Квантовые точки - это крошечные кристаллы, излучающие свет с точно регулируемым цветовым значением. Технология Quantum dot LED существенно повышает качество изображения, не влияя при этом на конечную стоимость устройств, в теории:).

Обычные жидкокристаллические телевизоры могут охватывать лишь 20–30% цветового диапазона, который способен воспринимать человеческий глаз. Изображение на обладает большой реалистичностью, но данная технология не ориентирована на массовое производство больших диагоналей дисплеев. Кто следит за рынком телевизоров, помнит, что еще в начале 2013 года Sony представила первый телевизор на основе квантовых точек (Quantum dot LED, QLED) . Крупные производители телевизоров выпустят модели телевизоров на квантовых точках в этом году, Samsung их уже представил в России под названием SUHD, но об этом в конце статьи. Давайте узнаем, чем отличаются дисплеи, произведенные по QLED технологии, от уже привычных ЖК-телевизоров.

В ЖК-телевизорах отсутствуют чистые цвета

Ведь жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный , зеленый , синий ). Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками

В телевизорах QLED в качестве источника света выступают квантовые точки - это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением. Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек . В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

QLED телевизор с дисплеем на основе технологии квантовых точек от Samsung

Компания Samsung Electronics представила в России премиальные телевизоры, изготовленные по технологии квантовых точек. Новинки с разрешением 3840 × 2160 пикселей оказались не из дешёвых, а флагманская модель вовсе оценена в 2 млн рублей.

Нововведения. Изогнутые телевизоры Samsung SUHD на квантовых точках отличаются от распространённых ЖК-моделей более высокими характеристиками цветопередачи, контрастности и энергопотребления. Интегрированный процессор обработки изображения SUHD Remastering Engine позволяет масштабировать видеоконтент низкого разрешения в 4K. Помимо этого, новые телевизоры получили функции интеллектуальной подсветки Peak Illuminator и Precision Black, технологии Nano Crystal Color (улучшает насыщенность и естественность цветов), UHD Dimming (обеспечивает оптимальный контраст) и Auto Depth Enhancer (автоматическая настройка контрастности для определённых областей картинки). В программной основе телевизоров лежит операционная система Tizen с обновлённой платформой Samsung Smart TV.

Цены. Семейство Samsung SUHD TV представлено в трёх сериях (JS9500, JS9000 и JS8500), где стоимость начинается со 130 тыс. рублей. Во столько российским покупателям обойдётся 48-дюймовая модель UE48JS8500TXRU. Максимальная цена на телевизор с квантовыми точками достигает 2 млн рублей - за модель UE88JS9500TXRU с 88-дюймовым изогнутым дисплеем.

Телевизоры нового поколения по технологии QLED готовят южнокорейские Samsung Electronics и LG Electronics, китайские TCL и Hisense, а также японская Sony. Последняя уже выпустила LCD-телевизоры, изготовленные по технологии квантовых точек, о чем я упоминал в описании технологии Quantum dot LED.

LED, LCD, OLED, 4K, UHD... казалось бы, последнее, что сейчас нужно телевизионной индустрии, так это очередная техническая аббревиатура. Но прогресс не остановить, встречайте еще пару букв - QD (или Quantum Dot). Сразу отмечу, что термин «квантовые точки» в физике имеет более широкое значение, чем требуется для телевизоров. Но в свете нынешней моды на все нанофизическое маркетологи крупных корпораций с радостью начали применять это непростое научное понятие. Поэтому я решил разобраться, что же это за квантовые точки такие и почему все захотят купить QD-телевизор.

Сначала немного науки в упрощенном виде. «Квантовая точка» - полупроводник, электрические свойства которого зависят от его размера и формы (wiki). Он должен быть настолько мал, чтобы квантово-размерные эффекты были выраженными. А эффекты эти регулируются размером этой самой точки, т.е. от «габаритов», если это слово применимо к столь малым объектам, зависит энергия испускаемого, например, фотона - фактически цвет.


Quantum-Dot-телевизор LG, который впервые покажут на CES 2015

Еще более потребительским языком - это крошечные частицы, которые начнут светиться в определенном спектре, если их подсветить. Если их нанести и «растереть» на тонкой пленке, затем подсветить ее, пленка начнет ярко люминесцировать. Суть технологии в том, что размер этих точек легко контролировать, а значит добиться точного цвета.


Цветовой охват QD-телевизоров, согласно данным компании QD Vision, выше в 1,3 раза, чем у обычного ТВ, и полностью покрывает NTSC

На самом деле, не так уж и важно, какое имя выбрали большие корпорации, главное, что это должно дать потребителю. И тут обещание довольно простое - улучшенная цветопередача. Чтобы лучше понять, как «квантовые точки» ее обеспечат, нужно вспомнить устройство ЖК-дисплея.

Свет под кристаллом

LCD-телевизор (ЖК) состоит из трех основных частей: белая подсветка, цветовые фильтры (разделяющие свечение на красный, синий и зеленый цвета) и жидкокристаллическая матрица. Последняя выглядит как сетка из крошечных окон - пикселей, которые, в свою очередь, состоят из трех субпикселей (ячеек). Жидкие кристаллы, подобно жалюзи, могут перекрыть световой поток или наоборот открыться полностью, также есть промежуточные состояния.


Компания PlasmaChem GmbH производит «квантовые точки» килограммами и пакует их во флаконы

Когда белый свет, излучаемый светодиодами (LED, сегодня уже сложно найти телевизор с люминесцентными лампами, как это было всего лишь несколько лет назад), проходит, например, через пиксель, у которого закрыты зеленая и красная ячейки, то мы видим синий цвет. Степень «участия» каждого RGB-пикселя меняется, и таким образом получается цветная картинка.


Размер квантовых точек и спектр, в котором они излучают свет, по данным Nanosys

Как вы понимаете, для обеспечения цветового качества изображения требуются как минимум две вещи: точные цвета светофильтров и правильная белая подсветка, желательно с широким спектром. Как раз с последним у светодиодов есть проблема.

Во-первых, они фактически не белые, вдобавок, у них очень узкий цветовой спектр. То есть спектр шириной белого цвета достигается дополнительными покрытиями - есть несколько технологий, чаще других используются так называемые люминофорные диоды с добавкой желтого. Но и этот «квазибелый» цвет все же недотягивает до идеала. Если пропустить его через призму (как на уроке физики в школе), он не разложится на все цвета радуги одинаковой интенсивности, как это происходит с солнечным светом. Красный, например, будет казаться гораздо тусклее зеленого и синего.


Так выглядит спектр традиционной LED-подсветки. Как видите, синий тон гораздо интенсивней, да и зеленый с красным неравномерно покрывают фильтры жидких кристаллов (линии на графике)

Инженеры, понятное дело, пытаются исправить ситуацию и придумывают обходные решения. Например, можно понизить уровень зеленого и синего в настройках телевизора, однако это повлияет на суммарную яркость - картинка станет бледнее. Так что все производители искали источник белого света, при распадении которого получится равномерный спектр с цветами одинаковой насыщенности. Тут как раз на помощь и приходят квантовые точки.

Квантовые точки

Напомню, что если мы говорим о телевизорах, то «квантовые точки» - это микроскопические кристаллы, которые люминесцируют, когда на них попадает свет. «Гореть» они могут множеством различных цветов, все зависит от размера точки. А учитывая, что сейчас ученые научились практически идеально контролировать их размеры путем изменения количества атомов из которых они состоят, можно получать свечение именно того цвета, которого нужно. Также квантовые точки очень стабильны - они не меняются, а это значит, что точка созданная для люминесценции с определенным оттенком красного будет практически вечно сохранять этот оттенок.


Так выглядит спектр LED-подсветки с использованием QD-пленки (согласно данным компании QD Vision)

Инженеры придумали использовать технологию следующим образом: на тонкую пленку наносится «квантовоточечное» покрытие, созданное для свечения с определенным оттенком красного и зеленого. А светодиод - обычный синий. И тут кто-то сразу догадается: «все понятно - есть источник синего, а точки дадут зеленый и красный, значим мы получим ту самую модель RGB!». Но нет, технология работает иначе.

Нужно помнить, что «квантовые точки» находятся на одном большом листе и они не разбиты на субпиксели, а просто перемешаны между собой. Когда синий диод светит на пленку, точки излучают красный и зеленый, как уже говорилось выше, и только когда все эти три цвета смешиваются - тут-то и получается идеальный источник белого света. И напомню, что качественный белый свет позади матрицы фактически равен натуральной цветопередаче для глаз зрителя по другую сторону. Как минимум, потому что не приходится делать коррекцию с потерей или искажением спектра.

Это все еще LCD-телевизор

Широкая цветовая гамма особенно пригодится для новых 4К-телевизоров и цветовой субдискретизации типа 4:4:4, которая нас ждет в будущих стандартах. Это все прекрасно, но помните, что квантовые точки не устраняют других проблем ЖК-телевизоров. Например, практически невозможно получить идеальный черный, потому как жидкие кристаллы (те самые как бы «жалюзи», о чем я писал выше) не способны полностью блокировать свет. Они могут лишь «прикрываться», но не закрываться полностью.

Квантовые точки призваны улучшить цветопередачу, а это значительно улучшит впечатление от картинки. Но это не OLED-технология или плазма, где пиксели способны полностью прекращать подачу света. Тем не менее плазменные телевизоры ушли на пенсию, а OLED по-прежнему слишком дороги для большинства потребителей, поэтому все же приятно знать, что в скором времени производители предложат нам новый вид LED-телевизоров, который будет показывать лучше.

Сколько стоит «квантовый телевизор»?

Первые QD-телевизоры Sony, Samsung и LG обещают показать на выставке CES 2015 в январе. Однако впереди всех китайская TLC Multimedia, они уже выпустили 4K QD-телевизор и говорят, что он вот-вот появится в магазинах в Китае.


55-дюймовый QD-телевизор от TCL, показанный на выставке IFA 2014

На данный момент назвать точную стоимость телевизоров с новой технологией невозможно, ждем официальных заявлений. Писали , что стоить QD будут втрое дешевле аналогичных по функционалу OLED. К тому же технология, как говорят ученые, совсем недорогая. Исходя из этого, можно надеяться, что Quantum Dot-модели будут широко доступны и попросту заменят обычные. Однако я думаю, что сперва цены все равно завысят. Как это обычно бывает со всеми новыми технологиями.

0

КУРСОВАЯ РАБОТА

по дисциплине "Биомедицинские преобразователи и сенсорные системы"

Квантовые точки и биосенсоры на их основе

Введение. 3

Квантовые точки. Общие сведения. 5

Классификация квантовых точек. 6

Фотолюминесцирующие квантовые точки. 9

Получение квантовых точек. 11

Биосенсоры с использованием квантовых точек. Перспективы их применения в клинической диагностике. 13

Заключение. 15

Список используемой литературы. 16

Введение.

Квантовые точки (КТ) - это изолированные нанообъекты, свойства которых существенно отличаются от свойств объемного материала такого же состава. Сразу следует отметить, что квантовые точки являются скорее математической моделью, нежели реальными объектами. И связано это с невозможностью формирования полностьюобособленных структур - малые частицы всегда взаимодействуют с окружающей средой, находясь в жидкой среде или твердой матрице.

Чтобы разобраться в том, что такое квантовые точки, и понять их электронное строение, представьте себе древнегреческий амфитеатр. Теперь вообразите, что на сцене разворачивается увлекательное представление, а зрительские ряды наполнены публикой, пришедшей посмотреть игру актеров. Так вот оказывается, что поведение людей в театре во многом похоже на поведение электронов квантовой точки (КТ). Во время представления актеры передвигаются по арене, не выходя в зрительский зал, а сами зрители следят за действием со своих мест и не спускаются на сцену. Арена - это нижние заполненные уровни квантовой точки, а зрительские ряды - возбужденные электронные уровни, обладающие более высокой энергией. При этом как зритель может находиться в любом ряду зала, так и электрон способен занять любой энергетический уровень квантовой точки, но не может располагаться между ними. Покупая в кассах билеты на представление, все стремились получить самые лучшие места - как можно ближе к сцене. Действительно, ну кто же захочет сидеть в последнем ряду, откуда лицо актера не рассмотришь даже в бинокль! Поэтому, когда перед началом представления зрители рассаживаются, все нижние ряды зала оказываются заполнены, также как в стационарном состоянии КТ, обладающем наименьшей энергией, нижние энергетические уровни полностью заняты электронами. Однако во время представления кто-то из зрителей может покинуть свое место, например, потому что музыка на сцене слишком громко играет или просто сосед неприятный попался, и пересесть на свободный верхний ряд. Вот так и в КТ электрон под действием внешнего воздействия вынужден переходить на более высокий, не занятый другими электронами энергетический уровень, приводя к образованию возбужденного состояния квантовой точки. Наверное, Вам интересно, что при этом происходит с тем пустым местом на энергетическом уровне, где раньше был электрон - так называемой дыркой? Оказывается, посредством зарядовых взаимодействий электрон остается с ней связан и в любой момент может перейти обратно, также как пересевший зритель всегда может передумать и вернуться на обозначенное в его билете место. Пару “электрон-дырка” называют «экситоном» от английского слова “excited”, что означает “возбужденный”. Миграция между энергетическими уровнями КТ, аналогично подъему или спуску одного из зрителей, сопровождается изменением энергии электрона, что соответствует поглощению или излучению кванта света (фотона) при переходе электрона соответственно на более высокий или низкий уровень. Описанное выше поведение электронов в квантовой точке приводит к нехарактерному для макрообъектов дискретному энергетическому спектру, за который КТ часто называют искусственными атомами, в которых уровни электрона дискретны.

Сила (энергия) связи дырки и электрона определяет радиус экситона, который является характеристической величиной для каждого вещества. Если размер частицы меньше радиуса экситона, то экситон оказывается ограничен в пространстве ее размерами, а соответствующая энергия связи значительно изменяется по сравнению с объемным веществом (см. «квантоворазмерный эффект»). Не трудно догадаться, что если энергия экситона изменяется, то изменяется и энергия фотона, излучаемого системой при переходе возбужденного электрона на свое исходное место. Таким образом, получая монодисперсные коллоидные растворы наночастиц различных размеров, можно управлять энергиями переходов в широком диапазоне оптического спектра.

Квантовые точки. Общие сведения.

Первыми квантовыми точками были наночастицы металлов, которые синтезировали еще в древнем Египте для окрашивания различных стекол (кстати, рубиновые звезды Кремля получены по близкой технологии), хотя более традиционными и широко известными КТ являются выращенные на подложках полупроводниковые частицы GaN и коллоидные растворы наноокристаллов CdSe. В настоящий момент известно множество способов получения квантовых точек, например, их можно «вырезать» из тонких слоев полупроводниковых «гетероструктур» с помощью «нанолитографии», а можно спонтанно сформировать в виде наноразмерных включений структур полупроводникового материала одного типа в матрице другого. Методом «молекулярно-пучковой эпитаксии» при существенном отличии параметров элементарной ячейки подложки и напыляемого слоя можно добиться роста на подложке пирамидальных квантовых точек, за исследование свойств которых академику Ж.И.Алферову была присуждена Нобелевская премия. Контролируя условия процессов синтеза, теоретически можно получать квантовые точки определенных размеров с заданными свойствами.

Квантовые точки доступны как в виде ядер, так и в виде гетероструктур типа ядро-оболочка. Из-за малого размера КТ обладают свойствами, отличными от объемных полупроводников. Пространственное ограничение движения носителей заряда приводит к квантово-размерному эффекту, выражающемуся в дискретной структуре электронных уровней, из-за чего КТ иногда называют «искусственными атомами».

В зависимости от размера и химического состава квантовые точки обладают фотолюминесценцией в видимом и ближнем инфракрасном диапазонах. Благодаря высокой однородности по размерам (более 95%) предлагаемые нанокристаллы обладают узкими спектрами испускания (полуширина пика флуоресценции 20-30 нм), что обеспечивает феноменальную чистоту цвета.

Квантовые точки могут поставляться в виде растворов в неполярных органических растворителях, таких как гексан, толуол, хлороформ, или в виде сухих порошков.

КТ до сих пор являются «молодым» объектом исследования, но уже вполне очевидны широкие перспективы их использования для дизайна лазеров и дисплеев нового поколения. Оптические свойства КТ используются в самых неожиданных областях науки, в которых требуется перестраиваемые люминесцентные свойства материала, например, в медицинских исследованиях с их помощью оказывается возможным “подсветить” больные ткани.

Классификация квантовых точек.

Коллоидный синтез квантовых точек представляет широкие возможности как в получении квантовых точек на основе различных полупроводниковых материалов, так и квантовых точек с различной геометрией (формой). Немаловажным является возможность синтеза квантовых точек, составленных из разных полупроводников. Коллоидные квантовые точки будут характеризоваться составом, размером, формой.

  1. Состав квантовых точек (материал полупроводника)

В первую очередь квантовые точки представляют практический интерес как люминесцентные материалы. Основными требованиями, предъявляемыми к полупроводниковым материалам, на основе которых синтезируются квантовые точки, являются следующие. В первую очередь это прямозонный характер зонного спектра - обеспечивает эффективную люминесценцию, во вторых малая эффективная масса носителей заряда - проявление квантово-размерных эффектов в достаточно широком диапазоне размеров (конечно по меркам нанокристаллов). Можно выделить следующие классы полупроводниковых материалов. Широкозонные полупроводники (оксиды ZnO, TiO2) - ультрафиолетовый диапазон. Среднезонные полупроводники (А2В6, например халькогениды кадмия, А3В5) -видимый диапазон.

Диапазоны изменения эффективной ширины запрещенной зоны квантовых точек при

изменении размера от3 до 10 нм.

На рисунке показана возможность варьирования эффективной ширины запрещенной зоны для наиболее распространенных полупроводниковых материалов в виде нанокристаллов с размером в пределах 3-10 нм. С практической точки зрения важные оптические диапазоны - видимый 400-750 нм, ближний ИК 800-900 нм - окно прозрачности крови, 1300-1550 нм -телекоммуникационный диапазон

  1. Форма квантовых точек

Кроме состава и размера серьезное влияние на свойства квантовых точек будет оказывать их форма.

- Сферические (непосредственно quantum dots) - большая часть квантовых точек. На настоящий момент имеют наибольшее практической применение. Наиболее просты в изготовлении.

- Элипсоидальные (nanorods) - нанокристаллы, вытянутые вдоль одного направления.

Коэффициент элиптичности 2-10. Указанные границы условны. С практической точки зрения данный класс квантовых точек имеет применение как источники поляризованного излучения. При больших коэффициентах элиптичности >50 данный тип нанокристаллов часто называют нитями (nanowires).

- Нанокристаллы со сложной геометрией (например, tetrapods). Может быть синтезировано достаточное разнообразие форм - кубические, звездочки и др., а также разветвленных структур. С практической точки зрения tetrapods могут найти применение как молекулярные переключатели. На настоящий момент представляют в большой степени академический интерес.

  1. Многокомпонентные квантовые точки

Методы коллоидной химии позволяют синтезировать многокомпонентные квантовые точки из полупроводников с различными характеристиками, в первую очередь с различной шириной запрещенной зоны. Данная классификация во многом аналогична традиционно используемой в полупроводниках.

Легированные квантовые точки

Как правило, количество ввденной примеси мало (1-10 атомов на квантовую точку при среднем количестве атомов в квантовой точке 300-1000). Электронная структура квантовой точки при этом не изменяется, взаимодействие между атомом примеси и возбужденным состоянием квантовой точки носит дипольный характер и сводится к передаче возбуждения. Основные легирующие примеси- марганец, медь (люминесценция в видимом диапазоне).

Квантовые точки на основе твердых растворов.

Для квантовых точек возможно образование твердых растворов полупроводников, если наблюдается взаимная растворимость материалов в объемном состоянии. Как и в случае объемных полупроводников, образование твердых растворов приводит к модификации энергетического спектра - эффективные характеристики являются суперпозицией значений для индивидуальных полупроводников. Данный подход позволяет изменять эффективную ширину запрещенной зоны при фиксированном размере - дает еще один способ управления характеристиками квантовых точек.

Квантовые точки на основе гетеропереходов.

Данный подход реализуется в квантовых точках типа ядро-оболочка (ядро из одного полупроводника, оболочка из другого). В общем случае предполагает образование контакта двух частей из разных полупроводников. По аналогии с классической теорией гетеропереходов можно выделить 2 типа квантовых точек ядро-оболочка.

Фотолюминесцирующие квантовые точки.

Особый интерес представляют фотолюминесцирующие квантовые точки, в которых поглощение фотона рождает электрон-дырочные пары, а рекомбинация электронов и дырок вызывает флуоресценцию. Такие квантовые точки обладают узким и симметричным пиком флуоресценции, положение которого определяется их размером. Так, в зависимости от размера и состава, КТ могут иметь флуоресценцию в УФ, видимой или ИК-области спектра.

Квантовые точки на основе халькогенидов кадмия в зависимости от своего размера флуоресцируют разными цветами

Например, квантовые точки ZnS , CdS и ZnSe флуоресцируют в УФ - области, CdSe и CdTe в видимой, а PbS, PbSe и PbTe в ближней ИК - области (700-3000 нм). Кроме того, из вышеперечисленных соединений можно создавать гетероструктуры, оптические свойства которых могут отличаться от таковых у исходных соединений. Наиболее популярным является наращивание оболочки более широкозонного полупроводника на ядро из узкозонного, например, на ядро CdSe наращивают оболочку из ZnS :

Модель структуры квантовой точки, состоящей из ядра CdSe, покрытого эпитаксиальной оболочкой из ZnS (структурный тип сфалерита)

Такой прием позволяет существенно повысить устойчивость КТ к окислению, а также в разы увеличить квантовый выход флуоресценции за счет снижения количества дефектов на поверхности ядра. Отличительным свойством КТ является непрерывный спектр поглощения (возбуждения флуоресценции) в широком диапазоне длин волн, который также зависит от размера КТ. Это дает возможность одновременно возбуждать разные квантовые точки при одной длине волны. Кроме того, КТ обладают более высокой яркостью и лучшей фотостабильностью по сравнению с традиционными флуорофорами.

Такие уникальные оптические свойства квантовых точек открывают широкие перспективы для их применения в качестве оптических сенсоров, флуоресцирующих маркеров, фотосенсибилизаторов в медицине, а также для изготовления фотодетекторов в ИК - области, солнечных батарей высокой эффективности, сверхминиатюрных светодиодов, источников белого света, одноэлектронных транзисторов и нелинейно-оптических устройств.

Получение квантовых точек

Существует два основных метода получения квантовых точек: коллоидный синтез, проводимый путем смешивания предшественников «в колбе», и эпитаксия, т.е. ориентированный рост кристаллов на поверхности подложки.

Первый метод (коллоидный синтез) реализуется в нескольких вариантах: при высокой или комнатной температуре, в инертной атмосфере в среде органических растворителей или в водном растворе, с использованием или без металлоорганических предшественников, с использованием или без молекулярных кластеров, облегчающих зародышеобразование. Также используется высокотемпературный химический синтез, проводимый в инертной атмосфере путем нагревания неорганометаллических предшественников, растворенных в высококипящих органических растворителях. Это позволяет получать однородные по размеру квантовые точки с высоким квантовым выходом флуоресценции.

В результате коллоидного синтеза получаются нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул:

Схематическое изображение коллоидной квантовой точки типа ядро-оболочка с гидрофобной поверхностью. Оранжевым показано ядро из узкозонного полупроводника (например, CdSe), красным — оболочка из широкозонного полупроводника (например, ZnS), черным — органическая оболочка из поверхностно-активных молекул.

Благодаря гидрофобной органической оболочке коллоидные квантовые точки могут быть растворены в любых неполярных растворителях, а при соответствующей ее модификации — в воде и спиртах. Еще одним преимуществом коллоидного синтеза является возможность получения квантовых точек в субкилограммовых количествах.

Второй метод (эпитаксия) — формирование наноструктур на поверхности другого материала, как правило, сопряжен с использованием уникального и дорогостоящего оборудования и, кроме того, приводит к получению квантовых точек, «привязанных» к матрице. Метод эпитаксии трудно масштабируем на промышленный уровень, что делает его менее привлекательным для массового производства квантовых точек.

Биосенсоры с использованием квантовых точек. Перспективы их применения в клинической диагностике.

Квантовая точка - очень маленький физический объект, размер которого меньше радиуса экситона Бора, что приводит к возникновению квантовых эффектов, например, сильной флуоресценции.

Достоинством квантовых точек является то, что их можно возбудить одним источником излучения. В зависимости от своего диаметра они светят разным светом, причем одним источником возбуждаются квантовые точки всех цветов.

В Институте биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН производят квантовые точки в форме коллоидных нанокристаллов, что позволяет использовать их в качестве флуоресцентных меток. Они очень яркие, даже в обычный микроскоп можно видеть отдельные нанокристаллы. Кроме того, они фотоустойчивы — способны долго светиться при воздействии на них излучения высокой плотности мощности.

Плюсом квантовых точек служит и то, что, в зависимости от материала, из которого они сделаны, можно получить флуоресценцию в инфракрасном диапазоне там, где биологические ткани наиболее прозрачны. При этом эффективность флуоресценции у них несравнима ни с какими иными флюорофорами, что позволяет их использовать для визуализации различных образований в биологических тканях.

На примере диагностики аутоиммунного заболевания — системного склероза (склеродерма) — была продемонстрирована возможность квантовых точек в клинической протеомике. Диагностика основана на регистрации аутоиммунных антител.

При аутоиммунных заболеваниях собственные белки организма начинают воздействовать на свои же биообъекты (на клеточные стенки и т.д.), что вызывает сильнейшую патологию. При этом в биологических жидкостях появляются аутоиммунные антитела, чем они и воспользовались, чтобы осуществить диагностику и обнаружить аутоантитела.

Существует ряд антител к склеродерме. Были продемонстрированы диагностические возможности квантовых точек на примере двух антител. На поверхность полимерных микросфер, содержащих квантовые точки заданного цвета, наносили антигены к аутоантителам (каждому антигену соответствовал свой цвет микросферы). Тестирующая смесь содержала, кроме микросфер, еще и вторичные антитела, связанные с сигнальным флуорофором. Далее, в смесь добавляли пробу, и, если она содержала искомое аутоантитело, в смеси формировался комплекс микросфера — аутоанитело — сигнальный флуорофор .

По существу, аутоантитело являлось линкером, связывающим микросферу определенного цвета с сигнальным флуорофором. Затем с помощью проточной цитометрии были проанализированы эти микросферы. Появление одновременного сигнала от микросферы и сигнального флуорофора является свидетельством того, что произошло связывание, и на поверхности микросферы образовался комплекс, включающий вторичные антитела с сигнальным флуорофором. В этот момент фактически светили кристаллы микросфер и сигнальный флуорофор, который был связан с вторичным антителом.

Одновременное появление того и другого сигнала показывает, что в смеси присутствует детектируемая мишень — аутоантитело, являющееся маркером заболевания. Это классический «сэндвичевый» метод регистрации, когда есть две распознающие молекулы, т.е. продемонстрирована возможность одновременного анализа нескольких маркеров, что является основой высокой достоверности диагностики и возможности создания препаратов, позволяющих определить заболевание на самой ранней стадии.

Использование в качестве биометок.

Создание флуоресцентных меток на основе квантовых точек является весьма перспективным. Можно выделить следующие преимущества квантовых точек перед органическими красителями: возможность контроля длины волны люминесценции, высокий коэффициент экстинкции, растворимость в широком диапазоне растворителей, стабильность люминесценции к действию окружающей среду, высокая фотостабильность. Также можно отметить возможность химической (или более того биологической) модификации поверхности квантовых точек, позволяющей осуществить селективное связывание с биологическими объектами. На правом рисунке показано окрашивание элементов клетки при помощи водорастворимых квантовых точек, люминесцирующих в видимом диапазоне. На левом рисунке представлен пример использования неразрушающего метода оптической томографии. Фотография полученна в ближнем ИК-диапазоне при использовании квантовых точек с люминесценцией в диапазоне 800-900 нм (окно прозрачности крови теплокровных), введенных в мышь.

Рис.21. Использование квантовых точек в качестве биометок.

Заключение.

В настоящее время медицинские приложения с использованием квантовых точек ещё ограничены, в силу того что недостаточно исследовано влияние наночастиц на здоровье человека. Однако применение их в диагностике опасных заболеваний представляется весьма перспективным, в частности, на их основе разработан метод иммунофлуоресцентного анализа. И при лечении онкологических заболеваний уже используется, например, метод так называемой фотодинамической терапии. Наночастицы вводят в опухоль, далее их облучают, а потом эта энергия переносится от них на кислород, который переходит в возбуждённое состояние и изнутри «выжигает» опухоль.

Биологи говорят, что легко спроектировать квантовые точки, дающие отклик на любой длине волны, например, в ближнем инфракрасном спектре. Тогда можно будет находить опухоли, скрытые глубоко внутри тела.

Кроме того, определённые наночастицы могут давать характерный отклик при магниторезонансной томографии.

Дальнейшие планы исследователей выглядят ещё заманчивее. Новые квантовые точки, соединённые с набором биомолекул, будут не только находить опухоль и индицировать её, но и поставлять точно на место новые поколения лекарств.

Возможно, что как раз это приложение нанотехнологии окажется самым близким к практической и массовой реализации из того, что мы видели в лабораториях в последние годы.

Другое направление — это оптоэлектроника и светодиоды нового типа - экономичные, миниатюрные, яркие. Здесь используются такие преимущества квантовых точек, как их высокая фотостабильность (что гарантирует продолжительное функционирование устройств, созданных на их основе) и способность обеспечить любой цвет (с точностью до одного-двух нанометров по шкале длин волн) и любую цветовую температуру (от 2 градусов Кельвина до 10 тысяч и выше). В перспективе на основе светодиодов можно делать дисплеи для мониторов — очень тонкие, гибкие, с высокой контрастностью изображения.

Список используемой литературы.

1.http://www.nanometer.ru/2007/06/06/quantum_dots_2650.html

  1. Тананаев П.Н., Дорофеев С.Г., Васильев Р.Б., Кузнецова Т.А.. Получение нанокристаллов CdSe, легированного медью // Неорганические материалы. 2009. Т. 45. № 4. С. 393-398.
  2. Олейников В.А., Суханова А.В., Набиев И.Р. Флуоресцентные полупроводниковые нанокристаллы

в биологии и медицине // Нано. - 2007. - С. 160 173.

  1. Snee P.T., Somers R.C., Gautham N., Zimmer J.P., Bawendi M.G., Nocera D.G. A Ratiometric CdSe/ZnS Nanocrystal pH Sensor // J. Am. Chem. Soc.. - 2006. - V. 128. P. 13320 13321.
  2. Кульбачинский В. А. Полупроводниковые квантовые точки // Соросовский образовательный жур-нал. - 2001. - Т. 7. - №4. - C. 98 - 104.

Cкачать:
У вас нет доступа к скачиванию файлов с нашего сервера.

Важнейшим объектом физики низкоразмерных полупроводниковых геретоструктур являются так называемые квазинульмерные системы или квантовые точки. Дать точное определение квантовых точек достаточно трудно. Это связано с тем, что в физической литературе квантовыми точками называют широкий класс квазинульмерных систем, в которых проявляется эффект размерного квантования энергетических спектров электронов, дырок и экситонов. К этому классу, прежде всего, относят полупроводниковые кристаллы, у которых все три пространственных размера порядка боровского радиуса экситона в объёмном материале. Данное определение предполагает, что квантовая точка находится в вакууме, газовой или жидкой среде, либо ограничена каким-либо твердотельным материалом, отличающимся от материала, из которого она изготовлена. В этом случае трёхмерное пространственное ограничение элементарных возбуждений в квантовых точках обусловлено наличием границ раздела между различными материалами и средами, т. е. существованием гетерограниц. Такие квантовые точки часто называют микро- или нанокристаллами. Однако это простое определение не является полным, поскольку есть квантовые точки, для которых гетерограницы в одном либо двух измерениях отсутствуют. Несмотря на это, движение электронов, дырок или экситонов в таких квантовых точках пространственно ограничено из-за наличия потенциальных ям, возникающих, например, благодаря механическим напряжениям или флуктуациям толщины полупроводниковых слоёв. В этом смысле можно сказать, что квантовая точка - это любая трёхмерная потенциальная яма, заполненная полупроводниковым материалом, с характерными размерами порядка, в которой движение электронов, дырок и экситонов пространственно ограничено в трёх измерениях .

Методы изготовления квантовых точек

Среди всего многообразия различных квантовых точек можно выделить несколько основных типов, которые наиболее часто используются в экспериментальных исследованиях и приложениях. Прежде всего, это нанокристаллы в жидкостях, стёклах и в матрицах широкозонных диэлектриков (рис.1). Если они выращиваются в стеклянных матрицах, то, как правило, имеют сферическую форму. Именно в такой системе, представлявшей собой квантовые точки из CuCl, внедрённые в силикатные стёкла, при исследовании однофотонного поглощения был впервые обнаружен эффект трёхмерного размерного квантования экситонов. Эта работа положила начало бурному развитию физики квазинульмерных систем.

Рис.1.

Квантовые точки в кристаллической диэлектрической матрице могут быть прямоугольными параллелепипедами, как это имеет место для квантовых точек на основе CuCl, встроенных в NaCl. Нанокристаллами являются и квантовые точки, выращенные в полупроводниковых матрицах методом капельной эпитаксии .

Другим важным типом квантовых точек являются так называемые самоорганизованные квантовые точки, которые изготавливаются методом Странски-Крастанова с помощью техники молекулярно-лучевой эпитаксии (рис.2). Их отличительной особенностью является то, что они связаны между собой посредством сверхтонкого смачивающегося слоя, материал которого совпадает с материалом квантовых точек. Таким образом, в этих квантовых точках отсутствует одна из гетерограниц. К этому же типу, в принципе, могут быть отнесены пористые полупроводники, например пористый Si, а также потенциальные ямы в тонких полупроводниковых слоях, возникающие благодаря флуктуациям толщины слоёв .

Рис.2.

Рис.3. Структура с индуцированными механическими напряжениями InGaAs квантовыми точками. 1 - накрывающий слой GaAs; 2 - самоорганизованные InP квантовые точки, которые задают механические напряжения, приводящие к возникновению трёхмерных потенциальных ям в слое InGaAs; 3 и 6 - буферные слои GaAs; 4 - тонкая InGaAs квантовая яма, в которой образуются индуцированные механическими напряжениями квантовые точки; 5 - квантовые точки; 7 - подложка GaAs. Точечными линиями показаны профили механических наряжений.

Квантовые точки, индуцированные механическими напряжениями, можно отнести к третьему типу (рис.3). Они образуются в тонких полупроводниковых слоях благодаря механическим напряжениям, которые возникают из-за рассогласования постоянных решётки материалов гетерограниц. Эти механические напряжения приводят к появлению в тонком слое трёхмерной потенциальной яме для электронов, дырок и экситонов. Из рис. 3. видно, что такие квантовые точки не имеют гетерограниц в двух направлениях .



Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - h/(2md^2), где:

  1. h - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.