Квадратные уравнения часто появляются во время решения различных задач физики и математики. В данной статье мы рассмотрим, как решать эти равенства универсальным способом "через дискриминант". Примеры использования полученных знаний также даются в статье.

О каких уравнениях пойдет речь?

На рисунке ниже изображена формула, в которой x - неизвестная переменная, а латинские символы a, b, c представляют собой некоторые известные числа.

Каждый из этих символов называется коэффициентом. Как можно заметить, число "a" стоит перед переменной x, возведенной в квадрат. Это максимальная степень представленного выражения, поэтому оно называется квадратным уравнением. Часто используют другое его название: уравнение второго порядка. Само значение a - это квадратный коэффициент (стоящий при переменной в квадрате), b - это линейный коэффициент (он находится рядом с переменной, возведенной в первую степень), наконец, число c - свободный член.

Отметим, что вид уравнения, который изображен на рисунке выше, является общим классическим квадратным выражением. Помимо него существуют другие уравнения второго порядка, в которых коэффициенты b, c могут быть нулевыми.

Когда ставят задачу решить рассматриваемое равенство, то это означает, что такие значения переменной x нужно найти, которые бы ему удовлетворяли. Здесь первым делом нужно запомнить следующую вещь: поскольку максимальная степень икса - это 2, то данный тип выражений не может иметь больше, чем 2 решения. Это означает, что если при решении уравнения были найдены 2 значения x, которые ему удовлетворяют, то можно быть уверенным, что не существует никакого 3-го числа, подставляя которое вместо x, равенство также бы являлось истиной. Решения уравнения в математике называют его корнями.

Способы решения уравнений второго порядка

Решения уравнений этого типа требует знания некоторой теории о них. В школьном курсе алгебры рассматривают 4 различных метода решения. Перечислим их:

  • с помощью факторизации;
  • используя формулу для полного квадрата;
  • применяя график соответствующей квадратичной функции;
  • используя уравнение дискриминанта.

Плюс первого метода заключается в его простоте, однако, он не для всех уравнений может применяться. Второй способ является универсальным, однако несколько громоздким. Третий метод отличается своей наглядностью, но он не всегда удобен и применим. И, наконец, использование уравнения дискриминанта - это универсальный и достаточно простой способ нахождения корней абсолютно любого уравнения второго порядка. Поэтому в статье рассмотрим только его.

Формула для получения корней уравнения

Обратимся к общему виду квадратного уравнения. Запишем его: a*x²+ b*x + c =0. Перед тем как пользоваться способом его решения "через дискриминант", следует приводить равенство всегда к записанному виду. То есть оно должно состоять из трех слагаемых (или меньше, если b или c равен 0).

Например, если имеется выражение: x²-9*x+8 = -5*x+7*x², то сначала следует перенести все его члены в одну сторону равенства и сложить слагаемые, содержащие переменную x в одинаковых степенях.

В данном случае эта операция приведет к следующему выражению: -6*x²-4*x+8=0, которое эквивалентно уравнению 6*x²+4*x-8=0 (здесь левую и правую части равенства мы умножили на -1).


В примере выше a = 6, b=4, c=-8. Заметим, что все члены рассматриваемого равенства всегда суммируются между собой, поэтому если появляется знак "-", то это означает, что отрицательным является соответствующий коэффициент, как число c в данном случае.


Разобрав этот момент, перейдем теперь к самой формуле, которая дает возможность получения корней квадратного уравнения. Она имеет вид, который представлен на фото ниже.


Как видно из этого выражения, оно позволяет получать два корня (следует обратить внимание на знак "±"). Для этого в него достаточно подставить коэффициенты b, c, и a.

Понятие о дискриминанте

В предыдущем пункте была приведена формула, которая позволяет быстро решить любое уравнение второго порядка. В ней подкоренное выражение называют дискриминантом, то есть D = b²-4*a*c.

Почему эту часть формулы выделяют, и она даже имеет собственное название? Дело в том, что дискриминант связывает в единое выражение все три коэффициента уравнения. Последний факт означает, что он полностью несет информацию о корнях, которую можно выразить следующим списком:

  1. D>0: равенство имеет 2 различных решения, причем оба они представляют собой действительные числа.
  2. D=0: у уравнения всего один корень, и он является действительным числом.

Задача на определение дискриминанта


Приведем простой пример, как найти дискриминант. Пусть дано такое равенство: 2*x² - 4+5*x-9*x² = 3*x-5*x²+7.

Приведем его к стандартному виду, получаем: (2*x²-9*x²+5*x²) + (5*x-3*x) + (- 4-7) = 0, откуда приходим к равенству: -2*x²+2*x-11 = 0. Здесь a=-2, b=2, c=-11.

Теперь можно воспользоваться названной формулой для дискриминанта: D = 2² - 4*(-2)*(-11) = -84. Полученное число является ответом на поставленную задачу. Поскольку в примере дискриминант меньше нуля, то можно сказать, что данное квадратное уравнение не имеет действительных корней. Его решением будут только числа комплексного типа.

Пример неравенства через дискриминант

Решим задачи несколько иного типа: дано равенство -3*x²-6*x+c = 0. Необходимо найти такие значения c, для которых D>0.

В данном случае известно лишь 2 из 3 коэффициентов, поэтому рассчитать точное значение дискриминанта не получится, однако известно, что он является положительным. Последний факт используем при составлении неравенства: D= (-6)²-4*(-3)*c>0 => 36+12*c>0. Решение полученного неравенства приводит к результату: c>-3.

Проверим полученное число. Для этого вычислим D для 2 случаев: c=-2 и c=-4. Число -2 удовлетворяет полученному результату (-2>-3), соответствующий дискриминант будет иметь значение: D = 12>0. В свою очередь, число -4 не удовлетворяет неравенству (-4Таким образом, любые числа c, которые больше -3, будут удовлетворять условию.

Пример решения уравнения

Приведем задачу, которая заключается не только в нахождении дискриминанта, но и в решении уравнения. Необходимо найти корни для равенства -2*x²+7-9*x = 0.

В этом примере дискриминант равен следующему значению: D = 81-4*(-2)*7= 137. Тогда корни уравнения определятся так: x = (9±√137)/(-4). Это точные значения корней, если вычислить приближенно корень, тогда получатся числа: x = -5,176 и x = 0,676.

Геометрическая задача

Решим задачу, которая потребует не только умения вычислять дискриминант, но и применения навыков абстрактного мышления и знания, как составлять квадратные уравнения.

У Боба было пуховое одеяло размером 5 x 4 метра. Мальчик захотел пришить к нему по всему периметру сплошную полосу из красивой ткани. Какой толщины будет эта полоса, если известно, что у Боба имеется 10 м² ткани.


Пусть полоса будет иметь толщину x м, тогда площадь ткани по длинной стороне одеяла составит (5+2*x)*x, а поскольку длинных сторон 2, то имеем: 2*x*(5+2*x). По короткой стороне площадь пришитой ткани составит 4*x, так как этих сторон 2, то получаем значение 8*x. Отметим, что к длинной стороне было добавлено значение 2*x, поскольку длина одеяла увеличилась на это число. Общая пришитая к одеялу площадь ткани равна 10 м². Поэтому получаем равенство: 2*x*(5+2*x) + 8*x = 10 => 4*x²+18*x-10 = 0.

Для этого примера дискриминант равен: D = 18²-4*4*(-10) = 484. Его корень равен 22. Воспользовавшись формулой, находим искомые корни: x = (-18±22)/(2*4) = (-5; 0,5). Очевидно, что из двух корней подходит по условию задачи только число 0,5.

Таким образом, полоса из ткани, которую пришьет Боб к своему одеялу, будет иметь ширину 50 см.

Надеюсь, изучив данную статью, вы научитесь находить корни полного квадратного уравнения.

С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используют другие методы, которые вы найдете в статье "Решение неполных квадратных уравнений".

Какие же квадратные уравнения называются полными? Это уравнения вида ах 2 + b x + c = 0 , где коэффициенты a, b и с не равны нулю. Итак, чтобы решить полное квадратное уравнение, надо вычислить дискриминант D.

D = b 2 – 4ас.

В зависимости от того какое значение имеет дискриминант, мы и запишем ответ.

Если дискриминант отрицательное число (D < 0),то корней нет.

Если же дискриминант равен нулю, то х = (-b)/2a. Когда дискриминант положительное число (D > 0),

тогда х 1 = (-b - √D)/2a , и х 2 = (-b + √D)/2a .

Например. Решить уравнение х 2 – 4х + 4= 0.

D = 4 2 – 4 · 4 = 0

x = (- (-4))/2 = 2

Ответ: 2.

Решить уравнение 2х 2 + х + 3 = 0.

D = 1 2 – 4 · 2 · 3 = – 23

Ответ: корней нет .

Решить уравнение 2х 2 + 5х – 7 = 0 .

D = 5 2 – 4 · 2 · (–7) = 81

х 1 = (-5 - √81)/(2·2)= (-5 - 9)/4= – 3,5

х 2 = (-5 + √81)/(2·2) = (-5 + 9)/4=1

Ответ: – 3,5 ; 1 .

Итак представим решение полных квадратных уравнений схемой на рисунке1.

По этим формулам можно решать любое полное квадратное уравнение. Нужно только внимательно следить за тем, чтобы уравнение было записано многочленом стандартного вида

ах 2 + bx + c, иначе можно допустить ошибку. Например, в записи уравнения х + 3 + 2х 2 = 0, ошибочно можно решить, что

а = 1, b = 3 и с = 2. Тогда

D = 3 2 – 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. А это неверно. (Смотри решение примера 2 выше).

Поэтому, если уравнение записано не многочленом стандартного вида, вначале полное квадратное уравнение надо записать многочленом стандартного вида (на первом месте должен стоять одночлен с наибольшим показателем степени, то есть ах 2 , затем с меньшим bx , а затем свободный член с.

При решении приведенного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором слагаемом можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении при втором слагаемом коэффициент будет четным (b = 2k), то можно решать уравнение по формулам приведенным на схеме рисунка 2.

Полное квадратное уравнение называется приведенным, если коэффициент при х 2 равен единице и уравнение примет вид х 2 + px + q = 0 . Такое уравнение может быть дано для решения, либо получается делением всех коэффициентов уравнение на коэффициент а , стоящий при х 2 .

На рисунке 3 приведена схема решения приведенных квадратных
уравнений. Рассмотрим на примере применение рассмотренных в данной статье формул.

Пример. Решить уравнение

3х 2 + 6х – 6 = 0.

Давайте решим это уравнение применяя формулы приведенные на схеме рисунка 1.

D = 6 2 – 4 · 3 · (– 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 - 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Ответ: –1 – √3; –1 + √3

Можно заметить, что коэффициент при х в этом уравнении четное число, то есть b = 6 или b = 2k , откуда k = 3. Тогда попробуем решить уравнение по формулам, приведенным на схеме рисунка D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Ответ: –1 – √3; –1 + √3 . Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x 2 + 2х – 2 = 0 Решим это уравнение, используя формулы для приведенного квадратного
уравнения рисунок 3.

D 2 = 2 2 – 4 · (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Ответ: –1 – √3; –1 + √3.

Как видим, при решении этого уравнения по различным формулам мы получили один и тот же ответ. Поэтому хорошо усвоив формулы приведенные на схеме рисунка 1 , вы всегда сможете решить любое полное квадратное уравнение.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


Продолжаем изучение темы «решение уравнений ». Мы уже познакомились с линейными уравнениями и переходим к знакомству с квадратными уравнениями .

Сначала мы разберем, что такое квадратное уравнение, как оно записывается в общем виде, и дадим связанные определения. После этого на примерах подробно разберем, как решаются неполные квадратные уравнения. Дальше перейдем к решению полных уравнений, получим формулу корней, познакомимся с дискриминантом квадратного уравнения и рассмотрим решения характерных примеров. Наконец, проследим связи между корнями и коэффициентами.

Навигация по странице.

Что такое квадратное уравнение? Их виды

Для начала надо отчетливо понимать, что такое квадратное уравнение. Поэтому разговор о квадратных уравнениях логично начать с определения квадратного уравнения, а также связанных с ним определений. После этого можно рассмотреть основные виды квадратных уравнений: приведенные и неприведенные, а также полные и неполные уравнения.

Определение и примеры квадратных уравнений

Определение.

Квадратное уравнение – это уравнение вида a·x 2 +b·x+c=0 , где x – переменная, a , b и c – некоторые числа, причем a отлично от нуля.

Сразу скажем, что квадратные уравнения часто называют уравнениями второй степени. Это связано с тем, что квадратное уравнение является алгебраическим уравнением второй степени.

Озвученное определение позволяет привести примеры квадратных уравнений. Так 2·x 2 +6·x+1=0 , 0,2·x 2 +2,5·x+0,03=0 и т.п. – это квадратные уравнения.

Определение.

Числа a , b и c называют коэффициентами квадратного уравнения a·x 2 +b·x+c=0 , причем коэффициент a называют первым, или старшим, или коэффициентом при x 2 , b – вторым коэффициентом, или коэффициентом при x , а c – свободным членом.

Для примера возьмем квадратное уравнение вида 5·x 2 −2·x−3=0 , здесь старший коэффициент есть 5 , второй коэффициент равен −2 , а свободный член равен −3 . Обратите внимание, когда коэффициенты b и/или c отрицательные, как в только что приведенном примере, то используется краткая форма записи квадратного уравнения вида 5·x 2 −2·x−3=0 , а не 5·x 2 +(−2)·x+(−3)=0 .

Стоит отметить, что когда коэффициенты a и/или b равны 1 или −1 , то они в записи квадратного уравнения обычно не присутствуют явно, что связано с особенностями записи таких . Например, в квадратном уравнении y 2 −y+3=0 старший коэффициент есть единица, а коэффициент при y равен −1 .

Приведенные и неприведенные квадратные уравнения

В зависимости от значения старшего коэффициента различают приведенные и неприведенные квадратные уравнения. Дадим соответствующие определения.

Определение.

Квадратное уравнение, в котором старший коэффициент равен 1 , называют приведенным квадратным уравнением . В противном случае квадратное уравнение является неприведенным .

Согласно данному определению, квадратные уравнения x 2 −3·x+1=0 , x 2 −x−2/3=0 и т.п. – приведенные, в каждом из них первый коэффициент равен единице. А 5·x 2 −x−1=0 , и т.п. - неприведенные квадратные уравнения, их старшие коэффициенты отличны от 1 .

От любого неприведенного квадратного уравнения с помощью деления его обеих частей на старший коэффициент можно перейти к приведенному. Это действие является равносильным преобразованием , то есть, полученное таким способом приведенное квадратное уравнение имеет те же корни, что и исходное неприведенное квадратное уравнение, или, так же как оно, не имеет корней.

Разберем на примере, как выполняется переход от неприведенного квадратного уравнения к приведенному.

Пример.

От уравнения 3·x 2 +12·x−7=0 перейдите к соответствующему приведенному квадратному уравнению.

Решение.

Нам достаточно выполнить деление обеих частей исходного уравнения на старший коэффициент 3 , он отличен от нуля, поэтому мы можем выполнить это действие. Имеем (3·x 2 +12·x−7):3=0:3 , что то же самое, (3·x 2):3+(12·x):3−7:3=0 , и дальше (3:3)·x 2 +(12:3)·x−7:3=0 , откуда . Так мы получили приведенное квадратное уравнение, равносильное исходному.

Ответ:

Полные и неполные квадратные уравнения

В определении квадратного уравнения присутствует условие a≠0 . Это условие нужно для того, чтобы уравнение a·x 2 +b·x+c=0 было именно квадратным, так как при a=0 оно фактически становится линейным уравнением вида b·x+c=0 .

Что касается коэффициентов b и c , то они могут быть равны нулю, причем как по отдельности, так и вместе. В этих случаях квадратное уравнение называют неполным.

Определение.

Квадратное уравнение a·x 2 +b·x+c=0 называют неполным , если хотя бы один из коэффициентов b , c равен нулю.

В свою очередь

Определение.

Полное квадратное уравнение – это уравнение, у которого все коэффициенты отличны от нуля.

Такие названия даны не случайно. Из следующих рассуждений это станет понятно.

Если коэффициент b равен нулю, то квадратное уравнение принимает вид a·x 2 +0·x+c=0 , и оно равносильно уравнению a·x 2 +c=0 . Если c=0 , то есть, квадратное уравнение имеет вид a·x 2 +b·x+0=0 , то его можно переписать как a·x 2 +b·x=0 . А при b=0 и c=0 мы получим квадратное уравнение a·x 2 =0 . Полученные уравнения отличаются от полного квадратного уравнения тем, что их левые части не содержат либо слагаемого с переменной x, либо свободного члена, либо и того и другого. Отсюда и их название – неполные квадратные уравнения.

Так уравнения x 2 +x+1=0 и −2·x 2 −5·x+0,2=0 – это примеры полных квадратных уравнений, а x 2 =0 , −2·x 2 =0 , 5·x 2 +3=0 , −x 2 −5·x=0 – это неполные квадратные уравнения.

Решение неполных квадратных уравнений

Из информации предыдущего пункта следует, что существует три вида неполных квадратных уравнений :

  • a·x 2 =0 , ему отвечают коэффициенты b=0 и c=0 ;
  • a·x 2 +c=0 , когда b=0 ;
  • и a·x 2 +b·x=0 , когда c=0 .

Разберем по порядку, как решаются неполные квадратные уравнения каждого из этих видов.

a·x 2 =0

Начнем с решения неполных квадратных уравнений, в которых коэффициенты b и c равны нулю, то есть, с уравнений вида a·x 2 =0 . Уравнению a·x 2 =0 равносильно уравнение x 2 =0 , которое получается из исходного делением его обеих частей на отличное от нуля число a . Очевидно, корнем уравнения x 2 =0 является нуль, так как 0 2 =0 . Других корней это уравнение не имеет, что объясняется , действительно, для любого отличного от нуля числа p имеет место неравенство p 2 >0 , откуда следует, что при p≠0 равенство p 2 =0 никогда не достигается.

Итак, неполное квадратное уравнение a·x 2 =0 имеет единственный корень x=0 .

В качестве примера приведем решение неполного квадратного уравнения −4·x 2 =0 . Ему равносильно уравнение x 2 =0 , его единственным корнем является x=0 , следовательно, и исходное уравнение имеет единственный корень нуль.

Краткое решение в этом случае можно оформить следующим образом:
−4·x 2 =0 ,
x 2 =0 ,
x=0 .

a·x 2 +c=0

Теперь рассмотрим, как решаются неполные квадратные уравнения, в которых коэффициент b равен нулю, а c≠0 , то есть, уравнения вида a·x 2 +c=0 . Мы знаем, что перенос слагаемого из одной части уравнения в другую с противоположным знаком, а также деление обеих частей уравнения на отличное от нуля число дают равносильное уравнение. Поэтому можно провести следующие равносильные преобразования неполного квадратного уравнения a·x 2 +c=0 :

  • перенести c в правую часть, что дает уравнение a·x 2 =−c ,
  • и разделить обе его части на a , получаем .

Полученное уравнение позволяет сделать выводы о его корнях. В зависимости от значений a и c значение выражения может быть отрицательным (например, если a=1 и c=2 , то ) или положительным, (к примеру, если a=−2 и c=6 , то ), оно не равно нулю, так как по условию c≠0 . Отдельно разберем случаи и .

Если , то уравнение не имеет корней. Это утверждение следует из того, что квадрат любого числа есть число неотрицательное. Из этого вытекает, что когда , то ни для какого числа p равенство не может быть верным.

Если , то дело с корнями уравнения обстоит иначе. В этом случае, если вспомнить о , то сразу становится очевиден корень уравнения , им является число , так как . Несложно догадаться, что и число тоже является корнем уравнения , действительно, . Других корней это уравнение не имеет, что можно показать, например, методом от противного. Сделаем это.

Обозначим только что озвученные корни уравнения как x 1 и −x 1 . Предположим, что уравнение имеет еще один корень x 2 , отличный от указанных корней x 1 и −x 1 . Известно, что подстановка в уравнение вместо x его корней обращает уравнение в верное числовое равенство . Для x 1 и −x 1 имеем , а для x 2 имеем . Свойства числовых равенств нам позволяют выполнять почленное вычитание верных числовых равенств, так вычитание соответствующих частей равенств и дает x 1 2 −x 2 2 =0 . Свойства действий с числами позволяют переписать полученное равенство как (x 1 −x 2)·(x 1 +x 2)=0 . Мы знаем, что произведение двух чисел равно нулю тогда и только тогда, когда хотя бы одно из них равно нулю. Следовательно, из полученного равенства следует, что x 1 −x 2 =0 и/или x 1 +x 2 =0 , что то же самое, x 2 =x 1 и/или x 2 =−x 1 . Так мы пришли к противоречию, так как вначале мы сказали, что корень уравнения x 2 отличен от x 1 и −x 1 . Этим доказано, что уравнение не имеет других корней, кроме и .

Обобщим информацию этого пункта. Неполное квадратное уравнение a·x 2 +c=0 равносильно уравнению , которое

  • не имеет корней, если ,
  • имеет два корня и , если .

Рассмотрим примеры решения неполных квадратных уравнений вида a·x 2 +c=0 .

Начнем с квадратного уравнения 9·x 2 +7=0 . После переноса свободного члена в правую часть уравнения, оно примет вид 9·x 2 =−7 . Разделив обе части полученного уравнения на 9 , придем к . Так как в правой части получилось отрицательное число, то это уравнение не имеет корней, следовательно, и исходное неполное квадратное уравнение 9·x 2 +7=0 не имеет корней.

Решим еще одно неполное квадратное уравнение −x 2 +9=0 . Переносим девятку в правую часть: −x 2 =−9 . Теперь делим обе части на −1 , получаем x 2 =9 . В правой части находится положительное число, откуда заключаем, что или . После записываем окончательный ответ: неполное квадратное уравнение −x 2 +9=0 имеет два корня x=3 или x=−3 .

a·x 2 +b·x=0

Осталось разобраться с решением последнего вида неполных квадратных уравнений при c=0 . Неполные квадратные уравнения вида a·x 2 +b·x=0 позволяет решить метод разложения на множители . Очевидно, мы можем , находящийся в левой части уравнения, для чего достаточно вынести за скобки общий множитель x . Это позволяет перейти от исходного неполного квадратного уравнения к равносильному уравнению вида x·(a·x+b)=0 . А это уравнение равносильно совокупности двух уравнений x=0 и a·x+b=0 , последнее из которых является линейным и имеет корень x=−b/a .

Итак, неполное квадратное уравнение a·x 2 +b·x=0 имеет два корня x=0 и x=−b/a .

Для закрепления материала разберем решение конкретного примера.

Пример.

Решите уравнение .

Решение.

Выносим x за скобки, это дает уравнение . Оно равносильно двум уравнениям x=0 и . Решаем полученное линейное уравнение: , и выполнив деление смешанного числа на обыкновенную дробь, находим . Следовательно, корнями исходного уравнения являются x=0 и .

После получения необходимой практики, решения подобных уравнений можно записывать кратко:

Ответ:

x=0 , .

Дискриминант, формула корней квадратного уравнения

Для решения квадратных уравнений существуют формула корней. Запишем формулу корней квадратного уравнения : , где D=b 2 −4·a·c – так называемый дискриминант квадратного уравнения . Запись по сути означает, что .

Полезно знать, как была получена формула корней, и как она применяется при нахождении корней квадратных уравнений. Разберемся с этим.

Вывод формулы корней квадратного уравнения

Пусть нам нужно решить квадратное уравнение a·x 2 +b·x+c=0 . Выполним некоторые равносильные преобразования :

  • Обе части этого уравнения мы можем разделить на отличное от нуля число a , в результате получим приведенное квадратное уравнение .
  • Теперь выделим полный квадрат в его левой части: . После этого уравнение примет вид .
  • На этом этапе можно осуществить перенос двух последних слагаемых в правую часть с противоположным знаком, имеем .
  • И еще преобразуем выражение, оказавшееся в правой части: .

В итоге мы приходим к уравнению , которое равносильно исходному квадратному уравнению a·x 2 +b·x+c=0 .

Аналогичные по форме уравнения мы уже решали в предыдущих пунктах, когда разбирали . Это позволяет сделать следующие выводы, касающиеся корней уравнения :

  • если , то уравнение не имеет действительных решений;
  • если , то уравнение имеет вид , следовательно, , откуда виден его единственный корень ;
  • если , то или , что то же самое или , то есть, уравнение имеет два корня.

Таким образом, наличие или отсутствие корней уравнения , а значит и исходного квадратного уравнения, зависит от знака выражения , стоящего в правой части. В свою очередь знак этого выражения определяется знаком числителя, так как знаменатель 4·a 2 всегда положителен, то есть, знаком выражения b 2 −4·a·c . Это выражение b 2 −4·a·c , назвали дискриминантом квадратного уравнения и обозначили буквой D . Отсюда понятна суть дискриминанта – по его значению и знаку делают вывод, имеет ли квадратное уравнение действительные корни, и если имеет, то каково их количество - один или два.

Возвращаемся к уравнению , перепишем его с использованием обозначения дискриминанта: . И делаем выводы:

  • если D<0 , то это уравнение не имеет действительных корней;
  • если D=0 , то это уравнение имеет единственный корень ;
  • наконец, если D>0 , то уравнение имеет два корня или , которые в силу можно переписать в виде или , а после раскрытия и приведения дробей к общему знаменателю получаем .

Так мы вывели формулы корней квадратного уравнения, они имеют вид , где дискриминант D вычисляется по формуле D=b 2 −4·a·c .

С их помощью при положительном дискриминанте можно вычислить оба действительных корня квадратного уравнения. При равном нулю дискриминанте обе формулы дают одно и то же значение корня, соответствующее единственному решению квадратного уравнения. А при отрицательном дискриминанте при попытке воспользоваться формулой корней квадратного уравнения мы сталкиваемся с извлечением квадратного корня из отрицательного числа, что выводит нас за рамки и школьной программы. При отрицательном дискриминанте квадратное уравнение не имеет действительных корней, но имеет пару комплексно сопряженных корней, которые можно найти по тем же полученным нами формулам корней .

Алгоритм решения квадратных уравнений по формулам корней

На практике при решении квадратных уравнения можно сразу использовать формулу корней, с помощью которой вычислить их значения. Но это больше относиться к нахождению комплексных корней.

Однако в школьном курсе алгебры обычно речь идет не о комплексных, а о действительных корнях квадратного уравнения. В этом случае целесообразно перед использованием формул корней квадратного уравнения предварительно найти дискриминант, убедиться, что он неотрицательный (в противном случае можно делать вывод, что уравнение не имеет действительных корней), и уже после этого вычислять значения корней.

Приведенные рассуждения позволяют записать алгоритм решения квадратного уравнения . Чтобы решить квадратное уравнение a·x 2 +b·x+c=0 , надо:

  • по формуле дискриминанта D=b 2 −4·a·c вычислить его значение;
  • заключить, что квадратное уравнение не имеет действительных корней, если дискриминант отрицательный;
  • вычислить единственный корень уравнения по формуле , если D=0 ;
  • найти два действительных корня квадратного уравнения по формуле корней , если дискриминант положительный.

Здесь лишь заметим, что при равном нулю дискриминанте можно использовать и формулу , она даст то же значение, что и .

Можно переходить к примерам применения алгоритма решения квадратных уравнений.

Примеры решения квадратных уравнений

Рассмотрим решения трех квадратных уравнений с положительным, отрицательным и равным нулю дискриминантом. Разобравшись с их решением, по аналогии можно будет решить любое другое квадратное уравнение. Начнем.

Пример.

Найдите корни уравнения x 2 +2·x−6=0 .

Решение.

В этом случае имеем следующие коэффициенты квадратного уравнения: a=1 , b=2 и c=−6 . Согласно алгоритму, сначала надо вычислить дискриминант, для этого подставляем указанные a , b и c в формулу дискриминанта, имеем D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28 . Так как 28>0 , то есть, дискриминант больше нуля, то квадратное уравнение имеет два действительных корня. Найдем их по формуле корней , получаем , здесь можно упростить полученные выражения, выполнив вынесение множителя за знак корня с последующим сокращением дроби:

Ответ:

Переходим к следующему характерному примеру.

Пример.

Решите квадратное уравнение −4·x 2 +28·x−49=0 .

Решение.

Начинаем с нахождения дискриминанта: D=28 2 −4·(−4)·(−49)=784−784=0 . Следовательно, это квадратное уравнение имеет единственный корень, который находим как , то есть,

Ответ:

x=3,5 .

Остается рассмотреть решение квадратных уравнений с отрицательным дискриминантом.

Пример.

Решите уравнение 5·y 2 +6·y+2=0 .

Решение.

Здесь такие коэффициенты квадратного уравнения: a=5 , b=6 и c=2 . Подставляем эти значения в формулу дискриминанта, имеем D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4 . Дискриминант отрицательный, следовательно, данное квадратное уравнение не имеет действительных корней.

Если же потребуется указать комплексные корни, то применяем известную формулу корней квадратного уравнения , и выполняем действия с комплексными числами :

Ответ:

действительных корней нет, комплексные корни таковы: .

Еще раз отметим, что если дискриминант квадратного уравнения отрицательный, то в школе обычно сразу записывают ответ, в котором указывают, что действительных корней нет, и не находят комплексные корни.

Формула корней для четных вторых коэффициентов

Формула корней квадратного уравнения , где D=b 2 −4·a·c позволяет получить формулу более компактного вида, позволяющую решать квадратные уравнения с четным коэффициентом при x (или просто с коэффициентом, имеющим вид 2·n , например, , или 14·ln5=2·7·ln5 ). Выведем ее.

Допустим нам нужно решить квадратное уравнение вида a·x 2 +2·n·x+c=0 . Найдем его корни с использованием известной нам формулы. Для этого вычисляем дискриминант D=(2·n) 2 −4·a·c=4·n 2 −4·a·c=4·(n 2 −a·c) , и дальше используем формулу корней:

Обозначим выражение n 2 −a·c как D 1 (иногда его обозначают D" ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид , где D 1 =n 2 −a·c .

Несложно заметить, что D=4·D 1 , или D 1 =D/4 . Другими словами, D 1 – это четвертая часть дискриминанта. Понятно, что знак D 1 такой же, как знак D . То есть, знак D 1 также является индикатором наличия или отсутствия корней квадратного уравнения.

Итак, чтобы решить квадратное уравнение со вторым коэффициентом 2·n , надо

  • Вычислить D 1 =n 2 −a·c ;
  • Если D 1 <0 , то сделать вывод, что действительных корней нет;
  • Если D 1 =0 , то вычислить единственный корень уравнения по формуле ;
  • Если же D 1 >0 , то найти два действительных корня по формуле .

Рассмотрим решение примера с использованием полученной в этом пункте формулы корней.

Пример.

Решите квадратное уравнение 5·x 2 −6·x−32=0 .

Решение.

Второй коэффициент этого уравнения можно представить в виде 2·(−3) . То есть, можно переписать исходное квадратное уравнение в виде 5·x 2 +2·(−3)·x−32=0 , здесь a=5 , n=−3 и c=−32 , и вычислить четвертую часть дискриминанта: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169 . Так как его значение положительно, то уравнение имеет два действительных корня. Найдем их, используя соответствующую формулу корней:

Заметим, что можно было использовать обычную формулу корней квадратного уравнения, но в этом случае пришлось бы выполнить больший объем вычислительной работы.

Ответ:

Упрощение вида квадратных уравнений

Порой, прежде чем пускаться в вычисление корней квадратного уравнения по формулам, не помешает задаться вопросом: «А нельзя ли упростить вид этого уравнения»? Согласитесь, что в плане вычислений проще будет решить квадратное уравнение 11·x 2 −4·x−6=0 , чем 1100·x 2 −400·x−600=0 .

Обычно упрощение вида квадратного уравнения достигается путем умножения или деления его обеих частей на некоторое число. Например, в предыдущем абзаце удалось достичь упрощения уравнения 1100·x 2 −400·x−600=0 , разделив обе его части на 100 .

Подобное преобразование проводят с квадратными уравнениями, коэффициенты которого не являются . При этом обычно делят обе части уравнения на абсолютных величин его коэффициентов. Для примера возьмем квадратное уравнение 12·x 2 −42·x+48=0 . абсолютных величин его коэффициентов: НОД(12, 42, 48)= НОД(НОД(12, 42), 48)= НОД(6, 48)=6 . Разделив обе части исходного квадратного уравнения на 6 , мы придем к равносильному ему квадратному уравнению 2·x 2 −7·x+8=0 .

А умножение обеих частей квадратного уравнения обычно производится для избавления от дробных коэффициентов. При этом умножение проводят на знаменателей его коэффициентов. Например, если обе части квадратного уравнения умножить на НОК(6, 3, 1)=6 , то оно примет более простой вид x 2 +4·x−18=0 .

В заключение этого пункта заметим, что почти всегда избавляются от минуса при старшем коэффициенте квадратного уравнения, изменяя знаки всех членов, что соответствует умножению (или делению) обеих частей на −1 . Например, обычно от квадратного уравнения −2·x 2 −3·x+7=0 переходят к решению 2·x 2 +3·x−7=0 .

Связь между корнями и коэффициентами квадратного уравнения

Формула корней квадратного уравнения выражает корни уравнения через его коэффициенты. Отталкиваясь от формулы корней, можно получить другие зависимости между корнями и коэффициентами.

Наиболее известны и применимы формулы из теоремы Виета вида и . В частности, для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней – свободному члену. Например, по виду квадратного уравнения 3·x 2 −7·x+22=0 можно сразу сказать, что сумма его корней равна 7/3 , а произведение корней равно 22/3 .

Используя уже записанные формулы можно получить и ряд других связей между корнями и коэффициентами квадратного уравнения. К примеру, можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты: .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

Эта тема поначалу может показаться сложной из-за множества не самых простых формул. Мало того что сами квадратные уравнения имеют длинные записи, еще и корни находятся через дискриминант. Всего получается три новые формулы. Не очень просто запомнить. Это удается только после частого решения таких уравнений. Тогда все формулы будут вспоминаться сами собой.

Общий вид квадратного уравнения

Здесь предложена их явная запись, когда самая большая степень записана первой, и дальше - по убыванию. Часто бывают ситуации, когда слагаемые стоят вразнобой. Тогда лучше переписать уравнение в порядке убывания степени у переменной.

Введем обозначения. Они представлены в таблице ниже.

Если принять эти обозначения, все квадратные уравнения сводятся к следующей записи.

Причем коэффициент а ≠ 0. Пусть эта формула будет обозначена номером один.

Когда уравнение задано, то непонятно, сколько корней будет в ответе. Потому что всегда возможен один из трех вариантов:

  • в решении будет два корня;
  • ответом будет одно число;
  • корней у уравнения не будет совсем.

И пока решение не доведено до конца, сложно понять, какой из вариантов выпадет в конкретном случае.

Виды записей квадратных уравнений

В задачах могут встречаться их разные записи. Не всегда они будут выглядеть как общая формула квадратного уравнения. Иногда в ней будет не хватать некоторых слагаемых. То что было записано выше — это полное уравнение. Если в нем убрать второе или третье слагаемое, то получится нечто другое. Эти записи тоже называются квадратными уравнениями, только неполными.

Причем исчезнуть могут только слагаемые у которых коэффициенты «в» и «с». Число «а» не может быть равно нулю ни при каких условиях. Потому что в этом случае формула превращается в линейное уравнение. Формулы для неполного вида уравнений будут такими:

Итак, видов всего два, кроме полных, есть еще и неполные квадратные уравнения. Пусть первая формула будет иметь номер два, а вторая — три.

Дискриминант и зависимость количества корней от его значения

Это число нужно знать для того, чтобы вычислить корни уравнения. Оно может быть посчитано всегда, какой бы ни была формула квадратного уравнения. Для того чтобы вычислить дискриминант, нужно воспользоваться равенством, записанным ниже, которое будет иметь номер четыре.

После подстановки в эту формулу значений коэффициентов, можно получить числа с разными знаками. Если ответ положительный, то ответом уравнения будут два различных корня. При отрицательном числе корни квадратного уравнения будут отсутствовать. В случае его равенства нулю ответ будет один.

Как решается квадратное уравнение полного вида?

По сути, рассмотрение этого вопроса уже началось. Потому что сначала нужно найти дискриминант. После того как выяснено, что имеются корни квадратного уравнения, и известно их число, нужно воспользоваться формулами для переменных. Если корней два, то нужно применить такую формулу.

Поскольку в ней стоит знак «±», то значений будет два. Выражение под знаком квадратного корня — это дискриминант. Поэтому формулу можно переписать по-другому.

Формула номер пять. Из этой же записи видно, что если дискриминант равен нулю, то оба корня примут одинаковые значения.

Если решение квадратных уравнений еще не отработано, то лучше до того, как применять формулы дискриминанта и переменной, записать значения всех коэффициентов. Позже этот момент не будет вызывать трудностей. Но в самом начале бывает путаница.

Как решается квадратное уравнение неполного вида?

Здесь все гораздо проще. Даже нет необходимости в дополнительных формулах. И не понадобятся те, что уже были записаны для дискриминанта и неизвестной.

Сначала рассмотрим неполное уравнение под номером два. В этом равенстве полагается вынести неизвестную величину за скобку и решить линейное уравнение, которое останется в скобках. В ответе будет два корня. Первый - обязательно равен нулю, потому что имеется множитель, состоящий из самой переменной. Второй получится при решении линейного уравнения.

Неполное уравнение под номером три решается переносом числа из левой части равенства в правую. Потом нужно разделить на коэффициент, стоящий перед неизвестной. Останется только извлечь квадратный корень и не забыть записать его два раза с противоположными знаками.

Далее записаны некоторые действия, помогащие научиться решать всевозможные виды равенств, которые превращаются в квадратные уравнения. Они будут способствовать тому, что ученик сможет избежать ошибок по невнимательности. Эти недочеты бывают причиной плохих оценок при изучении обширной темы «Квадратные уравнения (8 класс)». Впоследствии эти действия не нужно будет постоянно выполнять. Потому что появится устойчивый навык.

  • Сначала нужно записать уравнение в стандартном виде. То есть сначала слагаемое с самой большой степенью переменной, а потом - без степени и последним - просто число.
  • Если перед коэффициентом «а» появляется минус, то он может усложнить работу для начинающего изучать квадратные уравнения. От него лучше избавиться. Для этой цели все равенство нужно умножить на «-1». Это значит, что у всех слагаемых изменится знак на противоположный.
  • Таким же образом рекомендуется избавляться от дробей. Просто умножить уравнение на соответствующий множитель, чтобы знаменатели сократились.

Примеры

Требуется решить следующие квадратные уравнения:

х 2 − 7х = 0;

15 − 2х − х 2 = 0;

х 2 + 8 + 3х = 0;

12х + х 2 + 36 = 0;

(х+1) 2 + х + 1 = (х+1)(х+2).

Первое уравнение: х 2 − 7х = 0. Оно неполное, поэтому решается так, как было описано для формулы под номером два.

После вынесения за скобки получается: х (х - 7) = 0.

Первый корень принимает значение: х 1 = 0. Второй будет найден из линейного уравнения: х - 7 = 0. Легко заметить, что х 2 = 7.

Второе уравнение: 5х 2 + 30 = 0. Снова неполное. Только решается оно так, как описано для третьей формулы.

После перенесения 30 в правую часть равенства: 5х 2 = 30. Теперь нужно выполнить деление на 5. Получается: х 2 = 6. Ответами будут числа: х 1 = √6, х 2 = - √6.

Третье уравнение: 15 − 2х − х 2 = 0. Здесь и далее решение квадратных уравнений будет начинаться с их переписывания в стандартный вид: − х 2 − 2х + 15 = 0. Теперь пришло время воспользоваться вторым полезным советом и умножить все на минус единицу. Получается х 2 + 2х - 15 = 0. По четвертой формуле нужно вычислить дискриминант: Д = 2 2 - 4 * (- 15) = 4 + 60 = 64. Он представляет собой положительное число. Из того, что сказано выше, получается, что уравнение имеет два корня. Их нужно вычислить по пятой формуле. По ней получается, что х = (-2 ± √64) / 2 = (-2 ± 8) / 2. Тогда х 1 = 3, х 2 = - 5.

Четвертое уравнение х 2 + 8 + 3х = 0 преобразуется в такое: х 2 + 3х + 8 = 0. Его дискриминант равен такому значению: -23. Поскольку это число отрицательное, то ответом к этому заданию будет следующая запись: «Корней нет».

Пятое уравнение 12х + х 2 + 36 = 0 следует переписать так: х 2 + 12х + 36 = 0. После применения формулы для дискриминанта получается число ноль. Это означает, что у него будет один корень, а именно: х = -12/ (2 * 1) = -6.

Шестое уравнение (х+1) 2 + х + 1 = (х+1)(х+2) требует провести преобразования, которые заключаются в том, что нужно привести подобные слагаемые, до того раскрыв скобки. На месте первой окажется такое выражение: х 2 + 2х + 1. После равенства появится эта запись: х 2 + 3х + 2. После того как подобные слагаемые будут сосчитаны, уравнение примет вид: х 2 - х = 0. Оно превратилось в неполное. Подобное ему уже рассматривалось чуть выше. Корнями этого будут числа 0 и 1.

Известно, что оно является частным вариантом равенства ах 2 +вх+с = о, где а, в и с - вещественные коэффициенты при неизвестном х, и где а ≠ о, а в и с будут нулями - одновременно или порознь. Например, с = о, в ≠ о или наоборот. Мы почти вспомнили определение квадратного уравнения.

Трехчлен второй степени равен нулю. Первый его коэффициент а ≠ о, в и с могут принимать любые значения. Значение переменной х тогда будет когда при подстановке обратит его в верное числовое равенство. Остановимся на вещественных корнях, хотя решениями уравнения могут быть и Полным принято называть уравнение, в котором ни один из коэффициентов не равен о, а ≠ о, в ≠ о, с ≠ о.
Решим пример. 2х 2 -9х-5 = о, находим
D = 81+40 = 121,
D положительный, значит корни имеются, х 1 = (9+√121):4 = 5, а второй х 2 = (9-√121):4 = -о,5. Проверка поможет убедиться, что они верные.

Вот поэтапное решение квадратного уравнения

Через дискриминант можно решить любое уравнение, в левой части которого известный квадратный трехчлен при а ≠ о. В нашем примере. 2х 2 -9х-5 = 0 (ах 2 +вх+с = о)

Рассмотрим, какие бывают неполные уравнения второй степени

  1. ах 2 +вх = o. Свободный член, коэффициент с при х 0 , здесь равен нулю, в ≠ o.
    Как решать неполное квадратное уравнение такого вида? Выносим х за скобки. Вспоминаем, когда произведение двух множителей равно нулю.
    x(ax+b) = o, это может быть, когда х = о или когда ax+b = o.
    Решив 2-е имеем x = -в/а.
    В результате имеем корни х 1 = 0, по вычислениям x 2 = -b/a .
  2. Теперь коэффициент при х равен о, а с не равен (≠) о.
    x 2 +с = о. Перенесем с в правую часть равенства, получим x 2 = -с. Это уравнение только тогда имеет вещественные корни, когда -с положительное число (с ‹ о),
    х 1 тогда равен √(-с), соответственно х 2 ― -√(-с). В противном случае уравнение совсем не имеет корней.
  3. Последний вариант: b = c= o, то есть ах 2 = о. Естественно, такое простенькое уравнение имеет один корень, x = о.

Частные случаи

Как решать неполное квадратное уравнение рассмотрели, а теперь возмем любые виды.

  • В полном квадратном уравнении второй коэффициент при х ― четное число.
    Пусть k = o,5b. Имеем формулы для вычисления дискриминанта и корней.
    D/4 = k 2 - ас, корни вычисляются так х 1,2 = (-k±√(D/4))/а при D › o.
    x = -k/a при D = o.
    Нет корней при D ‹ o.
  • Бывают приведенные квадратные уравнения, когда коэффициент при х в квадрате равен 1, их принято записывать x 2 +рх+ q = o. На них распространяются все вышеприведенные формулы, вычисления же несколько проще.
    Пример, х 2 -4х-9 = 0. Вычисляем D: 2 2 +9, D = 13.
    х 1 = 2+√13, х 2 = 2-√13.
  • Кроме того, к приведенным легко применяется В ней говорится, что сумма корней уравнения равна -p, второму коэффициенту с минусом (имеется ввиду противоположный знак), а произведение этих же корней будет равно q, свободному члену. Проверьте, как легко можно было бы устно определить корни этого уравнения. Для неприведенных (при всех коэффициентах, не равных нулю) эта теорема применима так: сумма x 1 +x 2 равна -в/а, произведение х 1 ·х 2 равно с/a.

Сумма свободного члена с и первого коэффициента а равна коэффициенту b. В этой ситуации уравнение имеет не менее чем один корень (легко доказывается), первый обязательно равен -1, а второй -с/а, если он существует. Как решать неполное квадратное уравнение, можно проверить самостоятельно. Проще простого. Коэффициенты могут находиться в некоторых соотношениях между собой

  • x 2 +x = o, 7х 2 -7 = o.
  • Сумма всех коэффициентов равна о.
    Корни у такого уравнения - 1 и с/а. Пример, 2х 2 -15х+13 = o.
    x 1 = 1, х 2 = 13/2.

Существует ряд других способов решения разных уравнениий второй степени. Вот, например, метод выделения из данного полинома полного квадрата. Графических способов несколько. Когда часто имеешь дело с такими примерами, научишься «щелкать» их, как семечки, ведь все способы приходят на ум автоматически.