Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности и декомпозиция.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0, B=0 и C=1.

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A=0, B=0 и C=1.

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда:

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0, B = 0 и C = 1.

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A →B ) + (C →D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A →B и Y = C →D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

(x 1 x 2 )*(x 2 x 3 )*…*(x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассужд ниях и построении де рева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)

Тема урока: Решение логических уравнений

Образовательная – изучение способов решения логических уравнений, формирование умений и навыков решения логических уравнений и построения логического выражения по таблице истинности;

Развивающая - создать условия для развития познавательного интереса учащихся, способствовать развитию памяти, внимания, логического мышления;

Воспитательная : способствовать воспитанию умения выслушивать мнение других, воспитание воли и настойчивости для достижения конечных результатов.

Тип урока: комбинированный урок

Оборудование: компьютер, мультимедийный проектор, презентация 6.

Ход урока

    Повторение и актуализацию опорных знаний. Проверка домашнего задания (10 минут)

На предыдущих уроках мы познакомились с основными законами алгебры логики, научились использовать эти законы для упрощения логических выражений.

Выполним проверку домашнего задания по упрощению логических выражений:

1. Какое из приведенных слов удовлетворяет логическому условию:

(первая буква согласная→вторая буква согласная) ٨ (последняя буква гласная → предпоследняя буква гласная)? Если таких слов несколько, укажите наименьшее из них.

1) АННА 2) МАРИЯ 3) ОЛЕГ 4) СТЕПАН

Введем обозначения:

А – первая буква согласная

В – вторая буква согласная

С – последняя буква гласная

D – предпоследняя буква гласная

Составим выражение:

Составим таблицу:

2. Укажите, какое логическое выражение равносильно выражению


Упростим запись исходного выражения и предложенных вариантов:

3. Дан фрагмент таблицы истинности выражения F:

Какое выражение соответствует F?


Определим значения этих выражений при указанных значениях аргументов:

    Ознакомление с темой урока, изложение нового материала (30 минут)

Мы продолжаем изучать основы логики и тема нашего сегодняшнего урока «Решение логических уравнений». Изучив данную тему, вы узнаете основные способы решения логических уравнений, получите навыки решения этих уравнений путем использования языка алгебры логики и умения составления логического выражения по таблице истинности.

1. Решить логическое уравнение

(¬K M) → (¬L M N) =0

Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение:

Преобразуем выражение (¬K M) → (¬L M N)

Выражение ложно, когда оба слагаемые ложны. Второе слагаемое равно 0, если M =0, N =0, L =1. В первом слагаемом K =0, так как М=0, а
.

Ответ: 0100

2. Сколько решений имеет уравнение (в ответе укажите только число)?

Решение: преобразуем выражение

(A +B )*(C +D )=1

A +B =1 и C +D =1

2 способ: составление таблицы истинности

3 способ : построение СДНФ – совершенной дизъюнктивной нормальной формы для функции – дизъюнкции полных правильных элементарных конъюнкций.

Преобразуем исходное выражение, раскроем скобки для того, чтобы получить дизъюнкцию конъюнкций:

(A+B)*(C+D)=A*C+B*C+A*D+B*D=

Дополним конъюнкции до полных конъюнкций (произведение всех аргументов), раскроем скобки:

Учтем одинаковые конъюнкции:

В итоге получаем СДНФ, содержащую 9 конъюнкций. Следовательно, таблица истинности для данной функции имеет значение 1 на 9 строках из 2 4 =16 наборов значений переменных.

3. Сколько решений имеет уравнение (в ответе укажите только число)?

Упростим выражение:

,

3 способ : построение СДНФ

Учтем одинаковые конъюнкции:

В итоге получаем СДНФ, содержащую 5 конъюнкций. Следовательно таблица истинности для данной функции имеет значение 1 на 5 строках из 2 4 =16 наборов значений переменных.

Построение логического выражения по таблице истинности:

для каждой строки таблицы истинности, содержащей 1 составляем произведение аргументов, причем, переменные, равные 0, входят в произведение с отрицанием, а переменные, равные 1 – без отрицания. Искомое выражение F будет составляется из суммы полученных произведений. Затем, если возможно, это выражение необходимо упростить.

Пример: дана таблица истинности выражения. Построить логическое выражение.

Решение:

3. Задание на дом (5 минут)

    Решить уравнение:

    Сколько решений имеет уравнение (в ответе укажите только число)?

    По заданной таблице истинности составить логическое выражение и

упростить его.

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Пример 1.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Ответ: 121

Пример 2.

Сколько существует различных наборов значений логических переменных x1, x2, ... x9, y1, y2, ... y9, которые удовлетворяют всем перечисленным ниже условиям?

(¬ (x1 ≡ y1)) ≡ (x2 ≡ y2)

(¬ (x2 ≡ y2)) ≡ (x3 ≡ y3)

(¬ (x8 ≡ y8)) ≡ (x9 ≡ y9)

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, ... x9, y1, y2, ... y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Решение:

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1 z2 z3 z4 z5 z6 z7 z8 z9
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 - два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Ответ: 1024

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Пример 3.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

¬x9 ∨ x10 = 1,

где x1, x2, … x10 - ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Для x1=0 существуют два значения x2 (0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 (0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

N i +1 = N i + 1. Тогда для десяти переменных получим 11 наборов.

Ответ: 11

Решение систем логических уравнений различного типа

Пример 4.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x 1 , ..., x 4 , y 1 ,..., y 4 , z 1 ,..., z 4 , ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x 1 → x 2) ∧ (x 2 → x 3) ∧ (x 3 → x 4) = 1

(y 1 → y 2) ∧ (y 2 → y 3) ∧ (y 3 → y 4) = 1

(z 1 → z 2) ∧ (z 2 → z 3) ∧ (z 3 → z 4) = 1

x 4 ∧ y 4 ∧ z 4 = 0

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x 1 , ..., x 4 , y 1 , ..., y 4 , z 1 , ..., z 4 , при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

Аналогично, решениями второго и третьего уравнений будут абсолютно такие же наборы y1,…,y4 и z1,…, z4.

Теперь проанализируем четвертое уравнение системы: x 4 ∧ y 4 ∧ z 4 = 0. Решением будут все наборы x4, y4, z4, в которых хотя бы одна из переменных равна 0.

Т.е. для x4 = 0 подойдут все возможные наборы (y4, z4), а для x4 = 1 подойдут наборы (y4, z4), в которых присутствует хотя бы один ноль: (0, 0), (0,1) , (1,0).

Кол-во наборов

Общее количество наборов 25 + 4*9 = 25 + 36 = 61.

Ответ: 61

Решение систем логических уравнений методом построения рекуррентных формул

Метод построения рекуррентных формул применяется при решении сложных систем, в которых порядок увеличения количества наборов неочевиден, а построение дерева невозможно из-за объемов.

Пример 5.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, … x7, y1, y2, … y7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 ∨ y1) ∧ ((x2 ∧ y2) → (x1 ∧ y1)) = 1

(x2 ∨ y2) ∧ ((x3 ∧ y3) → (x2 ∧ y2)) = 1

(x6 ∨ y6) ∧ ((x7 ∧ y7) → (x6 ∧ y6)) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, ..., x7, y1, y2, ..., y7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решение:

Заметим, что первые шесть уравнений системы одинаковы и отличаются только набором переменных. Рассмотрим первое уравнение. Его решением будут следующие наборы переменных:

Обозначим:

число наборов (0,0) на переменных (x1,y1) через A 1 ,

число наборов (0,1) на переменных (x1,y1) через B 1 ,

число наборов (1,0) на переменных (x1,y1) через C 1 ,

число наборов (1,1) на переменных (x1,y1) через D 1 .

число наборов (0,0) на переменных (x2,y2) через A 2 ,

число наборов (0,1) на переменных (x2,y2) через B 2 ,

число наборов (1,0) на переменных (x2,y2) через C 2 ,

число наборов (1,1) на переменных (x2,y2) через D 2 .

Из дерева решений видим, что

A 1 =0, B 1 =1, C 1 =1, D 1 =1.

Заметим, что набор (0,0) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. A 2 =B 1 +C 1 +D 1 .

Набор (0,1) на переменных (x2,y2) получается из наборов (0,1), (1,0) и (1,1) на переменных (x1,y1). Т.е. B 2 =B 1 +C 1 +D 1 .

Аналогично рассуждая, заметим, что С 2 =B 1 +C 1 +D 1 . D 2 = D 1 .

Таким образом, получаем рекуррентные формулы:

A i+1 = B i + C i + D i

B i+1 = B i + C i + D i

C i+1 = B i + C i + D i

D i+1 = A i +B i + C i + D i

Составим таблицу

Наборы Обозн . Формула

Количество наборов

i=1 i=2 i=3 i=4 i=5 i=6 i=7
(0,0) A i A i+1 =B i +C i +D i 0 3 7 15 31 63 127
(0,1) B i B i+1 =B i +C i +D i 1 3 7 15 31 63 127
(1,0) C i C i+1 =B i +C i +D i 1 3 7 15 31 63 127
(1,1) D i D i+1 =D i 1 1 1 1 1 1 1

Последнему уравнению (x7 ∨ y7) = 1 удовлетворяют все наборы, кроме тех, в которых x7=0 и y7=0. В нашей таблице число таких наборов A 7 .

Тогда общее количество наборов равно B 7 + C 7 + D 7 = 127+127+1 = 255

Ответ: 255

Способы решения систем логических уравнений

Киргизова Е.В., Немкова А.Е.

Лесосибирский педагогический институт –

филиал Сибирского федерального университета, Россия

Умение мыслить последовательно, рассуждать доказательно, строить гипотезы, опровергать негативные выводы, не приходит само по себе, это умение развивает наука логика . Логика – это наука, изучающая методы установленияистинности или ложности одних высказываний на основе истинности или ложности других высказываний .

Овладение азами этой науки невозможно без решения логических задач. Проверка сформированности умений применять свои знания в новой ситуации осуществляется за счет сдачи. В частности, это умение решать логические задачи. Задания В15 в ЕГЭ, являются заданиями повышенной сложности, так как они содержат системы логических уравнений. Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности, декомпозиция, последовательное решение уравнений и т.д.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0 , B =0 и C =1 .

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A =0 , B =0 и C =1 .

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда :

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0 , B = 0 и C = 1 .

Так же можно воспользоваться методом последовательного решения уравнений , на каждом шаге добавляя по одной переменной в рассматриваемый набор. Для этого необходимо преобразовать уравнения таким образом, что бы переменные вводились в алфавитном порядке. Далее строим дерево решений, последовательно добавляя в него переменные.

Первое уравнение системы зависит только от A и B , а второе уравнение от А и C . Переменная А может принимать 2 значения 0 и 1:


Из первого уравнения следует, что , поэтому при A = 0 п олучаем B = 0 , а при A = 1 имеем B = 1 . Итак, первое уравнение имеет два решения относительно переменных A и B .

Изобразим второе уравнение, из которого определим значения C для каждого варианта. При A =1 импликация не может быть ложной, то есть вторая ветка дерева не имеет решения. При A =0 получаем единственное решение C = 1 :

Таким образом, получили решение системы: A = 0 , B = 0 и C = 1 .

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A → B ) + (C → D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A → B и Y = C → D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

( x 1 x 2 )*( x 2 x 3 )*…*( x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Переменные

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассуждениях и построении дерева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)

Далее можно увидеть, что одно уравнение истинно в следующих трех случаях: (0; 0), (0; 1), (1; 1). Система двух уравнений истина в четырех случаях (0; 0; 0), (0; 0; 1), (0; 1; 1), (1; 1; 1). При этом сразу видно, что существует решение, состоящее из одних нулей и еще m решений, в которых добавляется по одной единице, начиная с последней позиции до заполнения всех возможных мест. Можно предположить, что общее решение будет иметь такой же вид, но чтобы такой подход стал решением, требуется доказательство, что предположение верно.

Подводя итог всему вышесказанному, хочется обратить внимание, на то, что не все рассмотренные методы являются универсальными. При решении каждой системы логических уравнений следует учитывать ее особенности, на основе которых и выбирать метод решения.

Литература:

1. Логические задачи / О.Б. Богомолова – 2-е изд. – М.: БИНОМ. Лаборатория знаний, 2006. – 271 с.: ил.

2. Поляков К.Ю. Системы логических уравнений / Учебно-методическая газета для учителей информатики: Информатика №14, 2011 г.

Каталог заданий.
Логические уравнения

Сортировка Основная Сначала простые Сначала сложные По популярности Сначала новые Сначала старые
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word

J ∧ ¬K ∧ L ∧ ¬M ∧ (N ∨ ¬N) = 0, где J, K, L, M, N — логические переменные?

Решение.

Выражение (N ∨ ¬N) истинно при любом N, поэтому

J ∧ ¬K ∧ L ∧ ¬M = 0.

Применим отрицание к обеим частям логического уравнения и используем закон де Моргана ¬ (А ∧ В) = ¬ А ∨ ¬ В. Получим ¬J ∨ K ∨ ¬L ∨ M = 1.

Логическая сумма равна 1, если хотя бы одно из составляющих ее высказываний равно 1. Поэтому полученному уравнению удовлетворяют любые комбинации логических переменных кроме случая, когда все входящие в уравнение величины равны 0. Каждая из 4 переменных может быть равна либо 1, либо 0, поэтому всевозможных комбинаций 2·2·2·2 = 16. Следовательно, уравнение имеет 16 −1 = 15 решений.

Осталось заметить, что найденные 15 решений соответствуют любому из двух возможных значений значений логической переменной N, поэтому исходное уравнение имеет 30 решений.

Ответ: 30

Сколько различных решений имеет уравнение

((J → K) → (M ∧ N ∧ L)) ∧ ((J ∧ ¬K) → ¬ (M ∧ N ∧ L)) ∧ (M → J) = 1

где J, K, L, M, N – логические переменные?

В ответе не нужно перечислять все различные наборы значений J, K, L, M и N, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение.

Используем формулы A → B = ¬A ∨ B и ¬(А ∨ В) = ¬А ∧ ¬В

Рассмотрим первую подформулу:

(J → K) → (M ∧ N ∧ L) = ¬(¬J ∨ K) ∨ (M ∧ N ∧ L) = (J ∧ ¬K) ∨ (M ∧ N ∧ L)

Рассмотрим вторую подформулу

(J ∧ ¬K) → ¬(M ∧ N ∧ L) = ¬(J ∧ ¬K) ∨ ¬(M ∧ N ∧ L) = (¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L

Рассмотрим третью подформулу

1) M → J = 1 следовательно,

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (1 ∧ N ∧ L) = ¬K ∨ N ∧ L;

(0 ∨ K) ∨ 0 ∨ ¬N ∨ ¬L = K ∨ ¬N ∨ ¬L;

Объединим:

¬K ∨ N ∧ L ∧ K ∨ ¬N ∨ ¬L = 0 ∨ L ∨ 0 ∨ ¬L = L ∨ ¬L = 1 следовательно, 4 решения.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (0 ∧ N ∧ L) = ¬K;

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (0 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L = K ∨ 1 ∨ ¬N ∨ ¬L

Объединим:

K ∨ 1 ∨ ¬N ∨ ¬L ∧ ¬K = 1 ∨ ¬N ∨ ¬L следовательно, 4 решения.

в) M = 0 J = 0.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (0 ∧ ¬K) ∨ (0 ∧ N ∧ L) = 0.

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (1 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L.

Ответ: 4 + 4 = 8.

Ответ: 8

Сколько различных решений имеет уравнение

((K ∨ L) → (L ∧ M ∧ N)) = 0

где K, L, M, N – логические переменные? В Ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве Ответа Вам нужно указать количество таких наборов.

Решение.

перепишем уравнение, используя более простые обозначения операций:

((K + L) → (L · M · N)) = 0

1) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это равенство верно тогда и только тогда, когда одновременно

K + L = 1 и L · M · N = 0

2) из первого уравнения следует, что хотя бы одна из переменных, K или L, равна 1 (или обе вместе); поэтому рассмотрим три случая

3) если K = 1 и L = 0, то второе равенство выполняется при любых М и N; поскольку существует 4 комбинации двух логических переменных (00, 01, 10 и 11), имеем 4 разных решения

4) если K = 1 и L = 1, то второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

5) если K = 0, то обязательно L = 1 (из первого уравнения); при этом второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

6) всего получаем 4 + 3 + 3 = 10 решений.

Ответ: 10

Сколько различных решений имеет уравнение

(K ∧ L) ∨ (M ∧ N) = 1

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Решение.

Выражение истинно в трех случаях, когда (K ∧ L) и (M ∧ N) равны соответственно 01, 11, 10.

1) "01" K ∧ L = 0; M ∧ N = 1, => M, N равны 1, а K и L любые, кроме как одновременно 1. Следовательно, 3 решения.