При химических реакциях происходит нечто похожее на «ионизацию». Например, два вещества и комбинируют в основном веществе ; тогда, подумав немного, мы можем назвать атомом ( - то, что мы называем электроном, а - то, что мы называем ионом). После такой замены, как и раньше, можно написать уравнение равновесия

. (42.9)

Эта формула, конечно, неточна, потому что «постоянная» зависит от того, в каком объеме позволено объединяться и и т. п., но, обратясь к термодинамическим аргументам, можно придать смысл величине в экспоненциальном множителе, и тогда окажется, что она тесно связана с энергией, необходимой для реакции.

Попробуем понять эту формулу как результат столкновений, приблизительно так же, как мы постигали формулу испарения, подсчитывая электроны, вырывающиеся в пространство, и те, которые возвращаются назад за единицу времени. Предположим, что при столкновениях и иногда образуют соединение . И предположим еще, что - это сложная молекула, которая участвует в общей пляске и по которой ударяют другие молекулы, причем время от времени она получает энергию, достаточную для того, чтобы взорваться и снова развалиться на части и .

Заметим, что в химических реакциях дело обстоит так, что если сближающиеся атомы имеют слишком малую энергию, то, хотя этой энергии и достаточно для реакции , факт соударения атомов и еще не обязательно означает начало реакции. Обычно требуется, чтобы соударение было более «жестким», «мягкого» соударения между и может оказаться недостаточно для начала реакции, даже если в процессе освобождается достаточное для реакции количество энергии. Предположим, что общей чертой химических реакций является требование, по которому для объединения и в недостаточно простого соударения, а нужно, чтобы они столкнулись, имея определенное количество энергии. Эта энергия называется энергией активации, т. е. энергия, нужная для «активации» реакции. Пусть - тот избыток энергии, который необходим, чтобы столкновения могли вызвать реакцию. Тогда скорость , с которой и порождают , должна содержать произведение числа атомов и , умноженное на скорость, с которой отдельный атом ударяется о некоторую площадку величиной , и на величину (вероятность того, что атомы обладают достаточной энергией):

. (42.10)

Теперь надо найти скорость обратного процесса . Есть некоторая вероятность, что и снова разойдутся. Чтобы разойтись, им недостаточно энергии , которая обеспечит их раздельное существование. Но раз молекулам нелегко соединиться, должен существовать некий барьер, через который и должны перевалить, чтобы разлететься. Они должны запастись не только нужной для их существования энергией, но и взять кое-что про запас. Получается что-то вроде подъема на холм перед спуском в долину; сначала приходится вскарабкаться на высоту, потом спуститься, и только после этого разойтись (фиг. 42.1). Таким образом, скорость перехода в и пропорциональна произведению - начальному числу молекул на :

. (42.11)

Постоянная складывается из объема атомов и частоты столкновений; ее можно получить, как и в случае испарения, перемножая площадь и толщину слоя, но сейчас мы этого делать не будем. Сейчас нас больше интересует тот факт, что, когда эти скорости равны, их отношение равно единице. Это говорит о том, что, как и раньше, , где содержит сечения, скорости и другие множители, не зависящие от чисел .

Фиг. 42.1. Соотношение энергий в реакции .

Интересно, что скорость реакции по-прежнему изменяется как , хотя эта постоянная уже не имеет никакого отношения к той, с которой мы встречались в задаче о концентрациях; энергия активации сильно отличается от энергии . Энергия регулирует пропорции и , при которых устанавливается равновесие, но если нам захочется узнать, быстро ли переходит в , то это уже к равновесию отношения не имеет, и появляется уже другая энергия, энергия активации, которая с помощью экспоненты управляет скоростью реакции.

Кроме того, не является фундаментальной постоянной, как . Предположим, что реакция происходит на поверхности стены, или на какой-нибудь другой поверхности, тогда и могут растечься по ней так, что объединение в будет для них более легким делом. Иначе говоря, сквозь гору можно прорыть «туннель» или срыть вершину горы. В силу сохранения энергии, по какому бы пути мы ни шли, результат будет один: из и получится , так что разность энергий не зависит от пути, по которому идет реакция, однако энергия активации очень сильно зависит от этого пути. Вот почему скорости химических реакций столь чувствительны к внешним условиям. Можно изменить скорость реакции, изменив поверхность, с которой соприкасаются реактивы, можно изготовить «набор бочонков» и подбирать с его помощью любые скорости, если они зависят от свойств поверхности. Можно внести в среду, в которой происходит реакция, третий предмет; это также может сильно изменить скорость реакции, такие вещества при незначительном изменении иногда чрезвычайно влияют на скорость реакции; их называют катализаторами. Реакции может практически не быть совсем, потому что слишком велика для заданной температуры, но если добавить это специальное вещество - катализатор, то реакция протекает очень быстро, потому что уменьшается., поэтому скорость обратной реакции пропорциональна и из формулы для равновесных концентраций выпадает. Правильность закона равновесия (42.9), который мы написали прежде всего, абсолютно гарантирована независимо от любого возможного механизма реакции!

Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов (концентрации реагентов, t, Р, катализатора и т.д.).

Химические реакции протекают с различной скоростью. Одни реакции заканчиваются в течение долей секунды (разложение взрывчатых веществ), другие – продолжаются минутами, часами, сутками, третьи – длятся десятки, сотни, тысячи лет (процессы, протекающие в земной коре).

Скорость конкретной реакции тоже может изменяться в широких пределах в зависимости от условий ее протекания (смесь водорода и кислорода при обычной температуре может сохраняться без изменений неограниченное время; при введении в нее соответствующего катализатора она реагирует весьма бурно; при 630 °С она реагирует и без катализатора).

Фазой называется часть системы, отличающаяся по своим физическим и химическим свойствам от других частей системы и отделенная от них поверхностью раздела, при переходе через которую свойства системы резко меняются.

Системы, состоящие из одной фазы, называются гомогенными, из нескольких фаз – гетерогенными. Соответственно реакции, в которых взаимодействующие вещества находятся в одной фазе, называются гомогенными, а реакции, в которых вещества соединяются в различных фазах – гетерогенными.

Скорость гомогенной химической реакции принято выражать изменением концентрации реагирующих веществ или образовывающихся продуктов реакции в единицу времени. Концентрации исходных веществ в ходе реакции уменьшаются, а концентрации продуктов реакции возрастают во времени. Скорость гомогенной химической реакции по мере израсходования исходных веществ уменьшается.

Средняя скорость реакции vср в интервале времени от t1 до t2 определяется соотношением:

; .

Рис. 5.1. Изменение концентрации исходных веществ во времени.

Мгновенная скорость – это скорость реакции в данный момент времени t. Она определяется производной от концентрации по времени:

Рис. 5.2. Изменение концентрации реагирующих веществ во времени.

Скорость реакции всегда считается положительной. Если при расчетах берем изменение концентрации исходных веществ, то в указанном выражении ставится знак «-»; если это касается продуктов реакции, то следует принимать знак «+».

Факторы, влияющие на скорость химической реакции:

природа реагирующих веществ;

концентрация реагентов;

температура;

катализаторы;

дисперсность (для твердых веществ);

кислотность среды (для реакции в растворах);

форма реактора (для цепных реакций);

интенсивность освещения видимыми или УФ-лучами (для фотохимических реакций);

интенсивность облучения -лучами (для радиационно – химических реакций) и т.д.

Природа реагирующих веществ

2NO + O2 = 2NO2 – идет при стандартных условиях.

2CO + O2 = 2CO2 – не реагирует при стандартных условиях, хотя чисто внешне уравнения данных реакций похожи, но природа веществ различна.

Концентрация реагентов

Необходимой предпосылкой взаимодействия веществ является столкновение молекул. Число столкновений, а значит и скорость химической реакции, зависит от концентрации реагирующих веществ: чем больше молекул, тем больше и столкновений.

Закон действующих масс

Для реакции аА + вВ ® сС скорость прямой реакции

,

где [А], [В] – молярные концентрации реагирующих веществ А и В; k – константа скорости химической реакции (данной).

Физический смысл константы скорости: она равна скорости реакции, когда [А]=1 моль/л и [В]=1 моль/л.

Гомогенная реакция: 2NO(г) + O2(г) = 2NO2(г)

v=k×2·.

Гетерогенная реакция: С(тв.) + О2(г) = СО2(г)

Считается, что площадь поверхности угля, на которой происходит реакция, остается постоянной в течение длительного времени и ее учитывает коэффициент к.

Влияние температуры на скорость гомогенных реакций

Повышение температуры увеличивает скорость движения молекул и вызывает, соответственно, возрастание числа столкновений между ними. Последнее влечет за собой и повышение скорости химической реакции.

В количественном отношении влияние температуры на скорость гомогенных химических реакций может быть выражено в приближенной форме правилом Вант-Гоффа:

повышение температуры на 10° увеличивает скорость гомогенных химических реакций примерно в 2÷4 раза.

Рис. 5.3. Изменение скорости реакции в зависимости от повышения

температуры реакции.

Математически это будет выглядеть следующим образом:

,

где - температурный коэффициент скорости реакции, равный примерно 2÷4.

Если бы каждое столкновение приводило к акту взаимодействия, все реакции должны были бы протекать со скоростью взрыва. На самом деле к актам взаимодействия приводит лишь незначительное число столкновений. К реакции приводят столкновения только активных молекул, запас энергии которых достаточен для совершения элементарного акта реакции. Число активных соударений при данной температуре пропорционально общему содержанию реагирующих молекул. С ростом температуры число активных соударений возрастает гораздо сильнее, чем общее число столкновений.

Для того, чтобы при столкновении молекулы успели прореагировать, химические связи должны быть «расшатаны». Для этого молекула должна обладать повышенным запасом энергии. Молекулы, обладающие этим необходимым запасом энергии, называются активированными. При нагревании веществ активизация молекул происходит благодаря ускорению их поступательного движения, а также вследствие усиления колебательного движения атомов и атомных групп в самих молекулах. Все это приводит к ослаблению связей внутри молекул. Таким образом, для того, чтобы молекулы прореагировали, им необходимо преодолеть некоторый энергетический барьер.

В соответствии с изложенным изменение энергии системы А+В при ее превращении в S может быть графически представлено следующим образом (рис. 5.4.)

Молекула S образуется из А и В в результате перераспределения атомов и химических связей. Для образования молекулы S активированные молекулы А и В при столкновении вначале образуют активированный комплекс АВ, внутри которого и происходит перераспределение атомов. Энергия, необходимая для возбуждения молекулы до энергии активирования комплекса, называется энергией активации Еа.

Рис. 5.4. Диаграмма изменения энтальпий для эндотермических (а)

и экзотермических (б) процессов.

На рисунке а) видно, что продукты реакции обладают большим запасом энергии, чем исходные вещества, то есть реакция А + В ® S эндотермическая. Разность между энергией продуктов реакции и исходных веществ является тепловым эффектом реакции .

Соответствующий график для экзотермической реакции С + Д → Р представлен на рисунке б).

Взаимосвязь между константой скорости реакции k и энергией активации Еа определяется уравнением Аррениуса:

,

где А – предэкспоненциальный коэффициент, связанный с вероятностью и числом столкновений.

Логарифмирование уравнения Аррениуса:

или

дает уравнение прямой линии. Знание констант скорости при нескольких температурах позволяет определить энергию активации данной реакции:

Тангенс угла наклона этой прямой к оси абсцисс равен:

.

Энергия активации является тем фактором, посредством которого природа реагирующих веществ влияет на скорость химической реакции.

- «быстрые» реакции (ионные реакции в растворах);

- реакции с измеряемой скоростью

(Н2SO4 + Na2S2O3 = Na2SO4 + SO2 + S + H2O);

- «медленные» реакции

(синтез NH3 при обычных температурах).

Путь реакции может быть изменен введением в систему катализаторов.

Катализаторами называются вещества, которые влияют на скорость химической реакции, но их химический состав сохраняется после промежуточных стадий. Влияние катализаторов на скорость химических реакций называется катализом.

Катализаторы могут снижать энергию активации, направляя реакцию по новому пути. Снижение энергии активации приводит к возрастанию доли реакционноспособных частиц и, следовательно, к ускорению процесса взаимодействия. Катализаторы, ускоряющие реакцию, называются положительными. Известны также отрицательные катализаторы (ингибиторы). Они замедляют реакцию, связывая активные промежуточные молекулы или радикалы, и тем самым препятствуют протеканию реакции.

Катализаторы делятся на гомогенные и гетерогенные. Гомогенные находятся в одном и том же агрегатном состоянии хотя бы с одним из реагентов.

Гомогенный катализ осуществляется чаще всего через образование неустойчивых промежуточных продуктов. Например, реакция А + В → С требует большой энергии активации Еа. В присутствии катализатора протекают реакции А + К → АК и АК + В → С + К, где К – катализатор.

Рис. 5.6. Энергетическая диаграмма хода реакции А + В = С

без катализатора и с катализатором.

Если наибольшая из энергий активации Еа" и Еа"" для этих последовательных реакций меньше, чем энергия активации для реакции без катализатора Еа, то катализатор является положительным.

Пример гомогенного катализатора:

SO2 + O2 = SO3 - почти не идет;

2NO + O2 = NO2 - промежуточное состояние;

SO2 + NO2 = SO3 + NO – активно протекающая реакция (нитрозный способ серного ангидрида, а из него – серной кислоты) .

Цепные реакции.

Реакции протекающие с участием свободных радикалов, называются цепными. Радикал – короткоживущая валентноненасыщенная частица.

Различают два типа цепных реакций:

с неразветвленными цепями;

с разветвленными цепями.

К первому типу относится фотохимический синтез HCl. Цепь возникает в результате образования атомов – радикалов. ЕCl-Cl =58,0 ккал/моль; ЕН-Н = 104,2 ккал/моль.

Cl2 + hn = 2Cl× зарождение цепи

развитие цепи

………………………….

обрыв цепи

За счет внешнего источника энергии (свет, электрический разряд, нагревание, воздействие ά-, β- или γ- излучения) образуются свободные радикалы или атомы, обладающие свободными валентностями. Они взаимодействуют с молекулами. В каждом звене цепи вновь образуется новая активная частица. Путем повторения одних и тех же элементарных процессов происходит протекание цепной реакции. Ее продолжительность может быть очень большой. В приведенной выше реакции на каждый поглощенный квант образуется до 100 тыс. молекул НСl. Столкновение двух одинаковых радикалов при условии, что выделяющаяся при этом энергия может быть отдана третьему телу, приводит к обрыву цепи. Причиной обрыва может служить не только рекомбинация свободных радикалов, но и их захват стенкой реакционного сосуда, взаимодействие радикала с примесями, а также образование малоактивного радикала (обрыв в объеме). Поэтому скорость цепной реакции очень чувствительна к наличию посторонних частиц и форме сосуда.

В разветвленных цепных реакциях единичная реакция одного свободного радикала приводит к возникновению более чем одного нового свободного радикала.

Образующиеся в реакции I радикалы обеспечивают развитие неразветвленной цепи, а атом кислорода, обладающий двумя свободными валентностями (реакция II), образует два радикала, начинающих разветвление. Возникает огромное количество свободных радикалов. «Размножение» радикалов приводит к лавинообразному течению процесса, которое может вызвать взрыв:

Однако и в этих процессах происходят обрывы цепей. Причем бурное увеличение скорости процесса наблюдается лишь в том случае, когда темп разветвления опережает темп обрыва.

Для таких реакций изменение концентрации активных центров во времени может быть выражено следующим соотношением:

,

где С – количество активных центров в зоне реакции;

Скорость зарождения активных центров;

f – константа скорости разветвления цепей;

g – константа скорости обрыва цепей.

Химические реакции делятся на обратимые и необратимые

Химически необратимые реакции при данных условиях идут практически до конца, до полного расхода одного из реагирующих веществ (NH4NO3 → 2H2O + N2O – никакая попытка получить нитрат из Н2О и N2O не приводит к положительному результату).

Химически обратимые реакции протекают одновременно при данных условиях как в прямом, так и в обратном направлении. Необратимых реакций меньше, чем обратимых. Примером обратимой реакции служит взаимодействие водорода с иодом:

; .

Через некоторое время скорость образования HI станет равной скорости его разложения:

; .

Иными словами, наступит химическое равновесие:

Рис. 5.7. Изменение скорости прямой (1) и обратной (2) реакций

с течением времени.

Химическим равновесием называется состояние системы, при котором скорость образования продуктов реакции равна скорости их превращения в исходные реагенты.

Химическое равновесие является динамическим, то есть его установление не означает прекращения реакции.

Признаки истинного химического равновесия:

состояние системы остается неизменным во времени при отсутствии внешних воздействий;

состояние системы изменяется под влиянием внешних воздействий, сколь малы бы они ни были;

состояние системы не зависит от того, с какой стороны она подходит к равновесию.

На основании равенства скоростей прямой и обратной реакций при равновесии можно записать:

.

Таким образом видим, что при установившемся равновесии произведение концентраций продуктов реакции, деленное на произведение концентраций исходных веществ, в степенях, равных соответствующим стехиометрическим коэффициентам, для данной реакции при данной температуре представляет собой постоянную величину, называемую константой равновесия.

В общем виде для реакции

выражение для константы равновесия должно быть записано:

.

Концентрации реагентов при установившемся равновесии называются равновесными концентрациями.

В случае гетерогенных обратимых реакций в выражение Кс входят только равновесные концентрации газообразных и растворенных веществ. Так, для реакции СаСО3 ↔ СаО + СО2

При неизменных внешних условиях положение равновесия сохраняется сколь угодно долго. При измении внешних условий положение равновесия может измениться. Изменение температуры, концентрации реагентов (давления для газообразных веществ) приводит к нарушению равенств скоростей прямой и обратной реакций и, соответственно, к нарушению равновесия. Через некоторое время равенство скоростей восстановится. Но равновесные концентрации реагентов в новых условиях будут уже другими. Переход системы из одного равновесного состояния к другому называется смещением или сдвигом равновесия. Химическое равновесие можно сравнить с положением коромысла весов. Подобно тому, как оно изменяется от давления груза на одну из чашек, химическое равновесие может смещаться в сторону прямой или обратной реакции в зависимости от условий процесса. Каждый раз при этом устанавливается новое равновесие, соответствующее новым условиям.

Численное значение константы обычно изменяется с изменением температуры. При постоянной температуре значения Кс не зависят ни от давления, ни от объема, ни от концентраций веществ.

Зная численное значение Кс, можно вычислить значения равновесных концентраций или давлений каждого из участников реакции.

Например, допустим, что необходимо вычислить равновесную концентрацию HI, получающуюся в результате реакции Н2 + I2 ↔ 2HI. Обозначим исходные концентрации Н2 и I2 через С, а их изменение к моменту равновесия через х (моль/л). Тогда равновесные концентрации реагентов составляют:

= (C – x); = (C – x) = ; = 2x.

Имеем . Исходя из этого выражения, можно рассчитать х и, значит, равновесные концентрации реагентов.

Для реакций с участием газов удобнее пользоваться парциальными давлениями веществ. Константу равновесия в этом случае обозначают через Кр.

Существует связь между Кс и Кр. На примере реакции синтеза аммиака найдем ее.

N3+ 3H2 ↔ 2NH3;

.

Концентрации веществ в газовой среде можно выразить как отношение числа молей n вещества к объему системы V:

Значение n можно найти из уравнения Менделеева – Клапейрона:

РV = nRT => n =.

Получаем .

Выражаем через полученное значение величину Кс:

.

Или можно записать другим образом:

После незначительных преобразований получим:

,

где - разность коэффициентов в уравнении реакции

Для реакций, протекающих без изменения объема получаем:

.

Существует связь между изменением изобарно–изотермического потенциала химической реакции и константой равновесия, выраженной через парциальное давление компонентов А, В, С, D, Е при равновесии.

Для температуры 298 она выглядит следующим образом:

.

если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в системе усиливаются те процессы, которые стремятся свести это воздействие к минимуму.

Влияние концентраций реагирующих веществ на состояние

равновесия

При контактном способе получения Н2SO4 окисление SO2 в SO3 в присутствии катализатора (Pt или V2O5) идет по уравнению:

.

Если в эту равновесную систему добавить извне О2, то в системе усиливается процесс, стремящийся понизить концентрацию О2. Таким процессом является прямая реакция SO2 с О2 с образованием SO3. Таким образом, равновесие в системе сместится в сторону образования SO3. К этому же выводу можно прийти при анализе выражения для константы равновесия:

.

При увеличении концентрации О2 (знаменатель в этом выражении) должна возрасти концентрация SO3 (числитель). Это следует из того, что Кс=const. Таким образом, повышение концентрации O2 сдвинет равновесие к более полному использованию SO2 и к большему выходу SO3.

Влияние давления на состояние равновесия

Давление имеет существенное значение при реакциях между газами.

В результате увеличения давления повышается концентрация реагирующих веществ и, соответственно, скорость реакции.

Рассмотрим возможные случаи.

А). В реакции сумма молей исходных веществ равна сумме молей продуктов реакции. Суммарные соответствующие объемы газов тоже будут равными.

.

Если увеличить давление в закрытом реакционном сосуде, например, в 2 раза, то объем изменится тоже вдвое. Соответственно, вдвое изменится и концентрация газов. Скорость прямой и обратной реакций возрастает, но в равное количество раз. Поэтому смещения химического равновесия при этом не происходит.

.

Таким образом, если объемы исходных и конечных газообразных продуктов равновесной системы равны между собой, то изменение давления не нарушает равновесия.

Б). Сумма молей исходных веществ больше суммы молей образующихся продуктов:

N2 + 3H2 Û 2NH3.

Из четырех молей исходных веществ образуется два моля продуктов - реакция протекает с уменьшением объема. [При повышении давления концентрация исходных веществ будет увеличиваться в большей степени, чем концентрация продуктов, что приводит к смещению равновесия в сторону образования аммиака.]

.

В). Сумма молей исходных веществ меньше суммы молей продуктов:

N2O4 <=> 2NO2;

.

Прямая реакция ведет к увеличению числа молей вещества в системе, то есть к увеличению давления.

При протекании обратной реакции, наоборот давление в системе падает. Если при установившемся равновесии повысить давление, то система окажет противодействие, стремясь к начальному состоянию. Равновесие будет смещаться в сторону обратной реакции, сопровождающейся понижением давления, то есть в сторону образования N2O4. Если давление снизить, то равновесие сместится в сторону прямой реакции, сопровождающейся повышением давления, то есть в сторону образования NO2.

при изменении давления равновесие смещается только в тех обратимых реакциях, которые сопровождаются изменением объемов газообразных веществ;

повышение давления сдвигает равновесие в сторону меньших объемов, понижение – в сторону больших объемов.

Влияние температуры на состояние равновесия

2Н2 + О2 <=> 2Н2О(г) + 484,9 кДж.

Процесс образования воды является экзотермическим, разложение – эндотермическим.

В соответствии с принципом Ле Шателье при подведении теплоты к этой равновесной системе равновесие должно смещаться в сторону эндотермической реакции, то есть должно приводить к разложению воды. В результате этого произойдет уменьшение равновесной концентрации водяного пара и увеличение равновесных концентраций водорода и кислорода.

Охлаждение этой системы приведет к усилению экзотермического процесса.

Рассмотрим систему:

N2 + 3H2 <=> 2NH3 + 92кДж.

Понижение температуры смещает равновесие вправо, то есть увеличивает выход NH3. Однако в промышленности этот процесс ведется при довольно высоких температурах. Это вызвано тем, что при низких температурах скорость установления равновесия мала, хотя выход целевого продукта выше.

Таким образом, при нагревании равновесной системы равновесие смещается в сторону эндотермической реакции, при охлаждении – в сторону экзотермической реакции.

Влияние катализаторов на состояние равновесия

Введение катализаторов в равновесную систему не вызывает смещения равновесия, поскольку катализатор, ускоряя прямую реакцию, в такой же мере ускоряет и обратную реакцию. Но введение катализаторов позволяет добиваться наступления равновесия в более короткие сроки.

Список литературы

Глинка Н.Л. Общая химия. – М.: Химия, 1978. – С. 166-191.

Шиманович И.Е., Павлович М.Л., Тикавый В.Ф., Малашко П.М. Общая химия в формулах определениях, схемах. – Мн.: Унiверсiтэцкае, 1996. – С. 102-115.

Карапетьянц М.Х. Введение в теорию химических процессов. – М.: Высшая школа, 1981. – С. 75-90.

Воробьев В.К., Елисеев С.Ю., Врублевский А.В. Практические и самостоятельные работы по химии. – Мн.: УП «Донарит», 2005. – С. 39-46.

Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ или одного из продуктов реакции. В единицу времени при неизменном объеме. Единицей измерения скорости является моль в числителе в знаменателе литр·секунду.

Основной закон химической кинематики:

– скорость химической реакции пропорциональна концентрации реагирующих веществ.

где
,
коэффициент пропорциональности.

=
где
и- это стеохимический коэффициент.

Основной закон химической кинематики не учитывает реагирующие вещества находящиеся в твердом состоянии. Так как их концентрация постоянна и они реагируют только на поверхности и которая остается не измененной. Как например при горении угля: С + О 2 → СО 2 реакция происходит между молекулами кислорода и твердого вещества только на поверхности раздела фаз. А значит масса твердой фазы не влияет на скорость реакции. В данном случае скорость реакции пропорциональна только концентрации кислорода.

2. Зависимость скорости реакции от температуры.

Зависимость скорости реакции от температуры определяется правилом Вант Гоффа: при повышении температуры на каждые 10°скоростьреакции (большинства) увеличиваются в 2-4 раза. Математически эта зависимость выражается формулой

где - начальная,- до которой нагрели,температурный коэффициент, он измеряется от 2 – 4.

3. Энергетические активации.

Сильное увеличение скорости реакции с возрастанием температуры объясняет энергия активации. Согласно этой теории химическое взаимодействие вступают только активные молекулы, не активные молекул можно сделать активными, если сообщить им даже минимальную энергию – этот процесс называется активация. Один из способов активации увеличение температуры.

Энергию, которую нужно сообщить молекулам (или частицам) реагирующих веществ, чтобы превратить их активные называют энергией активации. Ее величена определяется экспериментально и выражается в кДж/моль и обозначают Е. Энергия активации зависит от природы реагирующих веществ и служит характеристикой реакции. Чтобы исходные вещества образовали продукт реализации, они должны преодолеть энергетический барьер.

При этом образуются переходное состояние или активированный комплекс, который потом расходуется на продуты реакции.

Скорость реакции зависит от энергетической активации, если энергия активации маленькая, то скорость большая и наоборот. Для активизации используют нагревание, облучение, катализаторы.

4.Гомогенный и гетерогенный катализ.

Катализ – это вещество изменяющая скорость реакции.

Положительный катализ – это вещество увеличивает скорость реакции.

Отрицательный катализ – это уменьшение скорости реакции.

Иногда скорость реакции изменяют сами продукты реакции или исходные вещества, такой процесс называют автокатализ. Катализ мажет быть гомогенным и гетерогенным. При гетерогенном катализе реагирующие вещества катализатором образуют систему из розных фаз и существует поверхность раздела, на которой и протекает реакция. При этом важную роль играет адсорбция – это концентрирование газообразных или растворенных веществ на поверхности других веществ которые называются адсорбенты.

Гомогенный катализ – это такой катализ когда реагирующие вещества и катализаторы находятся в одном агрегатном состоянии т.е. образуют однофазную систему.

Ответы к самостоятельной работе: Кинетика реакций

Вариант 1

1.Состояние химического обратимого процесса. При котором скорость прямой реакции равна скорости обратной реакции, называют химическим равновесием.

Обратимыми называют химические реакции, которые протекают одновременно в двух противоположных направлениях – прямом и обратном. Примеры: 1. Реакция синтеза оксида азота(2), который нужен для получения азотной кислоты.2. В органической химии – реакции гидратации, дегидрирование.

Химическое равновесие динамично, его можно сместить. Принцип Ле-Шателье: Если изменить одно из условий – температуру, давление или концентрацию веществ, - при которых данная система находится в состоянии химического равновесия, то равновесие сместится в направлении, которое ослабляет изменение.

    Изменение Равновесных концентраций

    Изменение давления

    Изменение температуры

    Катализатор на смещение равновесия не влияет

2.а) Прямая реакция является реакцией замещения, происходит горение метана

б) Прямая реакция идет с выделением теплоты и относится к экзотермическим реакциям, обратная эндотермическая, протекает с поглощением теплоты

в)для смещения равновесия влево, нужно увеличить концентрации углекислого газа и воды и уменьшить концентрацию метана или кислорода, т.е. вывести из сферы реакции и увеличить температуру

3.Дано: V=2 л Решение: V р = -

n 1 (H 2 )=3 моль С 1 = 3/2 =1,5 моль/л С 2 = 0,5/2 = 0,25 моль/л

t=20 мин; n 2 (H 2 ) =3 /6=0,5 моль V р = | 0 ,25 – 1,5 | / 20 мин = 0,0625 моль/ л мин

Найти: V р =?

4.По правилу Вант – Гоффа V 2 = V 1 * t2-t1 /10 , если температурный коэффициент 2

V 2 / V 1 = t2-t1 /10 V 2 / V 1 =2 3 = 8

5.а) вправо

б)вправо в) не изменится

Вариант 2

1.Скорость химической реакции – это изменение концентрации одного из реагирующих веществ или одного из продуктов реакции в единицу времени.

V р = - - , где С 2 – конечная молярная концентрация концентрация реагирующего вещества

С 1 – начальная молярная концентрация этого вещества. t – время реакции

С= n / V V – объем сосуда, n – количество вещества

Скорость зависит от: а) природы реагирующих веществ(магний с кислотой реагирует быстрее цинка, т.к. он более активный металл)

б) концентрации реагирующих веществ (чем больше концентрация реагирующих веществ в единице объёма, тем больше скорость реакции)

в) площади соприкосновения реагирующих веществ чем больше площадь, тем больше скорость (для увеличения площади вещества измельчают)

г) присутствия некоторых веществ (катализатор увеличивает скорость, ингибитор – уменьшает)

2.а) Прямая реакция разложения, значит обратная соединения.

б) Прямая реакция протекает с выделением теплоты, поэтому относится к экзотермическим, обратная – эндотермическая и протекает с поглощением теплоты.

В) Для смещения равновесия вправо нужно уменьшить концентрацию ацетилена или водорода, т.е. вывести из сферы реакции и уменьшить температуру .

3.Дано: V= 10л Решение: V р = -

n 1 ( О 2 )= 5 моль С 1 = 5/10 =0,5 моль/л С 2 = 0,25/10 = 0,025 моль/л

t= 3 0 мин n 2 ( О 2 ) = 5/20=0,25 моль

Найти V р =? V р = | 0 ,25 – 5 | / 30 мин = 0,16моль/ л*мин

4.По правилу Вант – Гоффа V 2 = V 1 * t2-t1 /10 , если температурный коэффициент 3

V 2 / V 1 = t2-t1 /10 V 2 / V 1 =3 3 = 27

    А) влево б) вправо в) не изменится

Кинематика химических реакций

Скорость химических реакций.

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± ((С 2 — С 1 ) / (t 2 — t 1 )) = ± (С / t)

где С 1 и С 2 — молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) — если скорость определяется по продукту реакции, знак (-) — по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции — энергией сталкивающихся молекул.

Факторы, влияющие на скорость химических реакций.

1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

Примеры.

Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.

Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди — не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ — скорость реакции возрастает.

Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.).

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

aA + bB + . . . . . .

V = k [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.

Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:

(где Vt 2 и Vt 1 — скорости реакции при температурах t 2 и t 1 соответственно; — температурный коэффициент данной реакции).

Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

k = A e -Ea/RT

где

A — постоянная, зависящая от природы реагирующих веществ;

R — универсальная газовая постоянная ;

Ea — энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

Энергетическая диаграмма химической реакции.

А — реагенты, В — активированный комплекс (переходное состояние), С — продукты.

Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ — путем их растворения.

5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе — разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление «отрицательного катализа»).

Химическое равновесие.

Обратимые реакции — химические реакции, протекающие одновременно в двух противоположных направлениях.

Химическое равновесие — состояние системы, в котором скорость прямой реакции (V1) равна скорости обратной реакции (V 2 ). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K 1 ) и обратной (K 2 ) реакций.

Для реакции mA + nB pC + dD константа равновесия равна

K = K 1 / K 2 = ([C] p [D] d ) / ([A] m [B] n )

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

Способы смещения равновесия.

Принцип Ле-Шателье. Если на систему, находящуюся в равновесии, производится внешнее воздействие (изменяются концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет это воздействие

1. Давление. Увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул).

2. Увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплоты)

3. Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Увеличение концентраций исходных веществ [A] или [Б] или [А] и [Б]: V 1 > V 2 .

4. Катализаторы не влияют на положение равновесия.