Клод Э́лвуд Ше́ннон (англ. Claude Elwood Shannon; 30 апреля 1916, Петоцки, Мичиган - 24 февраля 2001, Медфорд, Массачусетс) - американский математик и инженер, его работы являются синтезом математических идей с конкретным анализом чрезвычайно сложных проблем их технической реализации. Он является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи. Шеннон внес огромный вклад в теорию вероятностных схем, теорию автоматов и теорию систем управления - области наук, входящие в понятие кибернетика.

Биография Клод Шеннон родился 30 апреля 1916 года в городе Петоцки, штат Мичиган, США. Первые шестнадцать лет своей жизни Клод провел в Гэйлорде, Мичиган, где он посещал общественную школу, а затем выпустился из высшей школы Гэйлорда в 1932 году. В юношестве он работал курьером службы Western Union. Отец его был адвокатом и в течение некоторого времени судьей. Его мать была преподавателем иностранных языков и, впоследствии, стала директором Гайлордской средней школы. Молодой Клод сильно любил конструировать автоматические устройства. Он собирал модели самолетов и радиотехнические цепи, также создал радиоуправляемую лодку и телеграфную систему между домом друга и своим домом. Временами ему приходилось исправлять радиостанции для местного универмага. Томас Эдисон был его дальним родственником.

В 1932 году Шеннон был зачислен в Мичиганский университет, где выбрал курс, посещая который начинающий ученый познакомился с работами Джорджа Буля. В 1936 г. Клод оканчивает Мичиганский университет, получив степень бакалавра по двум специальностям математика и электротехника, и устраивается в Массачусетский технологический институт, где он работал ассистентом-исследователем на дифференциальном анализаторе Ванневара Буша - аналоговом компьютере. Изучая сложные, узкоспециальные электросхемы дифференциального анализатора, Шэннон увидел, что концепции Буля могут получить достойное применение. Статья, написанная с его магистерской работы 1937 года «Символический анализ реле и коммутаторов», была опубликована в 1938 году в издании Американского института инженеров-электриков (AIEE). Она также стала причиной вручения Шэннону премии Американского института инженерии имени Альфреда Нобеля в 1940 году. Цифровые цепи - это основа современной вычислительной техники, таким образом результаты его работ являются одними из наиболее важных научных результатов ХХ столетия. Говард Гарднер из Гарвардского университета отозвался о работе Шэннона, как о «возможно, самой важной, а также самой известной магистерской работой столетия».

По совету Буша Шеннон решил работать над докторской диссертацией по математике в MIT. Идея его будущей работы родилась у него летом 1939 года, когда он работал в Cold Spring Habor в Нью-Йорке. Буш был назначен президентом Carnegie Institution в округе Вашингтон и предложил Шеннону принять участие в работе, которую делала Барбара Беркс по генетике. Именно генетика, по мнению Буша, могла послужить предметом приложения усилий Шеннона. Докторская диссертация Шеннона, получившая название «Алгебра для теоретической генетики», была завершена весной 1940 года. Шеннон получает Докторскую степень по математике и степень магистра по электротехнике.

В период с 1941 по 1956 гг. Шеннон преподает в Мичиганском университете и работает в компании Белл (Bell Labs). В лаборатории Белл Шеннон, исследуя переключающие цепи, обнаруживает новый метод их организации, который позволяет уменьшить количество контактов реле, необходимых для реализации сложных логических функций. Он опубликовал доклад, названный «Организация двухполюсных переключающих цепей». Шеннон занимался проблемами создания схем переключения, развил метод, впервые упоминавшийся фон Нейманом и позволяющий создавать схемы, которые были надежнее, чем реле, из которых они были составлены. В конце 1940 года Шеннон получил Национальную научно-исследовательскую премию. Весной 1941 года он вернулся в компанию Белл. С началом Второй мировой войны Т.Фрай возглавил работу над программой для систем управления огнем для противовоздушной обороны. Шеннон присоединился к группе Фрая и работал над устройствами, засекавшими самолеты противника и нацеливавшими зенитные установки, также он разрабатывал криптографические системы, в том числе и правительственную связь, которая обеспечивала переговоры Черчилля и Рузвельта через океан. Как говорил сам Шеннон, работа в области криптографии подтолкнула его к созданию теории информации.

С 1950 по 1956 Шеннон занимался созданием логических машин, таким образом, продолжая начинания фон Неймана и Тьюринга. Он создал машину, которая могла играть в шахматы, задолго до создания Deep Blue. В 1952 Шеннон создал обучаемую машину поиска выхода из лабиринта.

Шеннон уходит на пенсию в возрасте пятидесяти лет в 1966 году, но он продолжает консультировать компанию Белл (Bell Labs). В 1985 году Клод Шеннон со своей супругой Бетти посещает Международный симпозиум по теории информации в Брайтоне. Шеннон довольно долго не посещал международные конференции, и сначала его даже не узнали. На банкете Клод Шеннон дал короткую речь, пожонглировал всего тремя мячиками, а затем раздал сотни и сотни автографов изумленным своим присутствием ученым и инженерам, отстоявшим длиннейшую очередь, испытывая трепетные чувства по отношению к великому ученому, сравнивая его с сэром Исааком Ньютоном.

Клод Шеннон ушел из жизни 24 февраля 2001 года. Работа Шеннона «Теория связи в секретных системах» (1945) с грифом секретно, которую рассекретили и опубликовали только лишь в 1949 году, послужила началом обширных исследований в теории кодирования и передачи информации, и, по всеобщему мнению, придала криптографии статус науки. Именно Клод Шеннон впервые начал изучать криптографию, применяя научный подход. В этой статье, Клод определил основополагающие понятия теории криптографии, без которых криптография уже немыслима. Важной заслугой Шеннона является исследования абсолютно секретных систем, и доказательство их существования, а также существование криптостойких шифров, и требуемые для этого условия. Шеннон также сформулировал основные требования, предъявляемые к надежным шифрам. Он ввел ставшие уже привычными понятия рассеивания и перемешивания, и методы создания криптостойких систем шифрования на основе простых операций. Данная статья является отправным пунктом изучения науки криптографии.

Математическая теория связи

Статья «Математическая теория связи», была опубликована в 1948 году и сделала Клода Шеннона всемирно известным. В ней Шенноном изложил свои идеи, ставшие впоследствии основой современных теорий и техник обработки передачи и хранения информации. Результаты его работ в области передачи информации по каналам связи запустили по всему миру огромное число исследований. Шеннон обобщил идеи Хартли и ввел понятие информации, содержащейся в передаваемых сообщениях. В качестве меры информации передаваемого сообщения М, Хартли предложил использовать логарифмическую функцию. Шеннон первым начал рассматривать передаваемые сообщения и шумы в каналах связи с точки зрения статистики, рассматривая как конечные множества сообщений, так и непрерывные множества сообщений. Развитая Шенноном теория информации помогла решить главные проблемы, связанные с передачей сообщений, а именно: устранить избыточность передаваемых сообщений, произвести кодирование и передачу сообщений по каналам связи с шумами. Решение проблемы избыточности подлежащего передаче сообщения позволяет максимально эффективно использовать канал связи. К примеру, современные повсеместно используемые методы снижения избыточности в системах телевизионного вещания на сегодняшний день позволяют передавать до шести цифровых программ коммерческого телевидения, в полосе частот, которую занимает обычный сигнал аналогового телевидения. Решение проблемы передачи сообщения по каналам связи с шумами при заданном соотношении мощности полезного сигнала к мощности сигнала помехи в месте приема, позволяет передавать по каналу связи сообщения со сколь угодно малой вероятностью ошибочной передачи сообщения. Также, это отношение определяет пропускную способность канала. Это обеспечивается применением кодов, устойчивых к помехам, при этом скорость передачи сообщений по данному каналу должна быть ниже его пропускной способности. В своих работах Шеннон доказал принципиальную возможность решения обозначенных проблем, это явилось в конце 40-х годов настоящей сенсацией в научных кругах. Данная работа, как и работы, в которых исследовалась потенциальная помехоустойчивость, дали начало огромному числу исследований, продолжающихся и по сей день, уже более полувека. Ученые из Советского Союза и США (СССР - Пинскер, Хинчин, Добрушин, Колмогоров; США- Галлахер, Вольфовиц, Фейнштейн) дали строгую трактовку изложенной Шенноном теории. На сегодняшний день все системы цифровой связи проектируются на основе фундаментальных принципов и законов передачи информации, разработанных Шенноном. В соответствии с теорией информации вначале из сообщения устраняется избыточность, затем информация кодируется при помощи кодов, устойчивых к помехам, и лишь потом сообщение передается по каналу потребителю. Значительно была сокращена избыточность телевизионных, речевых и факсимильных сообщений, именно благодаря теории информации.

Большое количество исследований было посвящено созданию кодов, устойчивых к помехам, и простых методов декодирования сообщений. Исследования, проведенные за последние пятьдесят лет, легли в основу созданной Рекомендации МСЭ по применению помехоустойчивого кодирования и методов кодирования источников информации в современных цифровых системах.

Теорема о пропускной способности канала.

Любой канал с шумом характеризуется максимальной скоростью передачи информации, этот предел назван в честь Шеннона. При передаче информации со скоростями, превышающими этот предел, происходят неизбежные искажения данных, но снизу к этому пределу можно приближаться с необходимой точностью, обеспечивая сколь угодно малую вероятность ошибки передачи информации в зашумленном канале.

В 2016 году исполнилось сто лет со дня рождения Клода Шеннона. “И чем он знаменит?”, - наверняка спросят те, кто не имеет никакого отношения к кибернетике и теории автоматического управления. А все посвященные, конечно же, поймут, что речь идет об авторе ряда теорем, которые преподаются на технических факультетах в университетах и которые так и называются - теоремы Шеннона. Далее в статье мы расскажем вам о жизни и деятельности этого выдающегося ученого-кибернетика и инженера. История его жизни занимательна и порой немного даже фантастическая.

Клод Шеннон: биография и чем он знаменит?

Родился будущий ученый 30 апреля 1916 года в США, городе Петоцки, который расположен на озере Мичиган. Его отец был по профессии юристом, а мать - преподавательницей иностранных языков. Однако и он, и его старшая сестра с детства увлекались математикой. Кэтрин Шеннон поступила в математический факультет, а затем стала профессором и преподавала в университете. Сам же Клод вначале пошел по стопам отца и после окончания университета работал в адвокатской конторе. Наряду с этим он на любительском уровне занимался радиотехникой. Кстати, дальним родственником будущего известного инженера и изобретателя был сам Томас Эдисон. Конечно же, он не смог достичь уровня знаменитого родича, ведь у того в арсенале было более 1900 патентов.

Образование

Клод учился в общеобразовательной средней школе, одновременно он получал дополнительное образование у себя на дому. Несмотря на то что отец хотел, чтобы сын, как и он, пошел в юристы, Шеннон-старший также желал развивать у сына логику и смекалку и постоянно покупал ему конструкторы, различные радиолюбительские наборы и т.д. Этим он желал содействовать так называемому техническому творчеству своего сына. Сестра Клода, Кэтрин, в свою очередь вовлекала его в математику, все чаще задавая ему разные интересные задачки. В итоге будущий юрист просто обожал как технику, так и математику. И тем не менее, он окончил юридический факультет, а спустя некоторое время уже учился на бакалавра в Мичиганском университете сразу по двум специальностям - электротехника и математика - тем, чем знаменит Клод Шеннон. И он, несмотря на такую нагрузку, смог окончить оба факультета с отличием.

Научная деятельность

После того, как К. Шеннон окончил университет, он устроился в качестве ассистента-исследователя в электротехническую лабораторию Массачусетского института. Здесь он работал над методами модернизации дифференциального анализатора В. Буша. Позже ученый стал его научным руководителем и наставником. Спустя год Шеннон решает поступить в магистратуру. В период учебы он написал статью по теме «Символьный анализ переключательных схем и реле». Она была опубликована в AIEE - в издании Американского института электриков-инженеров. Данная его работа сразу же привлекла внимание научного сообщества электротехников, а в 1939 г. Американское общество гражданских инженеров присудило ему Премию им. притом что он еще не успел защитить степень магистра. После этого о нем все больше стали говорить в научных кругах, теперь уже многие знали, кто такой Клод Шеннон и чем он знаменит. Такое отношение коллег взбодрило ученого, и он по настоянию своего учителя и наставника Буша решил не дожидаться защиты магистерской диссертации и немедля занялся докторской, которая была посвящена проблемам генной комбинаторики.

Научный вклад

К сожалению, докторская Шеннона не получила поддержки со стороны генетиков и не была нигде опубликована, зато магистерская диссертация была признана прорывом в коммутационной и цифровой технике. В последней главе своей диссертационной работы Шеннон привел множество разных примеров, в том числе, как можно успешно применить разработанный им метод логического исчисления к синтезу и анализу конкретных переключательных и релейных схем: замка с электрическим секретом, селекторных схем, двоичных сумматоров и т.д. Все это наглядно демонстрирует научный прорыв, а также гигантскую практическую пользу от логического исчисления, разработанного молодым американским ученым. Именно благодаря ему зародилась цифровая логика. Это и есть то, чем знаменит он - Клод Шеннон. Краткое содержание этого курса ученый написал специально для студентов вузов.

Деятельность

В 1941 году К. Шеннон начинает работать в научно-исследовательском центре Bell Laboratories, в отделении математики. Ему тогда было всего лишь 25 лет. Среди его коллег были такие ученые, как Гарри Найквист, Хенрик Боде, Ральф Хартли, Джон Тьюки и др. Это была прекрасная команда, каждый из членов которой имел прекрасные результаты в разработке информационной теории. И тем не менее именно Шеннон впоследствии развил их до уровня большой науки. С началом Второй мировой войны правительство США стало широко финансировать исследовательские проекты, которые осуществляла Bell Laboratories, в которой сосредоточились лучшие умы своего времени. Правительство было в первую очередь заинтересовано в развитии метода математической криптографии, именно этим занимался и он, Клод Шеннон. Чем знаменит этот труд? Он позволял анализировать зашифрованные тексты противника информационно-теоретическими методами.

Новые концепции

В 1945 году, уже к концу войны, ученый смог завершить свой эксклюзивный секретный отчет по теме «Математическая теория криптографии» и уже был готов выступить перед американской научной общественностью и представить свои новые базовые концепции по теории информации. В 1948-м был опубликован эпохальный труд «Математическая теория связи» - то, чем знаменит Клод Шеннон. И он представил в ней все свои разработки, которые были сделаны в период с 1945 по 1948 г. Его математическая теория связи предполагала 3-компонентную структуру, которая состоит из источника информации, «транспортной среды» и приемника информации. “Транспортная среда” - это канал связи, который характеризуется способностью искажать информацию при передаче. В связи с этим были выявлены проблемы, на которые Шеннон должен был дать исчерпывающие ответы, например, как проводить количественную оценку информации, как ее эффективно “упаковывать”, как оценивать допустимую скорость при выводе информации из источника, а затем направлять ее в канал связи с определенной, фиксированной пропускной способностью. И, наконец, ученому нужно было решить задачу относительно устранения помех в канале связи. Он, конечно же, смог справиться с поставленными перед ним задачами, причем не только теоретически (в данном вопросе ему помогли коллеги по цеху), а путем созданных им же теорем.

Теория К. Шеннона

Его основополагающая работа была изложена в виде 23 теорем. Правда, не все из них равноценны - некоторые носят вспомогательный характер или же посвящены тем или иным частным случаям теории информации или передачи ее по дискретным и непрерывным связным каналам, но 6 теорем имеют особую ценность и, по сути, являются концептуальными. Это и есть каркас “здания” - теории Клода Шеннона, чем он и знаменит. Кратко об этом изложено в специализированной литературе. Следует также сказать, что на начальном этапе у многих математиков во всем мире эта теория вызвала сомнения. Однако со временем вся научная общественность убедилась в том, что постулаты, приведенные молодым корректны.

Клод Элвуд Шеннон – американский математик, инженер-электронщик и специалист в области криптографии, обладатель множества наград, известный как создатель теории информации.


Именно наш герой предложил когда-то использовать всем известное сегодня понятие "бит" в качестве эквивалента наименьшей единицы информации.

Шеннон прославился как человек, давший начало теории информации в эпохальной статье, опубликованной им в 1948 году. Помимо этого, ему приписывают также идею создания цифрового компьютера и цифровых технологий вообще, причем еще в 1937 году, когда Шеннон был 21-летним студентом Массачусетского Технологического Института, работавшим над получением магистерской степени – он написал тогда диссертацию, в которой продемонстрировал, что применения булевой алгебры в сфере электроники могли бы построить и решить любые логические, числовые

связи. Написанная на основе диссертации статья принесла ему премию Американского института инженеров-электриков в 1940.

Во время Второй мировой войны Шеннон сделал значительный вклад в сфере криптоанализа, работая над обороной страны, включая его фундаментальный проект по взламыванию кодов и обеспечению безопасных телекоммуникаций.

Шеннон родился 30 апреля 1916 года в Петоцки, маленьком городке в Мичигане (Petoskey, Michigan), и вырос в соседнем Гэйлорде (Gaylord, Michigan). Его отец был из тех людей, что сделал себя сам. Потомок первых поселенцев Нью-Джерси (New Jersey), он был бизнесменом и судьей. Мать Клода преподавала английский и некоторое время возглавляла ср

еднюю школу Гэйлорда. Большую часть первых 16 лет своей жизни Шеннон провел как раз в Гэйлорде, в 1932 году окончил местную школу. С детства он увлекался конструированием механических и электрических моделей. Его любимыми предметами были естественные науки и математика, а дома, в свободное время, он строил модели самолетов, радиоуправляемую модель лодки и даже беспроводной телеграф, соединявший его с дом с домом друга, жившего в полумиле от Шеннонов.

Подростком Клод подрабатывал в качестве курьера компании "Western Union". Героем его детства был Томас Эдисон (Thomas Edison), который, как позже оказалось, приходился ему еще и дальним родственником. Оба они были потомк

ами Джона Огдена (John Ogden), колониального лидера 17-го века и по совместительству предка множества выдающихся людей. Чем не интересовался Шеннон, так это политикой. Кроме того, он был атеистом.

В 1932 году Клод стал студентом Мичиганского Университета, где один из курсов познакомил его с тонкостями алгебры Буля. Окончив университет в 1936 с двумя степенями бакалавра, по математике и электротехнике, он продолжил занятия в МТИ, где работал на одном из первых аналоговых компьютеров, дифференциальном анализаторе Ванневара Буша (Vannevar Bush) – именно тогда он понял, что концепции булевой алгебры могут применяться с большей полезностью. Диссертация Шеннона на степень м

агистра называлась "Символьный анализ реле и коммутаторов", и специалисты считают ее одной из самых важных диссертаций на степень магистра в 20-м столетии.

Весной 1940 Шеннон защитил в МТИ и докторскую степень по математике с диссертацией "Алгебра для теоретической генетики", и в следующие 19 лет, с 1941 по 1956, преподавал в Мичиганском Университете и работал в компании "Bell Labs", где его интерес вызвали противопожарные системы и криптография (именно этим он занимался во время Второй мировой).

В "Bell Labs" Шеннон познакомился со своей будущей женой Бетти (Betty Shannon), которая занималась числовым анализом. Они поженились в 1949. В 1956 Шеннон вернулся в МТИ,

где ему предложили кафедру, и проработал там 22 года.

Среди его хобби были жонглирование, катание на моноцикле и шахматы. Он изобрел огромное количество разных забавных устройств, включая летающие диски с ракетным двигателем, "кузнечик" с моторчиком и трубу, извергающую пламя, для научной выставки. Он так же считается, вместе с Эдвином Торпом (Edward O. Thorp), изобретателем первого переносного компьютера – они использовали это устройство для повышения шансов на выигрыш при игре в рулетку, и их набеги на Лас-Вегас (Las Vegas) были очень успешными.

Свои последние годы Шеннон провел в доме престарелых, страдая болезнью Альцгеймера. Его не стало 24 февраля 2001 года.

Клод Эльвуд Шеннон родился в Петоски, штат Мичиган (Petoskey, Michigan), 30 апреля 1916 года. Его отец, потомок первых поселенцев Нью-Джерси, был бизнесменом, а мать, дочь эмигрантов из Германии, учителем и в течение ряда лет - директором школы в Гэйлорде (Gaylord).

Первые 16 лет своей жизни Клод провел в Гэйлорде, окончив местную школу в 1932 году и показав при этом склонность к механике. Его любимыми предметами в школе были физика и математика, дома же он занимался конструированием моделей самолетов, радиоуправляемых корабликов и телеграфа для связи с жившим в полумиле другом. Телеграф этот использовал колючую проволоку, огораживающую местное пастбище. Необходимые для этих занятий деньги Клод зарабатывал, разнося газеты и телеграммы, а также ремонтируя радиоаппаратуру. Героем его детства был Эдисон, оказавшийся, как он потом узнал, дальним родственником - они оба были потомками Джона Огдена, одного из руководителей колонизации. Кроме того, список героев Клода включал множество ученых, таких как Ньютон, Дарвин, Эйнштейн и Фон Нейман.

В 1932 он поступил в университет Мичигана, следуя по стопам своей сестры Катерины, только что получившей там степень магистра по математике. В 1936 он стал бакалавром по электротехнике и математике; этот параллельный интерес к математике и инженерным специальностям он сохранил и в дальнейшем.

В 1936 он получил должность лаборанта на отделении электротехники в Массачусетском Технологическом Институте (Massachusetts Institute of Technology, знаменитый M.I.T.). Эта должность давала ему возможность продолжать обучение, работая лишь часть времени. Кроме того, эта работа идеально соответствовала его способностям и интересам - он работал на дифференциальном вычислителе Буша, наиболее совершенной вычислительной машине того времени, способной аналоговым образом решать дифференциальные уравнения вплоть до шестого порядка. Работа его заключалась в переводе уравнений в "механические термины", подготовка и запуск машины для различных начальных условий. Иногда этот процесс требовал совместной работы до пяти человек.

Интересной была также и электрическая цепь, управлявшая этим вычислителем, которая включала в себя более сотни реле. Работая с ней, Шеннон заинтересовался теорией построения таких цепей. Он изучал символическую логику и булеву алгебру на математических курсах в Мичигане и понимал, что это именно то, что требуется для описания таких бинарных систем. Он развил эти идеи в 1937 году, будучи в Нью-Йорке, в Лабораториях Белла (Bell Telephone Laboratories), и затем, вернувшись, в своей дипломной работе в Массачусетсе. Эта работа, первая из опубликованных им, привлекла значительное внимание и была выдвинута в 1940 году на премию имени Альфреда Нобеля, присуждаемую объединением инженерных обществ США.

Летом 1938 года он занимался исследовательской работой в Массачусетсе, и осенью был переведен с отделения электротехники на отделение математики, где начал работу над докторской диссертацией. Его начальник, Ванневэр Буш, стал в это время президентом Института Карнеги в Вашингтоне; одно из подразделений этого института, находящееся в Колд Спринг Харбор (Cold Spring Harbor, N.Y.), занималось тогда генетикой, и он посоветовал Шеннону заняться с точки зрения алгебры проблемой хранения генетической информации. Шеннон провел там лето 1939 года, работая с генетиком Барбарой Баркс (Barbara Burks) над диссертацией, которую он назвал "Алгебра в теоретической генетике" (руководителем диссертации со стороны M.I.T был профессор Фрэнк Л. Хичкок (Frank L. Hitchcock), занимавшийся алгеброй).

Примерно в это же время Шеннон занимался разработкой идей в области вычислительных машин и систем связи. В письме от 16 февраля 1939 г. он писал Бушу о зависимости между временем, пропускной способностью, шумом и искажениями в системах связи, а также о разработке вычислительных систем для выполнения символических математических операций.

Весной 1940 года он наконец защитил диссертации и получил звания магистра электротехники и доктора математики; летом он занимался дальнейшими исследованиями в области коммутирующих электрических цепей в Лабораториях Белла, разработав новый метод их проектирования, позволявший существенно сократить число контактов в них. Результаты этой работы были опубликованы в статье "Разработка двухконечных коммутирующих цепей ("The Synthesis of Two-Terminal Switching Circuits").

Академический год 1940-1941 гг. он провел в Принстоне под руководством Германа Вейла (Hermann Weyl), начав серьезно работать над своими идеями относительно теории информации и эффективных систем связи.

Торнтон С. Фрай (Thornton C. Fry), глава отделения математики в Лабораториях Белла, был в это время членом комитета по разработке систем управления зенитным огнем - страна вооружалась в связи с европейской войной; он предложил Шеннону также поработать на оборону. Вернувшись в Лаборатории, Шеннон присоединился к группе, разрабатывающей устройства для обнаружения самолетов и ракет противника и наведения зенитных орудий; задача эта была актуальной в связи с созданием в Германии ракет Фау-1 и Фау-2. Без этих систем наведения потери Англии в войне были бы существенно большими.

Шеннон провел 15 лет в Лабораториях Белла в достаточно хорошем окружении - в это время там работали многие первоклассные математики, такие как Джон Пирс (John Pierce), известный своей работой в области спутниковой связи, Гарри Найквист (Harry Nyquist), много сделавший в теории обнаружения сигналов, Хендрик Бод (Hendrik Bode), занимавшийся обратной связью, создатели транзистора Браттин, Бардин и Шокли (Brattain, Bardeen и Shockley), Джордж Стибиц (George Stibitz), создавший первый (1938 год) релейный компьютер; Барни Оливер (Barney Oliver), выдающийся инженер, и другие.

Все эти годы Шеннон работал в различных областях, главным образом - в теории информации, началом которой послужила его статья "Математическая теория связи" ("Mathematical Theory of Communication"). В этой статье было показано, что любой источник информации - телеграфный ключ, говорящий человек, телекамера и так далее - имеет "темп производства информации", который можно измерить в битах в секунду. Каналы связи имеют "пропускную способность", измеряемую в тех же единицах; информация может быть передана по каналу тогда и только тогда, когда пропускная способность не меньше темпа поступления информации.

Эта статья по теории связи обычно считается наиболее весомым вкладом Шеннона в науку.

Занятия Шеннона проблемами информации и шума имели множество различных приложений. К примеру, в статье "Теория защищенной связи" ("Communication Theory of Secrecy Systems") он связал криптографию с проблемой передачи информации по зашумленному каналу (роль шума в этом случае играет ключ криптосистемы). Эта работа привела в дальнейшем к тому, что Шеннон был назначен консультантом правительства США по вопросам криптографии.

Другой задачей, которой он занимался совместно с Е.Ф. Муром (E.F. Moore), было повышение надежности релейных цепей путем ведения избыточного числа элементов (каждый из которых ненадежен). Эта задача, опять же, сводится к передаче информации по зашумленному каналу.

Кроме того, Шеннон применил эти идеи также и к задаче оптимальной стратегии инвестиций, в которой "зашумленным сигналом" является рынок ценных бумаг и соответствующие ему временные ряды, и задачей является максимизация выгоды.

В более легком стиле выдержана его статья в области вычислительной техники "Программирование компьютера для игры в шахматы" ("Programming a Computer for Playing Chess") 1950 года. В то время компьютеры были медленными и программирование их было достаточно сложным; с тех пор создано множество шахматных программ, однако большинство из них и сейчас основаны на идеях этой работы.

В 1965 году Шеннон был приглашен в Россию на инженерную конференцию. Там он имел возможность встретиться с многократным чемпионом мира по шахматам Михаилом Ботвинником, также инженером-электротехником, интересующимся проблемой алгоритмизации шахматной игры. После продолжительной дискуссии Шеннон попросил гроссмейстера сыграть с ним в шахматы; нет ничего удивительного в том, что на 42-м ходу он проиграл.

В дальнейшем развитие шахматных программ было продолжено, и в 1980 году Шеннон стал почетным гостем на международном компьютерном шахматном турнире в Линце, Австрия (International Computer Chess Championship, Linz, Austria), в котором принимали участие одиннадцать машин из Швеции, Германии, России, Франции, Англии, Канады и США (большинство машин при этом находилось в своих родных странах, связанные через Интернет с Австрией). Победителем стала "Белле", разработанная в Лабораториях Белла Кеном Томпсоном и Джо Кондоном ("Belle", Ken Thompson, Joe Condon); по уровню игры она практически не уступала мастеру спорта.

Шеннон любил заниматься конструированием забавных - и не обязательно при этом полезных - устройств; в его доме можно было увидеть, к примеру, калькулятор, работающий с числами в римской системе, "черепашек", ползающих по полу и обходящих препятствия, или аппарат с двумя раками, жонглирующий тремя шариками.

В пятидесятых годах он создал "предельную машину" ("Ultimate Machine"), основанную на идее Мервина Минского (Mervin Minsky) и описанную в "Голосе над морем" Артура Кларка; машина эта имела вид шкатулки с единственным выключателем. При включении его крышка открывалась, оттуда появлялась рука, которая возвращала выключатель в исходное положение и вновь скрывалась внутри.

В 1949 году Шеннон, находясь в Лабораториях Белла, женился на Мэри Элизабет (Бетти) Мур (Mary Elizabeth (Betty) Moore), занимавшейся численными расчетами (должность, называвшаяся тогда "вычислитель") в группе Джона Пирса. Они поселились в Мистик Лэйк, Винчестер, Массачусетс.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО Сыктывкарский Государственный Университет

Факультет управления

Теория информации Клода Шеннона

Руководитель: Болотов С.П

Исполнитель: Панева Я.В,

411 группа

Сыктывкар 2010

Введение

Теория информации

Заключение

Список литературы

Введение

Клод Элвуд Шеннон (Shannon) (1916 -- 2001) -- американский инженер и математик. Человек, которого называют отцом современных теорий информации и связи.

Осенним днем 1989 года корреспондент журнала "Scientific American" вошел в старинный дом с видом на озеро к северу от Бостона. Но встретивший его хозяин, 73-летний стройный старик с пышной седой гривой и озорной улыбкой, совсем не желал вспоминать "дела давно минувших дней" и обсуждать свои научные открытия 30-50-летней давности. Быть может, гость лучше посмотрит его игрушки?

Не дожидаясь ответа и не слушая увещеваний жены Бетти, хозяин увлек изумленного журналиста в соседнюю комнату, где с гордостью 10-летнего мальчишки продемонстрировал свои сокровища: семь шахматных машин, цирковой шест с пружиной и бензиновым двигателем, складной нож с сотней лезвий, двухместный одноколесный велосипед, жонглирующий манекен, а также компьютер, вычисляющий в римской системе счисления. И не беда, что многие из этих творений хозяина давно сломаны и порядком запылены, -- он счастлив. Кто этот старик? Неужели это он, будучи еще молодым инженером Bell Laboratories, написал в 1948 году "Великую хартию" информационной эры -- "Математическую теорию связи"? Его ли труд назвали "величайшей работой в анналах технической мысли"? Его ли интуицию первооткрывателя сравнивали с гением Эйнштейна? Да, это все о нем. И он же в тех же 40-х годах конструировал летающий диск на ракетном двигателе и катался, одновременно жонглируя, на одноколесном велосипеде по коридорам Bell Labs. Это Клод Элвуд Шеннон, отец кибернетики и теории информации, гордо заявивший: "Я всегда следовал своим интересам, не думая ни о том, во что они мне обойдутся, ни об их ценности для мира. Я потратил уйму времени на совершенно бесполезные вещи."

Теория информации

В 1941 году 25-летний Клод Шеннон поступил на работу в Bell Laboratories. В годы войны он занимался разработкой криптографических систем, и позже это помогло ему открыть методы кодирования с коррекцией ошибок. А в свободное время он начал развивать идеи, которые потом вылились в теорию информации. Исходная цель Шеннона заключалась в улучшении передачи информации по телеграфному или телефонному каналу, находящемуся под воздействием электрических шумов. Он быстро пришел к выводу, что наилучшее решение проблемы заключается в более эффективной упаковке информации.

Но что же такое информация? Чем измерять ее количество? Шеннону пришлось ответить на эти вопросы еще до того, как он приступил к исследованиям пропускной способности каналов связи. В своих работах 1948-49 годов он определил количество информации через энтропию -- величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу информации принял то, что впоследствии окрестили "битом", то есть выбор одного из двух равновероятных вариантов. Позже Шеннон любил рассказывать, что использовать энтропию ему посоветовал знаменитый математик Джон фон Нейман, который мотивировал свой совет тем, что мало кто из математиков и инженеров знает об энтропии, и это обеспечит Шеннону большое преимущество в неизбежных спорах. Шутка это или нет, но как трудно нам теперь представить, что всего полвека назад понятие "количество информации" еще нуждалось в строгом определении и что это определение могло вызвать какие-то споры.

На прочном фундаменте своего определения количества информации Клод Шеннон доказал удивительную теорему о пропускной способности зашумленных каналов связи. Во всей полноте эта теорема была опубликована в его работах 1957-61 годов и теперь носит его имя. В чем суть теоремы Шеннона? Всякий зашумленный канал связи характеризуется своей предельной скоростью передачи информации, называемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Зато снизу к этому пределу можно подойти сколь угодно близко, обеспечивая соответствующим кодированием информации сколь угодно малую вероятность ошибки при любой зашумленности канала.

Эти идеи Шеннона оказались слишком провидческими и не смогли найти себе применения в годы медленной ламповой электроники. Но в наше время высокоскоростных микросхем они работают повсюду, где хранится, обрабатывается и передается информация: в компьютере и лазерном диске, в факсимильном аппарате и межпланетной станции. Мы не замечаем теорему Шеннона, как не замечаем воздух.

В основу теории информации положен предложенный К.Шенноном метод исчислений количества новой (непредсказуемой) и избыточной (предсказуемой) информации, содержащейся в сообщениях, передаваемых по каналам технической связи.

Предложенный Шенноном метод измерения количества информации оказался настолько универсальным, что его применение не ограничивается теперь узкими рамками чисто технических приложений.

Вопреки мнению самого К.Шеннона, предостерегавшего ученых против поспешного распространения предложенного им метода за пределы прикладных задач техники связи, этот метод стал находить все более широкое примение в исследованиях и физических, и биологических, и социальных систем.

Ключом к новому пониманию сущности феномена информации и механизма информационных процессов послужила установленная Л.Бриллюэном взаимосвязь информации и физической энтропии. Эта взаимосвязь была первоначально заложена в самый фундамент теории информации, поскольку для исчисления количества информации Шеннон предложил использовать заимствованную из статистической термодинамики вероятную функцию энтропии.

Многие ученые (начиная с самого К.Шеннона) склонны были рассматривать такое заимствование как чисто формальный прием. Л.Бриллюэн показал, что между вычисленным согласно Шеннону количеством информации и физической энтропии существует не формальная, а содержательная связь.

В статистической физике с помощью вероятностной функции энтропии исследуются процессы, приводящие к термодинамическому равновесию, при котором все состояния молекул (их энергии, скорости) приближаются к равновероятным, а энтропия при этом стремится к максимальной величине.

Благодаря теории информации стало очевидно, что с помощью той же самой функции можно исследовать и такие далекие от состояния максимальной энтропии системы, как, например, письменный текст.

Еще один важный вывод заключается в том, что с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельной упорядоченности (жесткой детерминации), которому соответствует единственно возможное состояние ее элементов.

Данный вывод оказывается в равной мере справедливым для таких несходных по своей природе систем, как газы, кристаллы, письменные тексты, биологические организмы или сообщества и др.

При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и молекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллектуальных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычисляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным значением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, которые в своей совокупности образуют эти системы.

Количество сохраняемой в структуре системы информации пропорционально степени отклонения системы от состояния равновесия, обусловленного сохраняемым в структуре системы порядком.

Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем.

Определив введенную Шеноном информационную меру как меру упорядоченности движения, можно установить взаимосвязь информации и энергии, считая энергию мерой интенсивности движения. При этом количество сохраняемой в структуре систем информации пропорционально суммарной энергии внутренних связей этих систем.

Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия относящихся к различным уровням сложности информационных систем.

Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, перекодировки поступающих из внешнего мира сигналов, информационными каналами связи. Хранимая в них информация как бы "размазана" по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упорядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур.

Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, сумевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем.

Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком информационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многоклеточных организмах помимо информационной системы наследственности действуют специализированные органы хранения информации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слуховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм.

Уже на уровне биологических систем возникают проблемы учета ценности и смысла используемой этими системами информации. Еще в большей мере такой учет необходим для анализа функционирования интеллектуальных информационных систем.

Глубокое осознание специфики биологических и интеллектуальных систем позволяет выявить те границы, за пределами которых утрачивает свою компетентность разработанный современной наукой информационно-энтропийный подход.

Определить эти границы Шеннону пришлось на самом начальном этапе создания теории информации, поскольку без этого нельзя было использовать количественную меру информации для оценки письменных текстов и других созданных разумом человека информационных систем. Именно с этой целью Шеннон делает оговорку о том, что предложенный им метод исчисления информации письменных текстов игнорирует такие же их неотъемлемые свойства, как смысл и ценность содержащихся в них сообщений.

Так, например, при подсчете количества информации, содержащейся в таких двух сообщениях, как "очередную партию Каспаров играет белыми" и "у гражданина Белова родился сын" получится одна и та же величина - 1 бит. Нет сомнения, что два этих сообщения несут разный смысл и имеют далеко не равнозначную ценность для гражданина Белова. Однако, как было отмечено выше, оценка смысла и ценности информации находится за пределами компетенции теории информации и поэтому не влияет на подсчитываемое с помощью формулы Шеннона количество бит.

Игнорирование смысла и ценности информации не помешало Шеннону решать прикладные задачи, для которых предназначалась первоначально его теория: инженеру по технике связи вовсе не обязательно вникать в суть сообщений, передаваемых по линии связи. Его задача заключается в том, чтобы любое подобное сообщение передавать как можно скорее, с наименьшими затратами средств (энергии, диапазона используемых частот) и, по возможности, безо всяких потерь. И пусть тот, кому предназначена данная информация (получатель сообщений), вникает в смысл, определяет ценность, решает, как использовать ту информацию, которую он получил.

Такой сугубо прагматичный подход позволил Шеннону ввести единую, не зависящую от смысла и ценности, меру количества информации, которая оказалась пригодной для анализа всех обладающих той или иной степенью упорядоченности систем.

После основополагающих работ Шеннона начали разрабатываться основы смысловой (семантической) и ценностной (прагматической, аксиологической) информационных теорий.

Однако ни одной из этих теорий и предлагаемых их авторами единиц измерения ценности или смысла не суждено было приобрести такую же степень универсальности, какой обладает мера, которую ввел в науку Шеннон.

Дело в том, что количественные оценки смысла и ценности информации могут производится только после предварительного соглашения о том, что же именно в каждом конкретном случае имеет для рассматриваемых явлений ценность и смысл. Нельзя одними и теми же единицами измерить ценность информации, содержащейся, скажем, в законе Ома и в признании любви. Иными словами, критерии смысла и ценности всегда субъективны, а потому применимость их ограничена, в то время как мера, предложенная Шенноном, полностью исключает субъективизм при оценке степени упорядоченности структуры исследуемых систем.

Так что же характеризует подсчитанная по формуле Шеннона величина энтропии текста, выражаемая количеством бит? Только лишь одно свойство этого текста - степень его упорядоченности или, иными словами, степень его отклонения от состояния полного хаоса, при котором все буквы имели бы равную вероятность, а текст превратился бы в бессмысленный набор букв.

Упорядоченность текста (или любой другой исследуемой системы) будет тем больше, чем больше различие вероятностей и чем больше вероятность последующего события будет зависеть от вероятностей предыдущих событий.

Согласно негэнтропийному принципу информации количество информации, выражающее этот порядок, будет равно уменьшению энтропии системы по сравнению с максимально возможной величиной энтропии, соответствующей отсутствию упорядоченности и наиболее хаотичному состоянию систем.

Методы исчисления информации, предложенные Шенноном, позволяют выявить соотношение количества предсказуемой (то есть формируемой по определенным правилам) информации и количества той неожиданной информации, которую нельзя заранее предсказать.

Таким способом удается в той или иной степени "разгрузить" предназначенный для передачи сообщений канал. Проведенный Шенноном анализ английских текстов показал, что содержащаяся в них избыточная информация составляет около 80% от общего количества информации, которое заключает в себе письменный текст. Остальные 20% - это та самая энтропия, благодаря которой текст может служить источником непредсказуемой энергии .

Если бы текстовые, устные или зрительные (в частности телевизионные) сообщения были полностью лишены энтропии, они не приносили бы получателям сообщений никаких новостей.

Если бы письменный текст строился только на основании заранее сформулированных правил, то, установив эти правила по тексту первой страницы, можно было бы заранее предсказать, что будет написано на страницах 50, 265, 521 и т.д.

Заключение

шеннон информация канал связь

Но с начала 60-х годов Шеннон не сделал в теории информации практически больше ничего. Это выглядело так, как будто ему всего за 20 лет надоела созданная им же теория. В 1985 году Клод Шеннон и его жена Бетти неожиданно посетили Международный симпозиум по теории информации в английском городе Брайтоне. Почти целое поколение Шеннон не появлялся на конференциях, и поначалу его никто не узнал. Затем участники симпозиума начали перешептываться: вон тот скромный седой джентльмен -- это Клод Элвуд Шеннон, тот самый! На банкете Шеннон сказал несколько слов, немного пожонглировал тремя (увы, только тремя) мячиками, а затем подписал сотни автографов ошеломленным инженерам и ученым, выстроившимся в длиннейшую очередь. Стоящие в очереди говорили, что испытывают такие же чувства, какие испытали бы физики, явись на их конференцию сам сэр Исаак Ньютон.

Клод Шеннон скончался в 2001 году в массачусетском доме для престарелых от болезни Альцгеймера на 84 году жизни.

Список литературы

1. Интернет

2. Шеннон К.Е. Математическая теория связи. Работы по теории информации и кибернетике., М, 1963.

3. Шеннон К. Е. Бандвагон. /Работы по теории информации и кибернетике/М.1963.

Размещено на Allbest.ru

Подобные документы

    Общее число неповторяющихся сообщений. Вычисление скорости передачи информации и пропускной способности каналов связи. Определение избыточности сообщений и оптимальное кодирование. Процедура построения оптимального кода по методике Шеннона-Фано.

    курсовая работа , добавлен 17.04.2009

    Общая схема действия каналов связи, их классификация и характеристика. Дискретный, бинарный канал связи и определение их пропускной способности, особенности действия с помехами и без них по теореме Шеннона. Пропускная способность непрерывного канала.

    реферат , добавлен 14.07.2009

    Предмет и задачи теории информации, ее функции при создании АСУ. Определение пропускной способности дискретных (цифровых) каналов при отсутствии шумов. Расчет скорости передачи информации. Вычисление значения энтропии - среднего количества информации.

    контрольная работа , добавлен 18.01.2015

    Вычисление количества информации, приходящейся на один символ по формуле Шеннона. Изменения информационной энтропии в текстах экономического, естественнонаучного и литературного содержания. Максимальное количество информации на знак по формуле Хартли.

    лабораторная работа , добавлен 06.12.2013

    презентация , добавлен 19.10.2014

    Обработка информации, анализ каналов ее возможной утечки. Построение системы технической защиты информации: блокирование каналов несанкционированного доступа, нормативное регулирование. Защита конфиденциальной информации на АРМ на базе автономных ПЭВМ.

    дипломная работа , добавлен 05.06.2011

    Изучение алгоритмов допускового контроля достоверности исходной информации, с помощью которых выявляются полные и частичные отказы информационно-измерительных каналов. Определение погрешности выполнения уравнения связи между количествами информации.

    лабораторная работа , добавлен 14.04.2012

    Определение среднего количества информации. Зависимость между символами матрицы условных вероятностей. Кодирование методом Шеннона–Фано. Пропускная способность канала связи. Эффективность кодирования сообщений методом Д. Хаффмана, характеристика кода.

    контрольная работа , добавлен 04.05.2015

    Анализ источников опасных сигналов и определение потенциальных технических каналов утечки информации и несанкционированного доступа. Организационные и технические методы защиты информации в выделенном помещении, применяемое инженерное оборудование.

    курсовая работа , добавлен 18.11.2015

    Количество информации и ее мера. Определение количества информации, содержащегося в сообщении из ансамбля сообщений источника. Свойства количества информации и энтропии сообщений. Избыточность, информационная характеристика источника дискретных сообщений.