В геометрии ключевыми понятиями являются плоскость, точка, прямая и угол. Используя эти термины, можно описать любую геометрическую фигуру. Многогранники обычно описывают через более простые фигуры, которые лежат в одной плоскости, такие как круг, треугольник, квадрат, прямоугольник и т.д. В данной статье мы рассмотрим, что такое параллелепипед, опишем типы параллелепипедов, его свойства, из каких элементов он состоит, а также дадим основные формулы для вычисления площади и объема для каждой разновидности параллелепипеда.

Определение

Параллелепипед в трехмерном пространстве - это призма, все стороны которой являются параллелограммами. Соответственно, она может иметь только три пары параллельных параллелограммов или шесть граней.

Чтобы визуализировать параллелепипед, представьте себе обычный стандартный кирпич. Кирпич - хороший пример прямоугольного параллелепипеда, который может представить себе даже ребенок. Другими примерами могут послужить многоэтажные панельные дома, шкафы, контейнеры для хранения пищевых продуктов соответствующей формы и т.д.

Разновидности фигуры

Существует всего две разновидности параллелепипедов:

  1. Прямоугольные, все боковые грани которых находятся под углом 90 о к основанию и являются прямоугольниками.
  2. Наклонные, боковые грани которых расположены под определенным углом к основанию.

На какие элементы можно разделить эту фигуру?

  • Как и в любой другой геометрической фигуре, в параллелепипеде любые 2 грани с общим ребром зовутся смежными, а те, что его не имеют, являются параллельными (исходя из свойства параллелограмма, имеющего попарно параллельные противоположные стороны).
  • Вершины параллелепипеда, не лежащие на одной грани, зовутся противоположными.
  • Отрезок, соединяющий такие вершины, является диагональю.
  • Длины трех ребер прямоугольного параллелепипеда, соединяющихся в одной вершине, являются его измерениями (а именно, его длиной, шириной и высотой).

Свойства фигуры

  1. Он всегда построен симметрично по отношению к середине диагонали.
  2. Точка пересечения всех диагоналей делит каждую диагональ на два равных отрезка.
  3. Противолежащие грани равные по длине и лежат на параллельных прямых.
  4. Если сложить квадраты всех измерений параллелепипеда, полученное значение будет равно квадрату длины диагонали.

Расчетные формулы

Формулы для каждого частного случая параллелепипеда будут свои.

Для произвольного параллелепипеда верно утверждение, что его объем равен абсолютной величине тройного скалярного произведения векторов трех сторон, исходящих из одной вершины. Однако формулы для вычисления объема произвольного параллелепипеда не существует.

Для прямоугольного параллелепипеда действуют следующие формулы:

  • V=a*b*c;
  • Sб=2*c*(a+b);
  • Sп=2*(a*b+b*c+a*c).
  • V - объем фигуры;
  • Sб - площадь боковой поверхности;
  • Sп - площадь полной поверхности;
  • a - длина;
  • b - ширина;
  • c - высота.

Еще одним частным случаем параллелепипеда, в котором все стороны - квадраты, является куб. Если любую из сторон квадрата обозначить буквой a, то для площади поверхности и объема данной фигуры можно будет использовать следующие формулы:

  • S=6*a*2;
  • V=3*а.
  • S - площадь фигуры,
  • V - объем фигуры,
  • a - длина грани фигуры.

Последняя рассматриваемая нами разновидность параллелепипеда - прямой параллелепипед. В чем разница между прямым параллелепипедом и прямоугольным параллелепипедом, спросите вы. Дело в том, что основанием прямоугольного параллелепипеда может быть любой параллелограмм, а основанием прямого - только прямоугольник. Если обозначить периметр основания, равный сумме длин всех сторон, как Po, а высоту обозначить буквой h, мы имеем право воспользоваться следующими формулами для вычисления объема и площадей полной и боковой поверхностей.

Параллелепипед – это геометрическая фигура, все 6 граней которой представляют собой параллелограммы.

В зависимости от вида этих параллелограммов различают следующие виды параллелепипеда:

  • прямой;
  • наклонный;
  • прямоугольный.

Прямым параллелепипедом называют четырехугольную призму, ребра которой составляют с плоскостью основания угол 90 °.

Прямоугольным параллелепипедом называют четырехугольную призму, все грани которой являются прямоугольниками. Куб есть разновидность четырехугольной призмы, у которой все грани и ребра равны между собой.

Особенности фигуры предопределяют ее свойства. К ним относят 4 следующих утверждений:


Запомнить все приведенные свойства просто, они легки для понимания и выводятся логически исходя из вида и особенностей геометрического тела. Однако, незамысловатые утверждения могут быть невероятно полезны при решении типовых заданий ЕГЭ и позволят сэкономить время необходимое для прохождения теста.

Формулы параллелепипеда

Для поиска ответов на поставленную задачу недостаточно знать только свойства фигуры. Также могут понадобиться и некоторые формулы для нахождения площади и объема геометрического тела.

Площадь оснований находится также как и соответствующий показатель параллелограмма или прямоугольника. Выбирать основание параллелограмма можно самостоятельно. Как правило, при решении задач проще работать с призмой, в основании которой лежит прямоугольник.

Формула нахождения боковой поверхности параллелепипеда, также может понадобиться в тестовых заданиях.

Примеры решения типовых заданий ЕГЭ

Задание 1.

Дано : прямоугольный параллелепипед с измерениями 3, 4 и 12 см.
Необходимо найти длину одной из главных диагоналей фигуры.
Решение : Любое решение геометрической задачи должно начинаться с построения правильного и четкого чертежа, на котором будет обозначено «дано» и искомая величина. На рисунке ниже приведен пример правильного оформления условий задания.

Рассмотрев сделанный рисунок и вспомнив все свойства геометрического тела, приходим к единственно верному способу решения. Применив 4 свойство параллелепипеда, получим следующее выражение:

После несложных вычислений получим выражение b2=169, следовательно, b=13. Ответ задания найден, на его поиск и чертеж необходимо потратить не более 5 минут.

Учащимся старших классов будет полезно научиться решать задачи ЕГЭ на нахождение объема и других неизвестных параметров прямоугольного параллелепипеда. Опыт предыдущих лет подтверждает тот факт, что подобные задания являются для многих выпускников достаточно сложными.

При этом понимать, как найти объем или площадь прямоугольного параллелепипеда, должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена по математике.

Основные нюансы, которые стоит запомнить

  • Параллелограммы, из которых состоит параллелепипед, являются его гранями, их стороны - ребрами. Вершины этих фигур считаются вершинами самого многогранника.
  • Все диагонали прямоугольного параллелепипеда равны. Так как это прямой многогранник, то боковые грани представляют собой прямоугольники.
  • Так как параллелепипед - это призма, в основании которой находится параллелограмм, эта фигура обладает всеми свойствами призмы.
  • Боковые ребра прямоугольного параллелепипеда перпендикулярны основанию. Следовательно, они являются его высотами.

Готовьтесь к ЕГЭ вместе со «Школково»!

Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь вы найдете весь необходимый материал, который потребуется на этапе подготовки к единому государственному экзамену.

Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня. Вы можете потренироваться, например, с .

Нужную базовую информацию вы найдете в разделе «Теоретическая справка». Вы также можете сразу приступить к решению задач по теме «Прямоугольный параллелепипед» в онлайн-режиме. В разделе «Каталог» представлена большая подборка упражнений разной степени сложности. База заданий регулярно пополняется.

Проверьте, легко ли вы сможете найти объем прямоугольного параллелепипеда, прямо сейчас. Разберите любое задание. Если упражнение дается вам легко, переходите к более сложным задачам. А если возникли определенные сложности, рекомендуем вам планировать свой день таким образом, чтобы ваше расписание включало занятия с дистанционным порталом «Школково».

В переводе с греческого языка параллелограмм означает плоскость. Параллелепипед – это призма, в основании которой лежит параллелограмм. Существуют пять типов параллелограмма: наклонный, прямой и прямоугольный параллелепипед. Куб и ромбоэдр также относятся к параллелепипеду и являются его разновидностью.

Перед тем как перейти к основным понятиям, дадим некоторые определения:

  • Диагональю параллелепипеда является отрезок, который объединяет вершины параллелепипеда, находящиеся напротив друг друга.
  • Если две грани имеют общее ребро, то можно назвать их смежными ребрами. Если же общего ребра нет, то грани именуются противоположными.
  • Две вершины, не лежащие на одной грани, именуются противоположными.

Какие свойства имеет параллелепипед?

  1. Лежащие на противоположных сторонах грани параллелепипеда параллельны друг другу и равны между собой.
  2. Если провести диагонали из одной вершины в другую, то точка пересечения этих диагоналей разделит их пополам.
  3. Стороны параллелепипеда лежащие под одним и тем же углом к основанию будут равны. Другими словами, углы сонаправленных сторон будут равны между собой.

Какие виды параллелепипеда бывают?

Теперь разберёмся в том, какие параллелепипеды бывают. Как уже упомянуто выше, существует несколько типов этой фигуры: прямой, прямоугольный, наклонный параллелепипед, а также куб и ромбоэдр. Чем же они отличаются между собой? Все дело в образующих их плоскостях и углах, которые они образуют.

Разберемся более подробно с каждым из перечисленных видов параллелепипеда.

  • Как уже понятно из названия, наклонный параллелепипед имеет наклонные грани, а именно такие грани, которые находятся по отношению к основанию не под углом 90 градусов.
  • А вот у прямого параллелепипеда угол между основанием и гранью как раз составляет девяносто градусов. Именно по этой причине этот вид параллелепипеда имеет такое название.
  • Если же все грани параллелепипеда – это одинаковые квадраты, то можно считать эту фигуру кубом.
  • Прямоугольный параллелепипед получил такое название из-за образующих его плоскостей. Если все они являются прямоугольниками (и основание в том числе), то это прямоугольный параллелепипед. Такой вид параллелепипеда встречается не так часто. В переводе с греческого ромбоэдр означает грань или основание. Так называют трехмерную фигуру, у которой гранями являются ромбы.



Основные формулы для параллелепипеда

Объём параллелепипеда равен произведению площади основания на его высоту, перпендикулярную основанию.

Площадь боковой поверхности будет равна произведению периметра основания на высоту.
Зная основные определения и формулы можно вычислить площадь основания и объём. Основание можно выбрать по своему усмотрению. Однако, как правило, в качестве основания используется прямоугольник.

Прямоугольный параллелепипед

Прямоугольный параллелепипед – это такой прямой параллелепипед, у которого все грани являются прямоугольниками.

Достаточно посмотреть вокруг себя, и мы увидим, что окружающие нас предметы имеют форму похожую на параллелепипед. Они могут отличать по цвету, иметь массу дополнительных деталей, но если эти тонкости отбросить, то можно сказать, что например шкаф, коробка и т.д., имеют приблизительно одинаковую форму.

С понятием прямоугольного параллелепипеда мы сталкиваемся практически каждый день! Оглянитесь вокруг и скажите, где вы видите прямоугольные параллелепипеды? Посмотрите на книгу, ведь она как раз такой формы! Эту же форму имеют кирпич, спичечный коробок, деревянный брусок, и даже прямо сейчас вы находитесь внутри прямоугольного параллелепипеда, ведь классная комната – это ярчайшая интерпретация этой геометрической фигуры.

Задание: А какие примеры параллелепипеда вы можете назвать?

Давайте более тщательно рассмотрим прямоугольный параллелепипед. И что мы видим?

Во-первых, мы видим, что эта фигура образована из шести прямоугольников, которые являются гранями прямоугольного параллелепипеда;

Во-вторых, прямоугольный параллелепипед имеет восемь вершин и двенадцать ребер. Ребра прямоугольного параллелепипеда – это стороны его граней, а вершины параллелепипеда являются вершинами граней.

Задание:

1. Какое название носит каждая из граней прямоугольного параллелепипеда? 2. Благодаря каким параметрам можно измерить параллелограмм? 3. Дайте определение противоположных граней.

Виды параллелепипедов

Но параллелепипеды бывают не только прямоугольными, но также они могут¬¬ быть прямыми и наклонными, а прямые как раз таки и делятся на прямоугольные, непрямоугольные и кубы.

Задание: Посмотрите на картинку и скажите, какие параллелепипеды на ней изображены. Чем прямоугольный параллелепипед отличается от куба?


Свойства прямоугольного параллелепипеда

Прямоугольный параллелепипед обладаем рядом важнейших свойств:

Во-первых, квадрат диагонали этой геометрической фигуры равняется сумме квадратов трех его основных параметров: высоты, ширины и длины.

Во-вторых, все его четыре диагонали абсолютно идентичны.

В-третьих, если все три параметра параллелепипеда одинаковы, то есть длина, ширина и высота равны, то такой параллелепипед называют кубом, и все его грани будут равны одному и тому же квадрату.



Задание

1. Имеет ли прямоугольный параллелепипед равные грани? Если таковы имеются, то покажите их на рисунке. 2. Из каких геометрических форм состоят грани прямоугольного параллелепипеда? 3. Какое расположение имеют равные грани по отношению друг к другу? 4. Назовите количество пар равных граней данной фигуры. 5. Найдите в прямоугольном параллелепипеде ребра, которые обозначают его длину, ширину, высоту. Сколько вы их насчитали?

Задача

Чтобы красиво оформить подарок на день Рождения маме, Таня взяла коробку в форме прямоугольного параллелепипеда. Размер данной коробки 25см*35см*45см. Чтобы сделать эту упаковку красивой, Таня решила, оклеит ее красивой бумагой, стоимость которой 3 гривны за 1 дм2. Сколько нужно потратить денег на упаковочную бумагу?

А вы знаете, что известный иллюзионист Девид Блейн в рамках эксперимента провел 44 дня в стеклянном параллелепипеде, подвешенном над Темзой. Эти 44 дня он не ел, а только пил воду. В свое добровольное узилище Девид взял только письменные принадлежности, подушку и матрас и носовые платки.