4 декабря 2016 в 22:35

Квантовые точки и зачем их ставят

  • Квантовые технологии ,
  • Мониторы и ТВ

Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

  1. ħ - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Теги:

  • QLED
  • LED
  • Quantum display
Добавить метки

Проще говоря, квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы. Регулируя размер квантовой точки, мы можем изменять энергию испускаемого фотона, а значит, можем изменять цвет испускаемого квантовой точкой света. Основное преимущество квантовой точки заключается в возможности, изменяя размер, точно настраивать длину волны излучаемого света.

Описание:

Квантовые точки - это фрагменты проводника или полупроводника (например InGaAs, CdSe или GaInP/InP), носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах.

Проще говоря, квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы. Чем меньше размер кристалла, тем больше расстояние между энергетическими уровнями. При переходе электрона на энергетический уровень ниже, испускается фотон. Регулируя размер квантовой точки, мы можем изменять энергию испускаемого фотона, а значит, можем изменять цвет испускаемого квантовой точкой света. Основное преимущество квантовой точки заключается в возможности, изменяя размер, точно настраивать длину волны излучаемого света.

Квантовые точки разных размеров могут быть собраны в градиентные многослойные нанопленки.

Различают два типа квантовых точек (по способу создания):

коллоидные квантовые точки.

Характеристики:

Применение:

для различных биохимических и биомедицинских исследований, в том числе для многоцветной визуализации биологических объектов (вирусов, клеточных органелл, клеток, тканей) in vitro и in vivo, а также в качестве пассивных флуоресцентных маркеров и активных индикаторов для оценки концентрации определенного вещества в том или ином образце,

для многоканального оптического кодирования, например, в проточной цитометрии и высокопроизводительном анализе белков и нуклеиновых кислот,

для исследования пространственного и временного распределения биомолекул методом конфокальной микроскопии ,

в иммуноанализе,

при in situ диагностике маркеров рака,

в блоттинге,

как источник белого цвета,

в светодиодах ,

в полупроводниковых технологиях,

Вертикальные фермы – вертикальное сельское хозяйст...

Системы хранения данных на базе процессора «Э...

Быстроходное морское пассажирское судно...

Рыбные фермы и технология выращивания рыбы...

Аромосинтезатор – прибор для производства ароматиз...

Жидкая пластмасса

Выращивание сапфиров методом Степанова...

Экранопланы Иволга

Колесный робот отечественного производства...

Утилизация боеприпасов с помощью микроорганизмов...

Роторно-лопастной двигатель внутреннего сгорания...

Квантовые точки - это крошечные кристаллы, излучающие свет с точно регулируемым цветовым значением. Технология Quantum dot LED существенно повышает качество изображения, не влияя при этом на конечную стоимость устройств, в теории:).

Обычные жидкокристаллические телевизоры могут охватывать лишь 20–30% цветового диапазона, который способен воспринимать человеческий глаз. Изображение на обладает большой реалистичностью, но данная технология не ориентирована на массовое производство больших диагоналей дисплеев. Кто следит за рынком телевизоров, помнит, что еще в начале 2013 года Sony представила первый телевизор на основе квантовых точек (Quantum dot LED, QLED) . Крупные производители телевизоров выпустят модели телевизоров на квантовых точках в этом году, Samsung их уже представил в России под названием SUHD, но об этом в конце статьи. Давайте узнаем, чем отличаются дисплеи, произведенные по QLED технологии, от уже привычных ЖК-телевизоров.

В ЖК-телевизорах отсутствуют чистые цвета

Ведь жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный , зеленый , синий ). Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками

В телевизорах QLED в качестве источника света выступают квантовые точки - это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением. Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек . В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

QLED телевизор с дисплеем на основе технологии квантовых точек от Samsung

Компания Samsung Electronics представила в России премиальные телевизоры, изготовленные по технологии квантовых точек. Новинки с разрешением 3840 × 2160 пикселей оказались не из дешёвых, а флагманская модель вовсе оценена в 2 млн рублей.

Нововведения. Изогнутые телевизоры Samsung SUHD на квантовых точках отличаются от распространённых ЖК-моделей более высокими характеристиками цветопередачи, контрастности и энергопотребления. Интегрированный процессор обработки изображения SUHD Remastering Engine позволяет масштабировать видеоконтент низкого разрешения в 4K. Помимо этого, новые телевизоры получили функции интеллектуальной подсветки Peak Illuminator и Precision Black, технологии Nano Crystal Color (улучшает насыщенность и естественность цветов), UHD Dimming (обеспечивает оптимальный контраст) и Auto Depth Enhancer (автоматическая настройка контрастности для определённых областей картинки). В программной основе телевизоров лежит операционная система Tizen с обновлённой платформой Samsung Smart TV.

Цены. Семейство Samsung SUHD TV представлено в трёх сериях (JS9500, JS9000 и JS8500), где стоимость начинается со 130 тыс. рублей. Во столько российским покупателям обойдётся 48-дюймовая модель UE48JS8500TXRU. Максимальная цена на телевизор с квантовыми точками достигает 2 млн рублей - за модель UE88JS9500TXRU с 88-дюймовым изогнутым дисплеем.

Телевизоры нового поколения по технологии QLED готовят южнокорейские Samsung Electronics и LG Electronics, китайские TCL и Hisense, а также японская Sony. Последняя уже выпустила LCD-телевизоры, изготовленные по технологии квантовых точек, о чем я упоминал в описании технологии Quantum dot LED.

Современный мир переполнен всевозможной информацией. Особенно интересует людей область медицинских открытий. Частенько можно услышать о таком диво-приборе, как очки Панкова. Отзывы очень многих практиков довольно обнадеживающие, но есть и не такие уж радужные впечатления, как обещает реклама аппарата. Что же представляют собой чудодейственные очки, и в чем заключается суть их применения в области восстановления зрения взрослых и детей?

Методика воздействия на глаза квантовых очков профессора Панкова

Суть инновационной методики лечения глаз Панкова заключается в восстановлении зрения с помощью воздействия на сетчатку глаза цветного излучения. Строение человеческого ока таково, что оно различает цвета согласно импульсу головного мозга на определенные нервные окончания. Когда на глаза воздействуют в быстром темпе различные цветовые излучения, возбуждаются все ткани и нервные окончания, улучшается кровоснабжение и происходит оживление тех участков, которые, казалось бы, уже не выполняют свою функцию.

Новый аппарат, применяемый во многих медицинских центрах по восстановлению зрения, имеет положительные отзывы. Очки Панкова, как считают многие специалисты в сфере офтальмологии и цветотерапии, заслуживают внимания тех людей, которые теряют зрение или имеют побочные эффекты от работы за компьютером.

По своей сути квантовые очки Панкова - тренажерный стимулятор, который улучшает физиологическое предназначение каждой составляющей глазного аппарата. Очень много мнений сегодня сосредоточено вокруг темы, что же собой представляют квантовые очки Панкова. Отзывы бывают как лестными, так и отрицательными.

Где можно почерпнуть подробную информацию о приборе Панкова?

Перед тем как проект прибора был утвержден и разрешен для массового выпуска с целью применения в медицинской сфере для лечения зрения людей, автор - профессор Панков - написал интересный труд по теме возможностей восстановления зрения именно с помощью воздействия на глаза всех оттенков радуги.

Как выглядят очки Панкова, отзывы о данном приборе можно найти без особых проблем. Но в противоречивой информации от разных продавцов не всегда можно конкретно понять, что же все-таки лечит данный прибор и как его применять. Поэтому в большинстве случаев те, кому действительно необходима помощь в восстановлении своего зрения, обращаются за пояснениями к книге профессора, описывающей физиологическое значение каждого цвета, - «Радуга прозрения». Очки Панкова, отзывы о них имеют прямое отношение к книге.

Сегодня рынок медицинских приборов переполнен подделками, инструкции продаваемых аппаратов почти в каждом втором случае включают описания из авторского источника, но они не совсем конкретные касаемо применения их на практике.

В книге описаны методы воздействия на освещения, которое является разминкой. Но не всегда упражнения, например наблюдение за рыбками в аквариуме с цветным освещением, дает эффект. А вот заслуженное признание за счет ритмичности своей работы получил созданный автором прибор - очки профессора Панкова. Отзывы, безусловно, не могут дать детального ответа по поводу эффективности прибора. Чтобы получить достоверную оценку очков для восстановления зрения, нужно еще знать и мнение профессиональных офтальмологов.

Без назначения офтальмолога аппарат не применяется на практике. Эффект от него может профессионально оценить только специалист.

Влияние очков на восстановление зрения

Очки Панкова воздействуют на глаза таким образом:

  • за счет подаваемых световых сигналов происходит массаж глазных мышц; снимается спазм зрачка, который во время тренировки то сужается, то расширяется;
  • за счет ритмичной работы глазного аппарата улучшается отток внутриглазной жидкости, и передняя камера глаза получает колебание глубины восприятия изображения;
  • сокращение мышц улучшает кровообращение, за счет чего происходит эффективная микроциркуляция в сетчатке глаза, улучшается питание всех тканей, поэтому и улучшается зрительное восприятие.

В большинстве случаев положительные отзывы очки Панкова заслуживают при использовании в качестве тренажера для профилактики незапущенных заболеваний глаз, а также для тренировки зрения людей, профессиональная сфера деятельности которых связана с большой нагрузкой на зрение: компьютерщиков, бухгалтеров, кассиров, научных сотрудников, летчиков.

Очки Панкова назначаются офтальмологом при начальной степени катаракты, астенопии, амблиопии, прогрессирующей миопии, глаукоме, косоглазии, близорукости, развитой дальнозоркости, дистрофии сетчатки.

Если ориентироваться на положительные отзывы, очки Панкова рекомендуется также применять для профилактики осложнений в послеоперационный период, если хирургическое вмешательство было проведено в области глаз.

Факторы, обуславливающие использование очков

  • Анализируя все отзывы, очки Панкова следует применять в качестве тренажера офисным работникам, которые не имеют фактически перерывов в своей работе во время обработки данных на компьютерной технике.
  • Положительно о приборах отзываются и студенты, которым приходится и днем, и ночью напрягать зрение за чтением книг.
  • Полезны очки Панкова и тем, кто вместо обычных очков носит современные линзы, от которых устают глаза и часто краснеют.
  • Во многих ситуациях врач-офтальмолог выписывает тренинги аппаратом, если уверен в угрозе развития того или иного заболевания глаз.
  • Особенно полезно применение прибора при поставленном специалистом диагнозе - спазм аккомодации.

Возможные противопоказания применения инновационного тренажера для зрения

Не разрешено использование прибора Панкова при сильных воспалительных процессах глаз, психических заболеваниях, онкологии, заболеваниях центральной нервной системы, беременности, тяжелых формах сахарного диабета, туберкулезе легких, восстановлении после инфаркта или инсульта, а также не рекомендуется практика на детях младше трех лет.

Все "за" и "против" применения прибора для восстановления зрения

Как уже указывалось выше, очень многие, кому довелось столкнуться с очками Панкова на практике, отмечают положительный эффект после прохождения курса лечения под наблюдением врача-офтальмолога. Количество пациентов детского возраста в общем соотношении превышает число больных средней и пожилой возрастной категории. Практика говорит о важности исправления в раннем возрасте.

Люди, которые решили применять прибор без назначения врача, эффект не могут оценить профессионально, поэтому и много негативных отзывов, которые связывают это открытие не с чем иным, как с шарлатанством.

Советы профессиональных офтальмологов по поводу применения очков Панкова

Каждый офтальмолог, прежде чем назначить курс лечения очками Панкова, всегда перед этим ставит четкий диагноз. Прибор может не давать положительных сдвигов к улучшению состояния зрения, если болезнь слишком запущена. Очки Панкова можно применять только после медикаментозного лечения, после снятия воспалений.

Где можно приобрести очки Панкова?

Чего точно не следует делать, исходя из выше сказанного, так это приобретать прибор через Интернет-магазины. Причина этому - очень много подделок эффективного медицинского аппарата и очень много рекламы.

Причем реклама аппарата в большей степени акцентирует внимание покупателя не на его тренажерном предназначении, а на лечебных свойствах. Особенно активно очки Панкова предлагаются на сайтах мегаполисов. Так, для примера была проведена оценка мнений о данном аппарате жителей Санкт-Петербурга, которые удосужились приобрести его через виртуальных продавцов и испытать на практике. Если изучать эти отзывы, очки Панкова (Спб - не единственный регион, жители которого попались на уловки рекламщиков) вызвали очень много негативных характеристик и недоверия к данной инновации.

Так что восстанавливать свое зрение стоит посещая офтальмолога, а если и покупать прибор, то только по рекомендации компетентного доктора, который уж точно плохого не посоветует.

  • 1.3.1. Интегральная и локальная плотности состояний
  • 1.3.2. Спонтанное испускание фотонов
  • 1.3.3. Тепловое излучение
  • 1.3.4. Комбинационное рассеяние
  • 1.3.5. Резонансное (релеевское) рассеяние
  • 1.4. Заключение
  • Список литературы
  • 2. Оптическое излучение в линейных и нелинейных периодических структурах
  • 2.1. Введение
  • 2.2.1. Квазиоптическое приближение
  • 2.2.2. Линзовые волноводы и лазерные резонаторы
  • 2.2.4. Мелкомасштабная самофокусировка в периодических системах
  • 2.2.5. Квазисинхронное параметрическое взаимодействие
  • 2.3. Одномодовый световод с брэгговской решеткой
  • 2.3.1. Двунаправленное распространение излучения
  • 2.3.2. Брэгговские солитоны
  • 2.3.3. Оптическая бистабильность и переключение
  • 2.3.4. Полупроводниковые микрорезонаторы
  • 2.4. Связанные световоды
  • 2.5. Двумерные фотонные кристаллы
  • 2.5.1. Неидеальные фотонные кристаллы
  • 2.5.2. Нелинейные двумерные фотонные кристаллы
  • 2.6. Заключение
  • Список литературы
  • 3. Оптика квантовых ям и сверхрешеток
  • 3.1. Классификация гетероструктур
  • 3.2. Размерное квантование электронных состояний
  • 3.3. Правила отбора при оптических переходах
  • 3.3.1. Междузонные и внутризонные оптические переходы между подзонами размерного квантования
  • 3.3.2. Поляризационные свойства оптических переходов из подзон тяжелых и легких дырок
  • 3.4. Резонансное отражение и поглощение света в структурах с квантовыми ямами
  • 3.5. Вторичное свечение гетероструктур
  • 3.6. Квантовые микрорезонаторы
  • 3.7. Заключение
  • Список литературы
  • 4. Оптика квантовых точек
  • 4.1. Введение
  • 4.1.1. Состояния размерного квантования электронных и фононных возбуждений квантовых точек
  • 4.1.2. Электрон-фононное взаимодействие в квантовых точках
  • 4.1.3. Динамика электронных возбуждений квантовой точки
  • 4.2. Оптические методы исследования квантовых точек
  • 4.2.1. Изучение энергетической структуры электронных возбуждений
  • 4.2.3. Исследование динамики элементарных возбуждений квантовых точек
  • 4.2.4. Оптическая спектроскопия одной квантовой точки
  • 4.3. Применение квантовых точек
  • 4.3.1. Лазеры на квантовых точках для волоконной связи
  • 4.3.2. Квантовые точки в биологии и медицине
  • Список литературы
  • 5. Оптические резонансные свойства металлических наночастиц
  • 5.1. Введение
  • 5.2. Резонансы Ми отдельных металлических наночастиц
  • 5.2.1. Эффект размера
  • 5.2.2. Эффекты формы
  • 5.3. Действие окружения на резонансы металлических наночастиц
  • 5.3.1. Электродинамические эффекты
  • 5.3.2. Контактные эффекты
  • 5.4. Нелинейные оптические свойства металлических наночастиц
  • 5.4.1. Генерация высших гармоник
  • 5.4.2. Оптические комбинационные процессы
  • 5.5. Неоднородные системы металлических наночастиц
  • 5.5.1. Структурные параметры неоднородных систем
  • 5.5.2. Измерение релаксационных параметров индивидуальных резонансов в неоднородных системах
  • 5.6. Применения металлических наночастиц, связанные с их оптическими свойствами
  • 5.7. Заключение
  • Список литературы
  • А.В. Федоров, А.В. Баранов

    Ln[ K(τ ) ]

    τ , пс

    Рис. 4.32. a – логарифм огибающей сигнала когерентного контроля как функция взаимной задержки между импульсами для различных относительных вкладов лоренцева однородного и гауссова неоднородного уширений (r = 2 = ! ). Сплошная линия – чисто лоренцево однородное уширение с~ 2 = 21:25 мкэВ; штриховая линия –r =1/1; пунктирная линия –r =1/2.5; штрихпунктирная –r =1/14. Абсолютные значения2 и! выбирались таким способом, чтобы HWHM фотолюминесцентной линии одиночной квантовой точки сохранялась постоянной (21:25 мкэВ) в соответствии с работой . б – контур Фойгта фотолюминесцентной линии одиночной квантовой точки, вычисленный для тех же параметров, что и в случае a.

    измерительного прибора и подгонку контуром Фойгта. Это приводит к дополнительным ошибкам. На рис. 4.32 б построены формы линий фотолюминесценции одиночной квантовой точки при тех же отношениях2 = ! , что и на рис.4.32 a. Видно, что наиболее информативная часть спектральных линий – их крылья, где трудно добиться хорошего отношения сигнал/шум. В то же время, соответствующие измененияK() наиболее отчетливы в области, где сигнал когерентного контроля может быть получен с достаточной точностью. Таким образом, метод когерентного контроля можно использовать для изучения эффектов флуктуации зарядового окружения в оптических и релаксационных процессах.

    4.3. Применение квантовых точек

    4.3.1. Лазеры на квантовых точках для волоконной связи

    Развитие оптоволоконных телекоммуникаций привело к необходимости создания эффективных полупроводниковых лазеров и оптических усилителей, работающих в спектральной области минимальных потерь волноводов (1.25– 1.65 мкм). Наибольшая длина волны, достигнутая лазерами на квантовых ямах InGaAs/GaAs, составляет 1230 нм – для устройств, генерирующих с торца , и 1260 нм для лазеров с вертикальным резонатором . Достаточно большие пороговые токи, низкая рабочая температура и невысокая

    4. Оптика квантовых точек

    температурная стабильность таких лазеров не всегда удовлетворяют требованиям, предъявляемым к высокоскоростным телекоммуникационным устройствам.

    Прогресс в изготовлении многослойных структур самоорганизованных квантовых точек соединений A3 B5 , достаточно однородных по размеру и форме при большой поверхностной плотности, привел к созданию полупроводниковых лазеров с квантовыми точками в качестве активной среды . В результате спектральная область 1.0–1.7 мкм стала доступной для генерации как для лазеров традиционной конструкции , так и для лазеров с вертикальным резонатором , использующих квантовые точки InGaAs и подложки GaAs. В частности, оба типа лазеров могут генерировать излучение с длиной волны 1.3 мкм с чрезвычайно низкими пороговыми токами и высокой выходной мощностью . Недавно был продемонстрирован широкополосный лазер на квантовых точках, излучающий на 1.5 мкм с плотностью тока всего в 70 А/см2 на один слой квантовых точек при комнатной температуре . Оптические усилители на основе квантово-точечных структур представляют интерес для высокоскоростной обработки сигналов со скоростью свыше 40 Гбит/с . Существенно, что развитые GaAs-технологии позволяют изготавливать достаточно дешевые монолитные лазеры на квантовых точках с вертикальным резонатором c распределенными брегговскими зеркалами на основе пар AlAs/GaAs и AlOx /GaAs .

    Следует отметить, что благодаря неоднородному уширению электронных переходов в квантовых точках возникает возможность расширения области непрерывной перестройки длины волны генерации. При некотором увеличении пороговых токов она может достигать 200 нм (1.033–1.234 мкм) .

    Лазеры, использующие InAs-квантовые точки и InP-подложки, также представляют интерес, поскольку они позволяют получать генерацию в более длинноволновом диапазоне (1.8–2.3 мкм), важном для применений в молекулярной спектроскопии и дистанционном контроле газовых атмосфер с помощью лидаров. В то же время, генерация излучения с длиной волны 1.9 и 2 мкм лазера с активной средой из такой гетероструктуры была получена пока только при низкой (77 К) температуре. Интересно, что генерация на длинах волн 1.6 и 1.78 мкм была также продемонстрирована для лазеров на InAs квантовых проволоках – одномерных квантовых структурах на (001)InP-подложке. И наконец, непрерывная генерация в области 2 мкм получена при комнатной температуре при использовании в качестве активной среды лазера квантовых точек на основе InAsSb, выращенных на (001)InP-подложке .

    Интенсивное развитие этого направления привело к тому, что в настоящее время некоторые типы полупроводниковых лазеров с активной средой на основе квантовых точек стали коммерчески доступны, .

    260 А.В. Федоров, А.В. Баранов

    4.3.2. Квантовые точки в биологии и медицине

    Одной из наиболее активно развивающихся областей применения полупроводниковых квантовых точек является использование коллоидных квантовых точек (полупроводниковых нанокристаллов в органических и водных растворах) в качестве люминесцентных меток для визуализации структуры биологических объектов разного типа и для сверхчувствительного детектирования биохимических реакций, которые крайне важны в молекулярной и клеточной биологии, медицинской диагностике и терапии. Люминесцентная метка представляет собой люминофор, связанный с молекулой-линковщиком, которая может селективно связываться с детектируемой биоструктурой (мишенью). Метки должны быть растворимыми в воде, иметь большой коэффициент поглощения, обладать высоким квантовым выходом люминесценции в узкой спектральной полосе. Последнее особенно важно для регистрации многоцветных изображений, когда различные мишени в клетке помечены разными метками. В качестве люминофоров меток обычно используются органические красители. Их недостатками являются низкая устойчивость к фотообесцвечиванию, не позволяющая проводить долговременные измерения, необходимость использования нескольких источников света для возбуждения различных красителей, а также большая ширина и асимметрия полос люминесценции, затрудняющие анализ многоцветных изображений.

    Последние достижения в области нанотехнологий позволяют говорить о создании нового класса люминесцентных меток, использующих в качестве люминофора полупроводниковые квантовые точки – коллоидные нанокристаллы .

    Синтез нанокристаллов на основе соединений A2 B6 (CdSe, CdS, CdTe, ZnS) и A3 B5 (InP и GaAs) известен достаточно давно . Еще в 1993 году был предложен высокотемпературный органометаллический синтез квантовых точек CdSe и получены нанокристаллы с хорошей кристаллической структурой и узким распределением по размерам, но с квантовым выходом, не превышающим 10%. Резкое увеличение квантового выхода квантовых точек до 85% при комнатной температуре было достигнуто, когда нанокристаллы стали покрывать тонкой (1–2 монослоя) оболочкой из другого материала с большей шириной запрещенной зоны (например, для CdSe это ZnS, CdS, CdO) . Такие структуры называются квантовые точки ядро/оболочка (core/shell QDs). Диаметр квантовых точек (от 1.5 нм и выше) можно контролировать, варьируя время реакции, проходящей при температуре около 300o С, от минут до нескольких часов или просто отбирая необходимое количество продукта через разное время после начала реакции . В результате оказалось возможным получить набор квантовых точек одного состава, но с разными размерами. Например, положение полосы люминесценции CdSe/ZnS КТ может меняться в диапазоне от 433 до 650 нм (2.862– 1.906 эВ) при ширине полосы около 30 мэВ . Использование других материалов позволяет существенно расширить спектральную область перестройки полосы люминесценции нанокристаллов (рис.4.33 ). Существенно,

    Оптика квантовых точек

    Интенсивность

    Длина волны,

    Рис. 4.33. Спектры люминесценции полупроводниковых нанокристаллов различного состава и разных размеров. Сплошные линии соответствуют нанокристаллам CdSe c диаметрами 1.8, 3.0 и 6.0 нм, пунктирные – нанокристаллам InP c диаметрами 3.0 и 4.6 нм, штриховые – нанокристаллам InAs с размерами 2.8, 3.6, 4.6 и 6.0 нм.

    что нанокристаллы демонстрируют более узкие и симметричные полосы люминесценции, чем обычные органические красители. Это является чрезвычайно важным преимуществом при анализе многоцветных изображений. На рис. 4.34 в качестве примера сопоставлены спектры люминесценции нанокристаллов CdSe/ZnS и молекул родамина 6Ж.

    Интенсивность, отн. ед.

    Родамин 6 Ж

    Квантовые точки

    Длина волны, нм

    Рис. 4.34. Сопоставление полос люминесценции квантовых точек и молекул родамина 6Ж.

    Дополнительным преимуществом является то, что нанокристаллы одного состава обычно имеют широкую полосу поглощения с высоким молярным коэффициентом экстинкции (до 10−6 см−1 М−1 ), соответствующую переходам в высокоэнергетические состояния. Ее положение слабо зависит от размера квантовой точки. Поэтому в отличие от красителей оказывается возможным

    262 А.В. Федоров, А.В. Баранов

    эффективное возбуждение люминесценции нанокристаллов разных размеров одним лазерным источником света. Однако основным преимуществом является то, что нанокристаллы имеют великолепную фотоустойчивость : они не выцветают в течение нескольких часов и даже дней, в то время как характерные времена фотообесцвечивания обычных люминофоров ограничены единицами минут (рис.4.35 AlexaFluor® 488Рис. 4.35. Фотоиндуцированная деградация люминесценции меток на основе CdSe/ZnS нанокристаллов CdSe/ZnS и традиционных молекулярных люминофоров под действием излучения ртутной лампы .

    Поверхность таких квантовых точек, полученных в результате химической реакции, покрыта гидрофобными молекулами, используемыми при синтезе, поэтому они растворимы только в органических растворителях. Поскольку биологические объекты (протеины, ДНК, пептиды) существуют только в водных растворах, были разработаны методы модификации поверхности нанокристаллов, которые делают их водорастворимыми как с положительно, так и с отрицательно заряженной поверхностью. Предложены несколько типов молекул-линковщиков, позволяющих селективно связывать нанокристаллы с анализируемыми биомолекулами. В качестве примера, на рис.4.36 приведен пример нанокристалла CdSe, покрытого оболочкой из ZnS, который ковалентно связан с протеином молекулой меркаптоуксусной кислоты .

    В самое последнее время люминесцентные метки на основе полупроводниковых квантовых точек для мишеней различного типа стали коммерчески доступными .

    Для использования квантовых точек in vivo необходимо предпринять меры, уменьшающие их токсичность. В этих целях предложено помещать квантовые точки в инертные полимерные сферы с диаметрами 50–300 нм и уже их использовать в качестве люминофоров в случаях, когда относительно большие размеры наносфер не препятствуют их применению. Исполь-