РАВНОВЕСИЕ ТЕЛ

«Дайте мне точку опоры, и я подниму Землю.»

Архимед


Условия равновесия.

  • I условие равновесия:
  • Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю.

F=0.

  • II условие равновесия:
  • Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по час. =∑ M против час.

  • М = F l, где М – момент силы, F - сила, l – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

Центр тяжести тела.

  • Центр тяжести тела- это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.

ВИДЫ РАВНОВЕСИЯ

Безразличное

Устойчивое

Неустойчивое


Если на тело, имеющее опору, действуют уравновешивающие силы, то тело находится в положении равновесия.


При отклонении тела от положения равновесия нарушается и равновесие сил. Если тело под действием равнодействующей силы возвращается в исходное положение, то это - устойчивое равновесие .

Если же тело под действием равнодействующей силы, ещё сильнее отклоняется от положения равновесия, то это - неустойчивое равновесие .


Возможен случай, когда при любом положении тела, равновесие сил сохраняется. Это состояние называется безразличным равновесием .


Вывод :

  • Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.
  • Устойчиво такое положение, в котором его потенциальная энергия минимальна.



В случае если центр тяжести расположен ниже точки опоры, равновесие тела или системы тел – устойчивое . При отклонении тела, центр тяжести повышается, и тело возвращается в исходное состояние.


Равновесие тела, имеющего точку опоры ниже центра тяжести, неустойчиво . Но равновесие может восстанавливаться путём смещения точки опоры тела в сторону смещения центра тяжести.



По положению центра тяжести можно судить о виде равновесия. Например езда эквилибриста по канату на велосипеде с противовесом является примером устойчивого равновесия .


Вывод :

  • Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.



Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.


Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются.


При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.


Неустойчивое равновесие

Устойчивое равновесие




Вывод :

1. Устойчиво то тело, у которого площадь опоры больше.

2. Из двух тел одинаковой площади устойчиво то, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.





  • Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  • Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  • Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Если тело находится в равновесии, то это значит, что сумма приложенных к нему сил равна нулю и сумма моментов этих сил относительно оси, вокруг которой тело может вращаться, также равна нулю. Но здесь возникает такой вопрос: а устойчиво ли равновесие?

С первого взгляда видно, например, что положение равновесия шарика на вершине выпуклой подставки (рис. 170) неустойчиво: малейшее отклонение шарика от его равновесного положения приведет к тому, что он скатится вниз. А вот тот же шарик помещен на вогнутой подставке (рис. 171). Его не так-то просто заставить покинуть свое место. Положение шарика можно считать устойчивым. В чем тут дело? Ведь в обоих случаях шарик находится в равновесии: сила тяжести равна по абсолютной величине противоположно направленной силе упругости (силе реакции) действующей со стороны опоры (рис. 172 и 173).

Все дело оказывается именно в том малейшем отклонении, о котором мы упоминали. При самом малом отклонении, которое всегда происходит из-за случайных сотрясений, воздушных течений и других причин, равновесие шарика нарушается. На рисунке 172 видно, что, как только шарик на выпуклой подставке покинул

свсе место, сила тяжести перестает уравновешиваться силой со стороны опоры (сила всегда направлена перпендикулярно поверхности соприкосновения шарика и подставки). Геометрическая сумма (равнодействующая) силы тяжести и силы реакции опоры, т. е. сила направлена так, что шарик еще больше удалится от положения равновесия.

Иное дело на вогнутой подставке (рис. 173). При малом отклонении от первоначального положения здесь тоже нарушается равновесие. Сила упругости со стороны опоры и здесь уже не будет уравновешивать силу тяжести. Но теперь равнодействующая направлена так, что тело вернется в прежнее положение. В этом и состоит условие устойчивости равновесия.

Равновесие тела устойчиво, если при малом отклонении от равновесного положения возникает сила, возвращающая тело к положению равновесия.

Равновесие неустойчиво, если при малом отклонении тела от положения равновесия возникает сила, удаляющая тело от этого положения.

Устойчивое и неустойчивое положения равновесия отличаются друг от друга еще и положением центра тяжести тела. Когда шарик находится в положении неустойчивого равновесия, его центр тяжести выше, чем когда он находится в любом соседнем положений. Наоборот, у шарика на вогнутой опоре центр

тяжести в положении устойчивого равновесия ниже, чем в любом из соседних положений. Значит, для устойчивого равновесия центр тяжести тела должен находиться в самом низком из возможных для него положений. Это определение устойчивости и неустойчивости тесно связано с предыдущим.

Возможно и такое положение равновесия, когда малые отклонения от него не приводят к каким-либо изменениям в состоянии тела. Таково, например, положение шарика на плоской опоре (рис. 174). Ясно, что при любом изменении положения шарика оно остается равновесным. Такое равновесие называют безразличным.

Если тело имеет ось вращения, то его устойчивость или неустойчивость зависит от того, возникает ли момент силы, возвращающей тело к положению равновесия или, наоборот, удаляющей тело от этого положения.

В качестве примера рассмотрим обыкновенную линейку, укрепленную на стержне, проходящем через отверстие вблизи ее конца, как показано на рисунке 175, а. В таком положении линейка находится в равновесии, потому что сила тяжести проходящая через ее центр тяжести, уравновешивается силой реакции (силой упругости) со стороны стержня (опоры). Но если отклонить линейку от вертикального положения (рис. 175, б), то сила тяжести уже не уравновешивается реакцией опоры. Момент

силы тяжести относительно оси теперь не равен нулю (рис. 175, б). Вследствие этого сила возвратит линейку (после нескольких колебаний) в исходное положение. Поэтому положение линейки, показанное на рисунке 175, а, устойчиво. Но попытаемся подвесить ту же линейку на стержне так, как это показано на рисунке 176, а. Опыт убедит нас в том, что это сделать невозможно и нетрудно понять почему. Из рисунка 176, а видно, что при вертикальном положении линейки сила тяжести уравновешивается силой упругости (реакцией стержня), действующей на линейку со стороны стержня. Линейка должна находиться в равновесии. Но из рисунка 176, б видно, что при любом отклонении линейки от вертикального положения возникает момент силы тяжести. Вследствие этого линейка повернется так, чтобы занять положение, показанное на рисунке 176, в. Значит, равновесие линейки, соответствующее рисунку 176, а, неустойчиво.

Выходит, что равновесие тела при наличии оси вращения устойчиво, если центр тяжести тела находится ниже оси вращения.

Понятно, что линейка, подвешенная на стержне, проходящем через отверстие в ее центре тяжести, будет находиться в безразличном равновесии (рис. 177). В этом случае при любом положении линейки момент силы тяжести, приложенной к ней, относительно оси вращения равен нулю.

В § 41 мы нашли условие равновесия тела, находящегося под действием трех сил, расположенных под углом друг к другу и приложенных к одной точке. Оказалось, что для этого все три силы должны лежать в одной плоскости и каждая из них должна равняться по модулю и быть обратной по направлению равнодействующей двух других сил.

Рис. 97. Исследование условий равновесия твердого тела под действием трех сил, приложенных к разным точкам тела

Рис. 98. Точка пересечения уравновешивающихся сил может лежать вне тела

Но на практике часто силы оказываются приложенными не в одной точке. Выясним, каковы будут условия равновесия в этом случае. Для этого воспользуемся таким же устройством с тремя гирями, какое мы применяли в § 41, с той разницей, что нити, на которых подвешены гири, будем прикреплять к разным точкам куска легкого картона, как показано на рис. 97. Если масса картона мала по сравнению с массами гирь, то силой тяжести, действующей на картон, можно пренебречь и считать, что к нему приложены только силы натяжения нитей. Опыт покажет, что при равновесии все нити (а значит, и силы, действующие на картон) расположатся в одной плоскости. Отмечая на картоне линии, указывающие направления нитей, и продолжая их до пересечения, убедимся, что все три линии пересекаются в одной точке. Перенося в нее точки приложения всех трех сил натяжения нитей, убедимся, что и в этом случае условие равновесия трех сил, сформулированное выше, оказывается выполненным.

Заметим, что точка пересечения направлений сил не должна при этом обязательно лежать в самом теле (рис. 98).

Рис. 99. Люстра находится в равновесии под действием четырех сил, не лежащих в одной плоскости

Рис. 100, К упражнению 72.2

Если на тело действуют больше чем три силы, то равновесие может наступить и в том случае, когда силы не лежат в одной плоскости. Такой случай (груз, подвешенный на трех тросах) показан на рис. 99.

72.1. Докажите, что при равновесии трех сил ломаная, составленная из них, образует "треугольник.

72.2. Груз массы 5 кг подвешен на двух нитях: одна расположена горизонтально, другая - под углом в 45° к горизонту (рис. 100). Найдите силы натяжения нитей.

72.3. Судно пришвартовано к берегу двумя тросами, образующими с линией берега угол 60° (рис. 101). Под действием ветра, дующего с берега, оба троса натянулись так, что сила натяжения каждого троса составляет 10 кН. Определите силу, с которой ветер давит на судно.

Рис. 101. К упражнению 72.3

Рис. 102. К упражнению 72.4

72.4. На проволоке подвешен груз массы 10 кг; к середине проволоки прикреплена горизонтально расположенная оттяжка, перекинутая через блок (рис. 102). На конец оттяжки подвешен груз массы 2,5 кг. Найдите угол а, который образует верхняя часть проволоки с вертикалью, и силу натяжения верхней части проволоки.

Лабораторная работа № 6 «Изучение равновесия тел под действием нескольких сил».

Цель работы: установить соотношение между моментами сил, приложенных к плечам рычага при его равновесии. Для этого к одному из плеч рычага подвешивают один или несколько грузов, а к другому прикрепляют динамометр (рис. 179).

С помощью этого динамометра измеряют модуль силы F, которую необходимо приложить для того, чтобы рычаг находился в равновесии. Затем с помощью того же динамометра измеряют модуль веса грузов Р. Длины плеч рычага измеряют с помощью линейки. После этого определяют абсолютные значения моментов М 1 и М 2 сил Р и F:

Вывод о погрешности экспериментальной проверки правила моментов можно сделать, сравнив с единицей

отношение:

Средства измерения:

1) линейка; 2) динамометр.

Материалы: 1) штатив с муфтой; 2) рычаг; 3) набор грузов.

Порядок выполнения работы

1. Установите рычаг на штатив и уравновесьте его в горизонтальном положении с помощью расположенных на его концах передвижных гаек.

2. Подвесьте в некоторой точке одного из плеч рычага груз.

3. Прикрепите к другому плечу рычага динамометр и определите силу, которую необходимо прило

жить к рычагу для того, чтобы он находился в равновесии.

4. Измерьте с помощью линейки длины плеч рычага.

5. С помощью динамометра определите вес груза Р.

6. Найдите абсолютные значения моментов сил Р и F

7. Найденные величины занесите в таблицу:

l 1 , м l 2 , М P, Н F, Н M 1 = Pl 1 , Н⋅м M 2 =Fl 2 ,

с единицей и сделайте вывод о погрешности экспериментальной проверки правила моментов.

Основной целью работы является установление соотношения между моментами сил, приложенных к телу с закрепленной осью вращения при его равновесии. В нашем случае в качестве такого тела мы используем рычаг. Согласно правилу моментов, чтобы такое тело находилось в равновесии, необходимо чтобы алгебраическая сумма моментов сил относительно оси вращения была равна нулю.

Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:

Выводы о погрешности экспериментальной проверки правила моментов можно сделать сравнив с единицей отношение:

Средства измерения: линейка (Δl = ±0,0005 м), динамометр (ΔF = ±0,05 H). Массу грузов из набора по механике полагаем равной (0,1±0,002) кг.

Выполнение работы

№ опыта l 1 , м l 2 , м P=mg, H F, H M 1 , нм M 2 , нм M 1 / M 2
1 0,1 0,35 4 1,1 0,4 0,385 1,04
2 0,2 0,15 2 2,7 0,4 0,405 0,99
3 0,3 0,1 1 3 0,3 0,3 1

Вычисления:

Оценим погрешности.