне отпадает от краев опрокинутого стакана с водой (рис.38). Опыт описывается в начальных учебниках и часто фигурирует в популярных книгах. Объяснение обычно дается такое: снизу на бумажку давит извне воздух с силою одной атмосферы, изнутри же напирает на бумажку сверху только вода с силою во много раз меньшею (во столько раз, во сколько 10 метровый водяной столб, соответствующий атмосферному давлению, выше стакана); избыток давления и прижимает бумажку к краям стакана.


Если такое объяснение верно, то бумажка должна придавливаться к стакану с силою почти целой атмосферы (0,99 Атм ≈ 1 кгс/см 2). При диаметре отверстия стакана 7 см на бумажку должна действовать сила приблизительно ¼π ∙ 7 2 = 38 кгс. Известно, однако, что для отрывания бумажного листка такой силы не требуется, а достаточно самого незначительного усилия. Пластинка металлическая или стеклянная, весящая несколько десятков граммов, вовсе не удерживается у краев стакана,— она отпадет под действием тяжести. Очевидно, обычное объяснение опыта несостоятельно.

Каково же правильное объяснение?

(Перельман Я.И. Знаете ли вы физику? // М.: ОНТИ, 1935, стр. 33-34)

Примечание: приводим расшифровку расчета силы, действующей на стакан с диаметром отверстия 7 см: F = p ∙ S = 1 кгс/см 2 ∙ (¼π ∙ 7 2) см 2 = 38 кгс.

89. ВОДА В ОПРОКИНУТОМ СТАКАНЕ

Ошибочно полагать, будто в стакане имеется только вода, а воздуха нет вовсе, так как бумажка прилегает к воде вплотную. Там, безусловно, есть и воздух. Если бы между двумя соприкасающимися плоскими предметами не было прослойки воздуха, мы не могли бы приподнять со стола ни одной вещи, опирающейся на стол плоским основанием: пришлось бы преодолевать атмосферное давление. Накрывая поверхность воды листком бумаги, мы всегда имеем между ними тонкий слой воздуха.

Проследим за тем, что происходит при перевертывании стакана дном вверх. Под тяжестью воды бумажка выдается слегка вниз, если вместо бумажки взята пластинка, то она несколько оттягивается от краев стакана.

Так или иначе, для небольшого количества воздуха, которое имелось между водой и бумажкой (или пластинкой), освобождается некоторое пространство под донышком стакана; пространство это больше первоначального; воздух, следовательно, разрежается, и давление его падает.

Теперь на бумажку действуют: снаружи — полное давление атмосферы, изнутри неполное атмосферное давление плюс вес воды.

Оба давления, наружное и внутреннее, уравновешиваются. Достаточно поэтому приложить к бумажке небольшое усилие в 1½— 2 г, чтобы преодолеть силу прилипания (поверхностное натяжение жидкой пленки) — и бумажка отпадет.

Выпячивание бумажки действием веса воды должно быть ничтожно. Когда пространство, заключающее воздух, увеличится на 0,01, на такую же долю уменьшится давление воздуха в стакане. Недостающая сотая доля атмосферного давления покрывается весом 10 см водяного столба. Если слой воздуха между бумажкой и водой имел первоначально толщину в 0,1 мм, то достаточно увеличения его толщины на 0,01 × 0,1, т.е. на 0,001 мм (один микрон), чтобы объяснить удерживание бумажки у краев перевернутого стакана. Нечего и пытаться, поэтому уловить непосредственно глазом это выпячивание бумажки.

В некоторых книгах при описании рассматриваемого опыта высказывается требование, чтобы стакан был налит водою непременно да самого верха — иначе опыт не удастся: воздух будет находиться по обе стороны бумажки, давление его с той и другой стороны уравновесится, и бумажка отпадет силою веса воды. Проделав опыт, мы сразу же убеждаемся в неосновательности этого предостережения: бумажка держится не хуже, чем при полном стакане. Чуть отогнув ее, мы увидим воздушные пузыри, пробегающие от отверстия через слой воды. Это с несомненностью показывает, что воздух в стакане разрежен (иначе внешний воздух не врывался бы через воду в пространство над нею). Очевидно, при перевертывании стакана слой воды, скользя вниз, вытесняет часть воздуха, и остающаяся часть, занимая больший объем, разрежается. Разрежение здесь значительнее, чем в случае полного стакана, о чем наглядно свидетельствует пузыри воздуха, проникающего в стакан при отгибании бумажки. Соответственно большему разрежению прижимание бумажки бывает сильнее.

Чтобы покончить с этим опытом, который, мы видим, далеко не так прост, как представляется сначала, рассмотрим еще один вопрос: для чего вообще нужна в данном случае бумажка, закрывающая опрокинутый стакан с водою? Разве атмосферное давление не может действовать непосредственно на воду в стакане и мешать ей вытекать?

Отчасти роль бумажки уже выяснена соображениями, которые были раньше изложены. К сказанному прибавим следующее.

Вообразим изогнутую сифонную трубку с коленами одинаковой длины (рис.101). Если такая трубка наполнена жидкостью и открытые концы трубок находятся на одном уровне, то выливания не будет; но стоит слегка наклонить сифон, чтоб началось выливание жидкости из того конца, который расположен ниже; раз начавшееся выливание будет все ускоряться, так как разность уровней возрастает в процессе выливания.

Теперь легко объяснить, почему свободная поверхность жидкости в опрокинутом стакане должна быть строго горизонтальна (что возможно лишь при наличии бумажки), если мы желаем удержать в нем жидкость. В самом деле: пусть в одной точке поверхность жидкости ниже, чем в другой, тогда мы можем (следуя проф. Н. А. Любимову 1) «эти места рассматривать, как концы воображаемого сифона, в котором жидкость не может остаться в равновесии»; вода из такого стакана должна вся вылиться (рис.100).

1 «Начальная Физика», 1873.

(Перельман Я.И. Знаете ли вы физику? // М.: ОНТИ, 1935, стр. 168-170)


Воспользовавшись вышеизложенными теоретическими предпосылками из книги Я.И. Перельмана , мы решаем выяснить, как количественно зависит уровень воды в стакане, при котором возможно успешное проведение опыта, от прогиба листка бумаги (рис. 2). В нашей модели, в начальный момент времени давление воздуха под листком бумаги равно атмосферному P = P А, затем по закону Бойля-Мариотта оно уменьшается из-за увеличения объема при постоянной температуре:

P 0 ∙V 0 = P ∙ V (1).

Объем воздуха в стакане после его переворачивания может увеличиваться по нескольким причинам: из-за прогиба листка бумаги, из-за того, что лист бумаги впитывает воду, уменьшая при этом объем воды в стакане, из-за того, что несколько капель воды просачивается наружу при переворачивании (на рис. 2 и в последующих расчетах принимаем, что количество воды в стакане не изменяется).


Рис.2. Модель опыта «Перевернутый стакан».

Из (1) определяем какое давление станет у воздуха в стакане после переворачивания:

P = P 0 ∙ V 0 / V = P А ∙ h ∙ S / (h+ Δh) ∙ S = P А ∙h / (h+ Δh) (2),

где S - площадь поперечного сечения стакана.

Записав условие равновесия листка бумаги после переворачивания стакана (II закон Ньютона), найдем функцию зависимости высоты воды в стакане, при которой возможно успешное проведение опыта, от прогиба листка бумаги h в (Δh ):

P ∙ S + g ∙ ρ ∙ h в ∙ S + m бумаги ∙ g ≤ F пн + P А ∙ S (3).

Первое слагаемое в левой части (3) выражает величину давления воздуха в стакане на площадку S листа бумаги, второе - гидростатическое давление воды на площадку S , третье - силу тяжести, действующую на лист бумаги.

Первое слагаемое в правойчасти (3) - силы поверхностного натяжения между водой и стенками стакана и между водой и листочком бумаги, второе - атмосферное давление, действующее на площадку S снизу (в левой и правой частях (3) еще должны стоять выражения для атмосферного давления на края листочка бумаги, выходящие за пределы площади S поперечного сечения стакана; они сокращаются из-за того, что на эти участки бумаги атмосферное давление оказывает воздействие и сверху, и снизу одновременно, компенсируя само себя).

Из выражения (3) можно исключить силы поверхностного натяжения между водой и стенками стакана и между водой и листочком бумаги в виду их малости по сравнению с остальными силами, действующими на лист бумаги. Для оценки величины сил поверхностного натяжения можно воспользоваться формулой F пн = 2 ∙ π ∙ r ∙ σ, где r - радиус стакана (5 см), σ = 7,3 ∙ 10 -2 Дж/м 2 - поверхностное натяжение для воды. Получается, что силы поверхностного натяжения, составляющие порядка ~0,02 Н, много меньше сил гидростатического давления воды (g ∙ ρ ∙ h в ∙ S = 10 Н/кг ∙ 1000 кг/м 3 ∙ 0,1 м ∙ π ∙ (0,05 м) 2 = 7,8 Н).

В выражении (3) по той же причине можно пренебречь силой тяжести, действующей на лист бумаги: m бумаги ∙ g = 0,005 кг ∙ 10 Н/кг = 0,05 Н « g ∙ ρ ∙ h в ∙ S = 7,8 Н.

С учетом вышесказанного, подставив (2) в (3), и учитывая связь h = H - h в, где Н - высота стакана, h в - изначальный уровень воды в стакане, получаем:

y (h в) = h в 2 - h в ∙ (Н + Δh ) + P А ∙ Δh / (g ∙ ρ ) ≥ 0(4)

Дискриминант: D = (Н + Δh ) 2 - 4 ∙ 1 ∙ (P А ∙ Δh / (g ∙ ρ )) (5)

Корни: h в1 = [(Н + Δh ) - √ D ] /2,h в2 = [(Н + Δh ) + √ D ] /2(6)

Квадратное неравенство y (h в ) ≥ 0 (4) имеет решения приh в принадлежащие (0; h в1 ] и [ h в2 ; H ) (см. рис.3).

Рис.3. Графическое представление решения неравенства (4).

При Δh = 0, что означает то, что листок бумаги не прогибается, получается, что опыт будет успешным, когда h в = 0 или H - соответственно либо нет воды в сосуде, либо он полностью полон. Оба случая представляются не имеющими физического смысла, ведь прогиб бумажки при полностью заполненном стакане всегда будет, а в другом случае необходимо минимальное количество воды для смачивания листа бумаги, чтобы воздух извне не проник внутрь стакана.

Пусть P А = 10 5 Па, g = 10 Н/кг, ρ = 1000 кг/м 3 , m бумаги = 5 г, радиус стакана 5 см, высоту стакана и величину прогиба Δh будем варьировать.

Рассчитав при помощи программы Microsoft Excel 2003 значения дискриминанта (5) и корней квадратного уравнения (6) можно получить таблицы 1 и 2.

Т аблица 1. Зависимость значений корней h в1 и

прогиба листка бумаги Δ h и высоты сосуда H .

Как видно из таблицы 1 для сосуда заданной высоты есть вполне определенный диапазон возможных величин прогиба листа, при которых опыт будет удаваться. Например, для Н = 10 см это значения Δh ≤ 250 мкм. При Δh > 250 мкм дискриминант квадратного уравнения будет отрицательным, и уравнение не будет иметь решений в действительных числах.

Вычисления проводились с шагом в 10 мкм, поэтому предельные значения Δh пред, выделенные в таблице красным, соответствующие условию D = 0, лишь приблизительно равны. Например, для Н = 20 см при Δh = 1010 мкм дискриминант (5) еще положительный, а при Δh = 1020 мкм уже отрицательный. Аналогично для других значений H .

Таблица 2. Предельные значения величины прогиба листка бумаги Δ h для жидкостей

с плотностью ρ = 800 кг/м 3 (керосин, спирт) в зависимости от высоты сосуда H .

Как видно из таблицы 2 и из величины свободного члена в выражении (4), при уменьшении плотности жидкости предельное значение величины прогиба листа бумаги уменьшается. Полученные данные хорошо сочетаются с осознанием того факта, что величина прогиба листочка бумаги явно зависит от гидростатического давления жидкости на площадку S , и тем меньше, чем меньше это давление (см. рис. 2).

При помощи программы Origin Graph 7.5 строим зависимость значений корней h в1 и h в2 квадратного уравнения от величины прогиба листка бумаги Δh и высоты сосуда H (рис. 4).


Рис. 4. Зависимость значений корней h в1 и h в2 квадратного уравнения от величины

прогиба листка бумаги Δ h и высоты сосуда H .

Проанализировав полученные данные, можно выявить интересный факт, заключающийся в том, что при определенной высоте трубки (сосуд высотой 20 и более сантиметров уже, наверное, стаканом назвать трудно), если трубка почти пустая или почти полная, то лист бумаги удерживается хорошо и вода из трубки не выливается. Если же трубка наполнена примерно на половину, то вода из нее выливается. Данный факт находит отражение в книге Дж.Уокера «Физический фейерверк» .

Волею судьбы оказывается, что советский гранёный стакан высотою 10 см с широкими кромками идеально подходит для фокуса с водою, поскольку для такой высоты стакана опыт будет удачным в широком диапазоне возможных значений уровня воды при малых значениях Δh . С увеличением высоты стакана при малых величинах Δh диапазон возможных для успешного проведения опыта значений высоты воды существенно сужается (см. рис. 3 и таблицу 1).

Домашний эксперимент

Для проведения опыта в домашних условиях были выбраны банки разного объёма с одинаковым по диаметру горлышком - 8 см. В каждом из опытов банки заполнялись водой до определенного уровня по высоте и для каждого из этих случаев для статистики проводилось по 25 опытов. В каждом из опытов использовался «свежий» лист бумаги ¼ А 4 (80г/м 2), который удерживался в момент переворачивания банки, заполненной водой, ладонью руки. Опыт считался успешным, если листочек бумаги не отпадал в течение 20 секунд после переворачивания. Результаты эксперимента приведены в таблице 3.

Объем банки, л

Высота банки

Н, см

Высота уровня воды в банке при проведении опыта, выраженная в высоте сосуда H .

h в = H

h в = 3 / 4 H

h в = 1/2 H

h в = 1/4 H

11,5

Таблица 3. Количество успешных опытов из 25.

Из таблицы 3 можно выявить любопытные закономерности. Уменьшение количества успешных опытов в столбцах сверху-вниз и в строках слева-направо, согласуется с результатами теоретических расчётов (см. таблицу 1) и объясняется тем, что прогиб листа бумаги зависит как от его механических свойств (напомним, что листы были одинаковые во всех опытах - ¼ А 4 (80г/м 2)), так и от силы гидростатического давления воды в сосуде, т.е. от высоты воды в банке. Чем меньше h в, тем меньше сила гидростатического давления и тем меньше прогиб листа бумаги. Таким образом, на практике оказывается, что высоты воды h в ≤h в1 недостаточно для должного прогиба листа бумаги и опыт оказывается неуспешным в большинстве случаев.

Внимательно посмотрев на таблицу 1, следует отметить тот факт, что одному и тому же значению Δh соответствуют два возможных значения h в. Трудно представить себе материал, который бы в реальном эксперименте проявлял такие свойства.

Итак, получается, что на практике опыт будет успешен с тем большей вероятностью, чем больше высота уровня воды в сосуде, и это становится все заметнее с увеличением высоты сосуда.

Выводы

К удивлению обнаружено, что простой общеизвестный опыт не так прост, как кажется на первый взгляд.

Установлено, что минимальное количество воды, необходимое для успешного проведения опыта, теоретически стремится к нулю, но на практике же определяется необходимостью смачивания краев стакана для плотного прилегания листа бумаги (чтобы атмосферный воздух не просачивался внутрь стакана извне) при условии достаточного прогиба листа бумаги Δh при данном количестве воды (Δh зависит от механических свойств листа бумаги). Опыт успешен с тем большей вероятностью, чем больше высота уровня воды в сосуде, и это становится все заметнее с увеличением высоты сосуда.

Обнаружено, что советский гранёный стакан высотою 10 см с широкими кромками волею судьбы является очень удачным для экспериментов, чем вводит в заблуждение широкие массы людей, считающих, что опыт получается при всех значениях высоты воды в стакане.

Возможные направления дальнейшего исследования

Исследовать представленные в данной работе зависимости для сосудов высоких- более 20 см, чтобы убедиться в правильности выводов о том, что опыт успешен с тем большей вероятностью, чем больше высота уровня воды в сосуде, и это становится все заметнее с увеличением высоты сосуда.

Исследовать зависимость успешности опыта от механических свойств бумаги.

Список используемой литературы

Задание ТЮФЭ «Цветные стёкла-2013» http:// cvetnie- stekla. ru/2013- task/

Ильин А., Туркин Н., Туркина Г. Чудеса в простом стакане. //Журнал «Юный техник», 2005, №11, стр. 68-71

Перышкин А.В. Сборник задач по физик: 7-9: к учебникам А.В. Перышкина и др. «Физика. 7 класс», «Физика. 8 класс», «Физика. 9 класс» / А.В. Перышкин, Сост. Н.В. Филонович. - 5-е изд., стереотип. - М.: Издательство «Экзамен», 2010. - стр. 37

Горев Л.А. Занимательные опыты по физике. // М: «Просвещение», 1985, стр. 21-22

Рабиза Ф.В. Опыты без приборов. // М.: «Детская литература», 1988, стр. 6-7

Перельман Я.И. Занимательные задачи и опыты. // М.: ДЕТГИЗ, 1959, стр.45-46

Перельман Я.И. Знаете ли вы физику? // М.: ОНТИ, 1935, стр. 33-34, 168-170