ъединение взаимодействий

Одной из важных особенностей физики элементарных частиц на начальном этапе было различие между различными типами взаимодействий. Оказалось, что существует всего четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное.
Электромагнитное взаимодействие и сильное взаимодействие можно описать с помощью обмена квантами соответствующих полей − фотонами (γ-квантами) и глюонами. Фотоны и глюоны являются калибровочными бозонами электромагнитного и сильного полей.
Гипотеза о том, что слабое взаимодействие также обусловлено обменом некоторой заряженной частицей было выдвинута Юкавой еще в тридцатых годах. Завершение эта идея получила в рамках единой теории, связывающей электромагнитные и слабые взаимодействия, развитой в работах С. Вайнберга, А. Салама и Ш. Глэшоу .
В этой теории, которая носит название "стандартная модель", предсказывается существование тяжелых заряженных бозонов W + и W − и нейтрального бозона Z 0 со спином 1, обмен которыми и обуславливает слабое взаимодействие. В теории возникает также безмассовое векторное поле, отождествляемое с электромагнитным полем.
В стандартной модели считается, что частицы приобретают массу в результате механизма Хиггса . Поле Хиггса заполняет все пространство, и все частицы приобретают массу при взаимодействии с ним. Квантами поля Хиггса является бозон Хиггса. Считается, что хиггсовский бозон имеет нулевой спин. Масса его по экспериментальным оценкам должна быть больше 5 ГэВ.
В этой модели распад нейтрона

n → p + e − + e

Рис. 17 Диаграмма распада d-кварка

на кварковом уровне выглядит как бы проходящим в два этапа (рис.17). На первом этапе происходит превращение d-кварка в u-кварк и W − -бозон

на втором W − -бозон распадается, превращаясь в электрон и антинейтрино

W − → e − + e .

По аналогии с сильным взаимодействием члены одного семейства, порождаемые W − или W + -бозоном объединяются в слабые левоспиральные изоспиновые дублеты

со слабым изоспином T = 1/2, которым приписываются значения T 3 = +1/2 ( e ,u) и T 3 = -1/2 (e,d). У антифермионов проекции слабого изоспина имеют противоположные знаки.
Слабые взаимодействия с изменением заряда (заряженные токи) описываются состояниями и . Они происходят с испусканием или поглощением W - или W + -бозонов. Слабые процессы с участием Z 0 -бозона были названы процессами с нейтральными слабыми токами.
Таким образом в модели Вайнберга - Салама W − , W + , Z 0 -бозоны и γ-квант являются квантами единого электрослабого поля. Стандартная модель, объединяющая электромагнитное и слабое взаимодействия, предсказывает связь между константами электромагнитного и слабого взаимодействий и соотношение между массами заряженных и нейтральных бозонов:

, ,

где θ W − угол Вайнберга. Извлеченная из экспериментов величина sin 2 θ W = 0.23.
Обнаружение в 1973 г. слабых нейтральных токов явилось ярким подтверждением правильности стандартной модели, в которой были предсказаны значения масс промежуточных бозонов −
m(Z 0) = ~90 ГэВ; m(W ±) = ~80 ГэВ
Единственный практически реальный способ получения частиц такой массы состоял в том, чтобы сталкивать протонные и антипротонные пучки. Эксперимент был выполнен в 1983 году на pp-коллайдере ЦЕРН

p + → W ± + X,

p + → Z 0 + X,

где X - все другие частицы, образующиеся в результате столкновения протона и антипротона. Бозоны идентифицировались по распадам

W +(-) e +(-) + e ( e),

Наблюдаемые в результате реакции заряженные лептоны с большими значениями поперечных импульсов служили доказательством образования бозонов. Полученные экспериментально значения масс бозонов (m эксп (W ±) = (81 ± 2) ГэВ, m эксп (Z 0) = (93 ± 2) ГэВ) находились в очень хорошем согласии со стандартной теорией. Между открытием нейтральных токов и наблюдением векторных бозонов прошло 10 лет.
В стандартной модели лептоны и кварки группируются в левоспиральные дублеты - поколения.

1 поколение 2 поколение 3 поколение

Заряженные токи в лептонных процессах получаются при движении по столбцам. Константы этих слабых процессов одинаковы или пока не различимы. Заряженные токи в процессах с кварками возможны не только при движении по столбцам, но и между поколениями, т.е. слабое взаимодействие смешивает кварки. Но слабые константы кварковых процессов

d → u + W − и s → u + W −

отличаются друг от друга и от констант лептонных процессов. Казалось, что универсальность слабого взаимодействия нарушается. Однако оказалось, что эти константы можно связать между собой. Это уже в 1963 году было сделано Н. Кабиббо , который для связи констант β-распада и распада странных частиц ввел параметр − угол Кабиббо (рис.18). Универсальность слабого взаимодействия была сохранена. Но открытие нейтральных слабых токов поставило новую проблему − теория Кабиббо в этом случае предсказывает наличие нейтральных токов с изменением странности, что резко противоречит эксперименту. Для выхода из этого затруднения Глэшоу , Илиопулос и Майани ввели 4-ый кварк с тем же зарядом, что и u-кварк.Для четырехкварковой схемы столбцы для кварков записываются следующим образом (Когда Кабибо предложил свою параметризацию кварковой модели еще не было.)

.

При этом предсказывается, что основными каналами распада очарованных кварков являются каналы c → seν e и c → sμν μ , вероятность этих распадов пропорциональна cos 2 θ c , и подавлены каналы c → deν e и c → dμν μ , вероятность которых пропорциональна sin 2 θ c . В 1973 году М. Кобаяши и Т. Маскава обобщили подход Кабиббо на шестикварковую схему. Это минимальная по числу кварков модель, в которой, наряду с тремя углами смешивания θ 12 , θ 23 , θ 13 можно ввести фазу δ 13 , описывающую нарушение СР-инвариантности. Смешивание трех поколений кварков описывается матрицей Кабиббо-Кобаяши- Маскавы

где c ij = cosθ ij , s ij = sinθ ij элементы матрицы - комбинации синусов и косинусов углов поворота. Например, первый элемент это − произведение cosθ 12 ×cosθ 13 . Современные оценки углов:
θ 12 = ~13 0 , θ 23 = ~2 0 , θ 13 = ~0.1 0 . Так как cosθ 13 отличается от единицы только в шестом знаке после запятой, результаты, полученные в четырехкварковой схеме, сохраняются.
Для определенных таким образом d", s", b"-кварков константа слабого взаимодействия имеет одинаковое значение для лептонных и кварковых семейств.
Смешивание поколений кварков стимулировало интерес к проблеме осцилляций и смешивания нейтрино. Существует ли смешивание поколений лептонов?
До сих пор говорилось об объединении электромагнитных и слабых взаимодействий. Начав с четырех взаимодействий и создав теорию электрослабых взаимодействий, физики свели их число к трем. Нельзя ли сделать следующий шаг, объединив электрослабое взаимодействие с сильным? Сильное взаимодействие проявляется между кварками, а слабое между лептонами и кварками. В результате слабых взаимодействий один тип кварков может превращаться в другой

d → u + e − + e .

Слабые взаимодействия приводят к распаду μи τ-лептонов. Так мюон распадается, превращаясь в электрон и нейтрино и антинейтрино

μ − → ν μ + e − + e .

Модели, в которых рассматривается объединение электрослабого и сильного взаимодействий, называются Великим объединением. В основе Великого объединения лежит гипотеза, что сильное и электрослабое взаимодействия являются низкоэнергетичными компонентами одного и того же калибровочного взаимодействия, описываемого единой константой. Наблюдаемые на опыте константы взаимодействий сильно различаются при энергии ~ 1 ГэВ и зависят от расстояния. Предполагается, что на расстоянии ~ 10 -28 см константы становятся одинаковыми. Согласно простейшей модели Великого объединения, сильное и электрослабое взаимодействия объединяются при энергии ~10 15 ГэВ. В лабораторных условиях вряд ли достижимы такие энергии. Однако есть явление, которое следует из такой объединенной теории. В этой модели протон должен быть нестабильной частицей, правда, с большим временем жизни. Если сильное и электрослабое взаимодействия являются разными проявлениями более общего взаимодействия, то кварки и лептоны должны быть компонентами одного и того же мультиплета. Следовательно, возможны процессы, в которых кварки могут превращаться в лептоны. Это значит, что протон, состоящий из кварков, не может быть абсолютно стабильным, а может распадаться, превращаясь в более легкие частицы. Например, возможны распады

p → π 0 + e + ,
p → π + +.

По оценкам в рамках единой теории сильных и электрослабых взаимодействий время жизни протона ~10 32 лет. В настоящее время ведутся интенсивные эксперименты по поиску нестабильности протона.
Еще одним кандидатом на единую теорию являются суперсимметричные теории. В этих теориях фермионы имеют суперпартнеров, которые должны быть бозонами, а бозоны - суперпартнеров, которые должны быть фермионами. В суперсимметричных теориях постулируется существование операторов , которые переводят бозоны |b> в фермионы |f>

Сопряженные операторы превращают фермионы в бозоны. Оператор оставляет неизменными все квантовые числа частицы, за исключением спина. На поиск суперсимметричных партнеров направлен целый ряд экспериментов на действующих и строящихся коллайдерах.
Переносчиком гравитационного взаимодействия в квантовой теории гравитации считается гравитон - безмассовая частица со спином 2. Гравитационное взаимодействие универсально. В нем участвуют все частицы.

О Фундаментальных взаимодействиях


Фундаментальные взаимодействия
Общеизвестно, что вся материя состоит из элементарных частиц. Эти частицы взаимодействуют друг с другом посредством 4 фундаментальных взаимодействий, имеющих различную природу и силу.

Наиболее очевидным из фундаментальных взаимодействием, и наиболее слабым из них, является гравитационное взаимодействие , поэтому его наиболее сложно исследовать экспериментально. Менее очевидным, но тоже широко распространенным и привычным является электромагнитное взаимодействие . Как и гравитационное, оно ослабевает пропорционально r 2 , но имеет относительную силу в 10 36 раз больше. Причиной того, что оно не является абсолютно доминирующим, является тот факт, что практически вся материя Вселенной является электронейтральной. Оба этих взаимодействия действуют на бесконечно больших расстояниях, хотя, возможно, исчезающе слабо.

Но помимо этих, существуют еще два фундаментальных взаимодействия, играющих важную роль в микромире, названных без особых изысков слабое и сильное . Слабое взаимодействие играет важную роль в радиоактивном бета-распаде ядер, в частности, именно благодаря ему распадается свободный нейтрон (период полураспада 10 минут 14 секунд, не путать со временем жизни), и является единственным несимметричным взаимодействием (только с его помощью можно объяснить инопланетянам, где право, а где лево:)). Сильное взаимодействие (в частности) удерживает нуклоны (протоны и нейтроны) в ядре вместе.

В настоящее время принято описывать фундаментальные взаимодействия с помощью специальных частиц, их переносящих - калибровочных бозонов .

На красивую картинку по теме можно посмотреть .

Элементарные частицы
После открытия Томсоном в 1897 году первой элементарной частицы - электрона (корпускулярная теор ия света существовала и раньше, но настоящую популярность приобрела уже после работ Эйнштейна по фотоэффекту) было открыто более 400 элементарных частиц. В периодической системе для около 120 различных элементов с их изобилием химических свойств существует общая основа: их электронное строение, являющееся функцией от количества протонов и нейтронов. При этом предпосылками к изучению электронного строения атомов стала классификация элементов. К счастью, в физике элементарных частиц тоже возможна такая классификация.

В настоящее время существует две основных классификации элементарных частиц: по спину и по структуре.

Спин это некоторое свойство частиц, проявляющееся во взаимодействии с магнитным полем (на нем основан, в частности, ядерный магнитный резонанс (ЯМР), один из наиболее совершенных методов анализа, как в химии, так и в медицине). Частицы с полуцелым спином (например, электрон, нуклоны и нейтрино) имеют другую статистику поведения (т.н. статистику Ферми-Дирака), чем частицы с целым (например, фотон) (статистика Бозе-Эйнштейна), поэтому они назваются соответственно фермионами и бозонами . Иногда добавляются прилагательные: скалярный, векторный, тензорный бозон или спинорный, спин-векторный фермион. Это просто обозначения величины спина (0, 1, 2 и 1/2, 3/2 соответственно).

По структуре частицы можно разделить на составные (адроны) и бесструктурные.

Адроны состоят из кварков . Сейчас общепринятой является точка зрения, что адроны нельзя разделить на кварки никаким образом (это явление получило название конфайнмент ), потому что сила взаимодействия между ними с ростом расстояния возрастает (впрочем, строго это еще не доказано: предлагает за доказательство миллион долларов - задача решения уравнений Янга-Миллса). Однако их существование несомненно: в частности при бомбардировке адронов высокоэнергетичными электронами характеристики рассеяния указывают на то, что внутри адрона существует несколько так называемых партонов , рассеяние на которых происходит особенно сильно. Если же приложить еще больше энерги и, связь между кварками может «порваться», но избыток энерги и приведет к образованию новых кварков с обеих сторон разрыва - произойдет т.н. рождение адронных струй . Теория, в которой предполагается существование всего 6 видов кварков (d, u, s, c, b, t и их антикварки), объяснила существование всех известных на сегодня адронов, которых в изобилии наоткрывали в 50-60-х годах бодрые экспериментаторы.

Большинство адронов состоит из 2 (мезоны ) или 3 (барионы ) кварков: «цвет» адрона должен быть «бесцветным», что хорошо описывается только в этих случаях. Теоретически предсказана возможность существования, не подтвержденная пока экспериментом, пентакварков , состоящих из 5 кварков, и тетракварков (из 4).

Сами же кварки относятся к бесструктурным частицам (хотя делаются безуспешные попытки построения теор ий, где бы они состояли из чего-нибудь, что можно будет назвать «преон » или «айкон »). Другие бесструктурные частицы классифицируются по их спину: калибровочные бозоны и лептоны , являющиеся фермионами.

Материя состоит из адронов и лептонов, излучение из калибровочных бозонов.

Любопытно заметить, что существует несколько теор ий струн, которые наравне с брадионами (частицами, движущимися медленнее скорости света) и люксонами (движущиеся с ней: фотон, глюоны и гипотетический гравитон) вводят тахионы , которые движутся быстрее скорости света и имеют мнимую массу.

Суперсимметрия
«Фермионы и бозоны» - подумали некоторые физики - «целых два типа! 2 - это же дофига!» И придумали суперсимметрию . Согласно ей, на самом деле все бозоны и фермионы это одни и те же частицы, и они могут превращаться друг в друга (на практике это обозначает возможность превращения материи в излучение и наоборот; тут стоит заметить, что аннигиляция это самый мощный возможный источник энерги и в нашей Вселенной, не то, что какая-нибудь нефть).

В теор ии суперсимметрии возникает острая необходимость обнаружить частицы-суперпартнеры . Но вот беда: при обычных (небольших) энерги ях происходит нарушение суперсимметрии, а именно не существуют пар бозон-фермион, которые бы отличались только спином, но имели бы равные массы и заряды. «Не беда» - подумали эти физики - «значит просто суперпартнеры очень тяжелые». Следует заметить, что в рамках теор ии суперсимметрии возможно простое объяснение существования темной материи , как частиц нейтралино , поэтому поиск суперпартнеров весьма интересен.

Одним из наиболее вероятных кандидатов на обнаружение является суперпартнер t-кварка: ввиду большой массы последнего, его суперпартнер может оказаться наоборот легким, и доступным для наблюдения на LHC.

Объединение взаимодействий
Несмотря на все различия частиц и их взаимодействий, в них можно обнаружить достаточно много общего: общеизвестным примером является объединение электричества и магнетизма в электромагнетизм Максвеллом в 1864 году. Идея описывать различные взаимодействия общим уравнением стала особенно популярной после создания Эйнштейном в 1916 году Общей теор ии относительности , описавшей гравитацию. Единая теор ия поля , которая позволила бы описать в рамках единого подхода все элементарные частицы и их взаимодействия, объяснила бы все существующие во Вселенной физические явления - такая гипотетическая теор ия получила полушутливое название «Теория всего ». Задачи перед ней ставятся нешуточные: мало того, что она должна объяснять и предсказывать все существующие элементарные частицы и их взаимодействия, ей еще следует объяснять их массы и время жизни.

Однако шаги по ее построению долгое время были безуспешными: в частности, Эйнштейн работал над созданием такой теор ии до самой смерти. Легенды гласят, что Эйнштейну удалось это сделать, и для экспериментальной проверки его теор етических выводов американское правительство в 1943 году организовало секретный Филадельфийский эксперимент , в ходе которого якобы произошла телепортация на несколько сотен километров эсминца «Элдридж». Якобы затем Эйнштейн уничтожил все свои изыскания в этой области, поскольку они могли быть использованы в исключительно разрушительном вооружении. Правильные ребята относятся к этой легенде с легким скепсисом: большинство экспериментов, сделавших возможным создание Стандартной модели, объединяющей только 3 из 4 фундаментальных взаимодействий, было произведено уже после смерти Эйнштейна.

Сдвиг в области построения Единой теор ии поля наметился только после открытия слабого и сильного взаимодействий. Первым шагом стала теор ия электрослабого взаимодействия , построенная Саламом, Глэшоу и Вайнбергом в 1967 году на основе квантовой электродинамики (за нее они получили Нобелевскую премию в 1979 году, т.е. почти сразу). Затем в 1973 году была построена теор ия, описывающая сильное взаимодействие - квантовая хромодинамика . На основе этих двух теор ий и была создана Стандартная модель , все предсказания которой подтвердились, кроме до сих пор не обнаруженного бозона Хиггса .

Сильное взаимодействие и квантовая хромодинамика
Способность кварка участвовать в сильном взаимодействии называется его цветом . Всего существует 3 кварковых цвета, названных красным, зеленым и синим. Квантом поля в квантовой хромодинамике является глюон , частица, похожая на фотон, так же не имеющая заряда, массы и античастицы, так же, как и остальные калибровочные бозоны, имеющая единичный спин. Однако сильное взаимодействие существенно сложнее электромагнитного: глюон сам является носителем цвета и поэтому может испытывать сильные взаимодействия с другими глюонами. Кроме того, так как глюон несет цвет, существует не один, а целых 8 типов глюонов. Глюоны, как и кварки, наблюдались как партоны при рассеянии электронов на нуклонах.

Стандартная модель
Стандартная модель не выводит все свойства материи из пальца. Ей для этого нужно 19 параметров, 17 из которых уже измерены экспериментально: массы 3 видов лептонов и 6 кварков; 4 параметра, относящиеся к матрице Кабиббо-Кобаяши-Маскавы , описывающей вероятности слабых распадов, изменяющих «аромат» кварков; 3 константы, связанные с силами фундаментальных взаимодействий; еще один параметр сильного взаимодействия; и, наконец, два параметра, пока не определенные экспериментально, связанные с взаимодействием бозона Хиггса с веществом, и бозонов Хиггса друг с другом.

Стандартная модель это одна из наиболее четких и точных теор ий в физике: все ее предсказания, кроме, пока что, бозона Хиггса, были подтверждены экспериментом, иногда с потрясающей точностью. Одним из наиболее громких успехов Стандартной модели явилось предсказание массы калибровочных бозонов W и Z, отвечающих за слабое взаимодействие.

Конечно, Стандартная модель не может претендовать на звание Единой теор ии поля, поскольку она не включает в себя теор ию гравитации (и перспективы ее интеграции выглядят весьма туманно), не в состоянии объяснить существование трех поколений частиц, между которыми они отличаются только массой:

Первое поколение Второе поколение Третье поколение
Лептон (заряд?1) Электрон
5.11x10 ?4 ГэВ
Мюон
0.106 ГэВ
Тау-частица
1.777 ГэВ
Нейтрино (заряд 0)
Электронное нейтрино
(0-0.13)x10 ?9 ГэВ
Мюонное нейтрино
(0.009-0.13)x10 ?9 ГэВ
Тау-нейтрино
(0.04-0.14)x10 ?9 ГэВ
Кварк d-типа (заряд?1/3) d-кварк
0.005 ГэВ
s-кварк
0.1 ГэВ
b-кварк
4.2 ГэВ
Кварк u-типа (заряд 2/3) u-кварк
0.002 ГэВ
c-кварк
1.3 ГэВ
t-кварк
173 ГэВ

Предполагается, что возможно существование очень тяжелых частиц 4-го поколения, но экспериментально они еще не обнаружены.

В рамках Стандартной модели оказалось на удивление удобно описывать фундаментальные взаимодействия в терминах теор ии групп :


  • для описания электромагнитного взаимодействия используется группа U(1) (это просто группа по умножению комплексных чисел, равных по модулю 1);
  • для описания слабого группа SU(2) (мультипликативная группа специальных унитарных матриц 2x2, т.е. унитарных матриц с определителем 1: количество генераторов такой группы равно 3 (они называются матрицами Паули ), поэтому и переносчиков слабого взаимодействия тоже 3);
  • для описания сильного группа SU(3) (аналогично SU(2), только 3x3: 8 генераторов (называются матрицами Гелл-Мана ) и, следовательно, 8 глюонов).
Вообще, хорошо разработанный аппарат групп Ли , к которым относятся эти группы (U(1) это вообще простейшая группа Ли), дал возможность лаконично и удобно описывать все явления, кроме гравитации. Именно поэтому не прекращаются попытки создать Единую теор ию поля именно на основе аппарата групп Ли. Об одной из недавних попыток чуть позже.

Что такое бозон Хиггса?
В рамках Стандартной модели возникает необходимость в бозоне Хиггса. Эта частица с нулевым спином отвечает за массу элементарных частиц, но настолько неуловима, что нет даже уверенности, что такая частица всего одна. Именно для ее обнаружения (или необнаружения) и был построен Большой Адронный Коллайдер LHC .

Бозон Хиггса наделяет частицы массами так, что переносчик электромагнитного взаимодействия фотон остается безмассовым и может перемещаться на какие угодно расстояния, в то время как слабое взаимодействие передается при помощи массивных частиц, что ограничивает радиус этого взаимодействия субъядерными масштабами. Таким образом, при помощи этой частицы реализуется нарушение электрослабой симметрии, делающее электромагнитное и слабое взаимодействие настолько непохожими друг на друга.

Каноничная картинка (масштаб не соблюден, глубина примерно 100 метров, а длина туннеля 26.7 км):

Коллайдер это ускоритель (в случае LHC - кольцевой), в котором сталкиваются два пучка элементарных частиц. LHC строится с 2001 года в туннеле на границе Франции и Швейцарии, где раньше располагался электронно-позитронный коллайдер LEP. На LHC установлены 4 крупных детект ора:

О том, насколько много данных будет выдавать коллайдер, свидетельствует тот факт, что, несмотря на аппаратно реализованную трехуровневую фильтрацию «неинтересных» событий, LHC будет генерировать в среднем 500 мегабайт данных в секунду.

Красивые картинки коллайдера: раз , два , три , четыре ; с большим количеством красивых картинок.

LHC будет работать до 2020-х годов, собирая экспериментальный материал. Но есть надежда, что первые значим ые результаты появятся уже к концу следующего года. Без всякого сомнения, технический и научный опыт, который был получен при его создании и будет получен при его использовании, сыграет огромную роль в прогнозируемом создании к середине 21-го века Очень Большого Адронного Коллайдера (The Very Large Hadron Collider (VLHC)).

Предположительно на LHC могут быть обнаружены магнитные монополи . Это общее название для гипотетических частиц, обладающих ненулевым магнитным зарядом. Еще Дирак предсказал потенциал ьную возможность их существования.

Сравнительная таблица энерги й
Чтобы оценить масштабы энерги й и возможные открытия, стоит взглянуть на таблицу, где перечислены массы некоторых элементарных частиц, некоторые характерные энерги и и энерги и коллайдеров (в основном привожу суммарные энерги и сталкивающихся пучков: нужно отметить, что для наблюдения частицы с массой E, как правило, следует использовать суммарную энерги ю пучков 2E).

В качестве единицы энерги и в атомной и квантовой физике повсеместно используется электронвольт (эВ) вместо джоуля. 1 эВ ~ 1.6021765x10 ?19 Дж. Массы частиц также измеряются в эВ, используя уравнение Эйнштейна E = mc 2 .

Энергия
511 КэВ электрон
1.9 МэВ u-кварк
4.4 МэВ d-кварк
87 МэВ s-кварк
106 МэВ мюон
938.3 МэВ протон
939.6 МэВ нейтрон
1.32 ГэВ c-кварк
1.78 ГэВ тау-частица
4.24 ГэВ b-кварк
6 ГэВ крупнейший российский коллайдер
45 ГэВ LEP, 1989
80.4 ГэВ W-бозон
91.2 ГэВ Z-бозон
~100 ГэВ электрослабое объединение
100-1000 ГэВ частицы-суперпартнеры (?)
117-251 ГэВ бозон Хиггса (?), наиболее вероятный интервал
172.7 ГэВ t-кварк
189 ГэВ LEP, 1998
~200 ГэВ LEP, 1999
209 ГэВ LEP, 2000, перед выключением
250-650 ГэВ бозон Хиггса (?), «тяжелый вариант»
650-1000 ГэВ бозон Хиггса (?), «очень тяжелый вариант»
900 ГэВ LHC, Comission Run, лето 2008
980 ГэВ Tevatron , пиковая мощность
7 ТэВ LHC, конец 2008
14 ТэВ LHC, проектная энерги я
~1000 ТэВ Высокоэнергетичные космические лучи
6.24x10 9 ГэВ 1 джоуль
6x10 10 ГэВ предел Грайзена-Зацепина-Кузьмина , теор етический предел энерги и для космических лучей
~10 14 -10 16 ГэВ «Великое объединение» электрослабого и сильного взаимодействия (?)
~10 19 ГэВ Планковская энерги я, предполагаемое объединение всех взаимодействий (?)
3x10 31 ГэВ Годовая выработка электроэнерги и на Земле

Риски, связанные с запуском/незапуском LHC
Основные опасения, связанные с запуском LHC, делятся на две части:

1. Образование стабильной микроскопической черной дыры , которая поглотит Землю (красивая картинка черной дыры)
Некоторые теор ии предсказывают возможность образования при экспериментах на LHC микроскопических черных дыр. Черная дыра это объект со сверхсильной гравитацией, не отпускающей даже свет. Но не все так фатально, поскольку существует такое явление, как излучение Хокинга . Излучение Хокинга это следствие того, что гравитация черной дыры ведет к образованию не только виртуальных, но и реальных пар частица-античастица, часть из которых может оказаться выше горизонта событий. Такая частица покидает черную дыру и уносит с собой часть ее энерги и и массы. Очевидно, что для микроскопических черных дыр вероятность такого события гораздо выше, а поэтому, считают специалисты CERN, даже если черные дыры будут образовываться, они будут тут же испаряться. Но не исключено и образование микроскопических черных дыр, которые будут достаточно стабильны и не испарятся посредством излучения Хокинга. В таком случае вся Земля будет поглощена за несколько лет:)

2. Образование странной материи
Возможно образование «страпелек» (strangelet) - гипотетического состояния вещества, состоящего из примерно равного количества d-, u- и s-кварков. При взаимодействии такого вещества с обычным должна происходить цепная реакция с выделением энерги и и превращением всего вещества в «странную материю». Выживание человека после такого события маловероятно:)

В случае осуществления этих сценариев (предел мечтаний Бендера Родригеса) уместно будет называть LHC последним (last) адронным коллайдером.

В связи с подобными опасениями были сформированы несколько исследовательских групп, которые пытались оценить вероятность печального исхода. Основным доводом сторонников безопасности коллайдера является «LHC не будет делать ничего такого, чего бы не делала природа миллионы раз до этого». Это подразумевает, что на Землю периодически обрушиваются частицы космических лучей значительно более высоких энерги й, чем будут доступны на LHC. Но противники указывают на то, что даже если при таких столкновениях и образовывались микроскопические черные дыры, то они улетали сквозь Землю со скоростью лишь немногим ниже скорости света, чего, конечно, нельзя сказать о замкнутом магнитном поле коллайдера, который такую черную дыру, скорее всего, просто не выпустит.

Официальная оценка вероятности таких событий, произведенная специалистами CERN, составляет 1/50000000 (1 к 50 млн.). Однако, учитывая потенциал ьное количество жертв (6.7 миллиардов), матожидание составляет около 130 человек, что, конечно, достаточно много.

А вот известный специалист по квантовым вычислениям Скотт Ааронсон вообще считает , что LHC нужно запустить как можно скорее, потому что мы не можем исключать возможность того, что в следующем году прилетят инопланетяне, и, увидев, что мы до сих пор не открыли бозон Хиггса, посчитают нас полными дикарями и поработят нас:)

Оценка числа внеземных цивилизаций согласно катастрофическому сценарию исследования бозона Хиггса
В настоящее время наблюдается необычно большая вспышка остроумия, связанная с этим событием. Впрочем, преобладает черный юмор, к примеру, о том, что любая развитая цивилизация превращается в черную дыру в попытках исследовать бозон Хиггса. Попробую и я:)

Эта точка зрения тем более интересна, что мы не наблюдаем сигналы от внеземных цивилизаций, особенно от расположенных в центре нашей Галактики. Тут стоит заметить, что звезды центра Галактики сформировались существенно раньше Солнечной системы, а, следовательно, цивилизации там должны быть гораздо старше и развитее нашей. Зато мы наблюдаем в центре Галактики колоссальную черную дыру Стрелец-А* массой 3.7 миллионов солнечных.

Постулируем, что любая цивилизация развивается до открытия радио, а через порядка 100 лет открывает бозона Хиггса, что влечет образование коллапсара и гибель цивилизации, а так же то, что черная дыра в центре Галактики образовалась как раз из таких развитых цивилизаций.

Учитывая, что всего в нашей Галактике содержится порядка 200 миллиардов звезд и из них около 90% в центре, можно сделать предположение о том, что вероятность зарождения цивилизации в звездной системе порядка 1 к 50000. Сделаем правдоподобное предположение, что в настоящее время разумная жизнь существует в узком пояске Галактики шириной около 500 парсек (порядка плюс-минус 100 миллионов лет жизни планетной системы), высотой 300 парсек (толщина Галактики в нашей местности), и радиусом 8.5 килопарсек.

Исходя из оценки вероятности пригодности звездной системы для развития разумной жизни (см. выше, 2x10 ?5), вероятности того, что цивилизация находится прямо сейчас на уровне радио (10 ?6) и плотности звезд в этом поясе (примерно 0.1 пк?3) получим, что прямо сейчас в нашей Галактике находится примерно 20 тысяч звездных систем, в которых есть жизнь, и почти наверняка нет ни одной системы, готовой к контакту с нами. Увы, согласно этим расчетам, мы в Галактике одиноки. И некому нас предостеречь:)

Используя этот метод, можно получить в формуле Дрейка произведение пяти средних членов (по оценке, примерно 2x10 ?5 , у Дрейка 10 ?4) и L ~ 100 лет (у Дрейка гораздо оптимист ичнее, 10000 лет). Довольно хорошее... и довольно пугающее совпадение. Не опровергает оценку и шкала Кардашева : в ядре Галактики вполне уже могла зародиться цивилизация типа III, но следов ее присутствия или деятельности мы не наблюдаем.

Итак, зачем нужен LHC?


  • Поиск бозона Хиггса, отвечающего за массу частиц, последнего экспериментального подтверждения Стандартной модели;
  • Поиск частиц вне Стандартной модели: пентакварков и тетракварков, 4-го поколения частиц, магнитных монополей;
  • Поиск частиц, предсказанных теор ией Лиси
  • Поиск суперсимметрии, частиц-суперпартнеров, особенно суперпартнера t-кварка;
  • Исследование квантовой гравитации;
  • Исследование микроскопических черных дыр и излучения Хокинга;
  • Убить всех людей (гипотез а).
Даже первого пункта хватило для того, чтобы потратить на постройку и проведение экспериментов на LHC 5-10 миллиардов долларов. Но несомненным остается одно: мы не можем даже предполагать, насколько этот мегаколлайдер расширит наши знания о Вселенной. Вот некоторые предположительные успехи от развития теор ии, вызванные экспериментами на LHC:

  • Преобразование материи в энерги ю (аннигиляция), фотонные двигатели, межзвездные путешествия
  • Управление гравитацией, в частности антигравитация
  • Возможные исследования в области М-теор ии, например, параллельные миры

Будущее покажет.

Аддон №1: Если вас заинтересовала эта тема, рекомендую ознакомиться с замечательной статьей Игоря Иванова в «Вокруг света».

здать семейство адронов, содержащих его. Столь малое время жизни обусловлено большим энерговыделением Q при превращении

t -кварка в b- кварк:

Q =m t c 2 –m b c 2 = 90 ГэВ, τ ~ 1/Q 5 .

Схема наблюдения пары кварков t t имеет вид

p + p→ t+ t, t→ b+ W+ , W+ → e+ + ν e , t→ b+ W− , W− → u+ d.

7.11. Калибровочные бозоны

Следующий класс фундаментальных частиц стандартной модели образуют кванты калибровочных полей. Так называют поля, реализующие принцип локальной калибровочной инвариантности, закладываемый в основу стандартной модели. Кванты калибровочных полей – калибровочные бозоны – имеют целочисленный спин J = 0,1 и являются носителями взаимодействия между фундаментальными фермионами.

Наиболее известный калибровочный бозон – фотон – квант электромагнитного поля. Квантами сильного поля являются восемь глюонов. Слабое взаимодействие переносится тремя массивными

квантами W + , W − иZ . Калибровочные бозоны сильного, электромагнитного и слабого полей открыты экспериментально и имеют

спин J = 1, т.е. являются квантами векторных полей. Квант гравитационного поля – гравитон сJ = 2 – не найден.

Источниками калибровочных бозонов являются заряды соответствующих фундаментальных взаимодействий. Так, глюоны могут испускаться любой частицей, наделенной сильным (цветовым) зарядом. Фотон испускается (либо поглощается) только электрически заряженными частицами, наделенными слабым зарядом.

Таблица 20 Фундаментальные взаимодействия и их калибровочные бозоны

Взаимодействие

Калибровочные

частицы действуют

Все цветные частицы

8 безмассовых глюо-

нов, J = 1

Электромагнитное

Все электрически заряжен-

Безмассовый фотон,

ные частицы

J = 1

Кварки, лептоны, калибро-

Массивные бозоны

вочные бозоны W ± ,Z

W ± ,Z ,J = 1

M w c 2 ≈ 80,4 ГЭВ

M z c 2 ≈ 91,2 ГЭВ

Гравитационное

Все частицы

Безмассовый грави-

тон, J = 2

Гравитон может быть испущен любой частицей, т.к. любая частица имеет соответствующий гравитационный заряд (для массив-

ной частицы Gm ).

7.12. Глюоны

Глюоны (g ) – безмассовые электрически нейтральные частицы со спиномJ = 1 и четностьюР = 1 – являются переносчиками сильного цветного взаимодействия между кварками. Они склеивают кварки в адронах. При испускании g- глюона кварки могут изменить свой цвет, при этом остальные квантовые числа кварка и его аромат не изменяются. Хотя глюоны обладают цветом, однако их цветовая структура отличается от цветовой структуры кварка

g′

g ′′

Рис. 35. Изменение цвета кварков при испускании глюона

Рассмотрим взаимодействие двух цветных кварков – красного (к) и зеленого (з) (см. рис. 35.). Могут быть два варианта этого взаимодействия:

1) с обменом цвета, т.е. в точке 1 кварк к= g′ + з испускает глюонg′ , а кварк з его поглощает в точке2 :

точка 1

к = g′ + з точка 2 з+ к′ = к;

точка 1

к = g″ + к точка 2 з+ g″ = з.

2) без обмена цветом:

В итоге получаем цветовую структуру глюонов g′ иg″ :

g ′ = кз,g ′′ = кк ,зз

т.е. глюон обладает двумя цветовыми признаками: g′ цветом иg″ – скрытым цветом.

Каждый глюон имеет пару цветовых зарядов – цвет и антицвет. Из трех цветов (к з с) и антицветов (к з с ) можно для глюонов составить девять парных комбинаций (цвет – антицвет). Теоретические расчеты показывают, что из девяти комбинаций остаются восемь, которые даны в таблице:

7.13. Переносчики слабых взаимодействий

Переносчиками слабого

взаимодействия

являются

W + ,W − ,Z , которые часто называют промежуточными (рис. 36).

ν e (ν µ, ν τ)

νе

w−

е −(µ −, τ −)

Диаграмма 1

Диаграмма 2

e−

ƒ 4

e−

Диаграмма 3

Диаграмма 4

ν~ e

ν~ e

Диаграмма 5

Рис. 36. Графическое изображение процесса слабого взаимодействия

Диаграмма 3 описывает слабое взаимодействие фермионов (f 1234 ) посредством обмена заряженными промежуточными бозона-

ми. Диаграммa 4 – рассеяние нейтрино ν e на электроне. Возможны

слабые процессы, в которых происходит обмен нейтральным бозоном Z . В этом случае электрические заряды взаимодействующих лептонов не изменяются (диаграмма 5).

Слабые процессы, представляющие собой обмен заряженными

квантами слабого поля (W ± ), называют заряженными слабыми токами. Если слабое взаимодействие реализуется обменом нейтронным промежуточным бозономZ , то говорят о нейтральных слабых токах (рис. 38).

Промежуточные бозоны W ± ,Z имеют слабый заряд – источник поля, переносчиками которого они являются. Поэтому промежуточные бозонысами способны порождать другие промежуточные бозоны и рассеиваться друг на друге. Существенно то, что

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Введение

Э. ч. в точном значении этого термина - первичные, неразложимые частицы, из к-рых, по предположению, состоит вся материя. В понятии "Э. ч." в совр. физике находит выражение идея о первообразных сущностях, определяющих все наблюдаемые свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии.

Понятие "Э. ч." сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопич. уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все наблюдаемые вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем составных частей атомов - электронов и ядер, установление сложной природы самих ядер, оказавшихся построенными всего из двух частиц (нуклонов): протонов и нейтронов, существенно уменьшило кол-во дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - Э. ч. Выяснившаяся в нач. 20 в. возможность трактовки эл--магн. поля как совокупности особых частиц - фотонов - дополнительно укрепила убеждённость в правильности такого подхода.

Тем не менее, сформулированное предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Не исключено также, что утверждение "состоит из..." на какой-то ступени изучения материи окажется лишённым содержания. От данного выше определения "элементарности" в этом случае придётся отказаться. Существование Э. ч.- это своего рода постулат, и проверка его справедливости- одна из важнейших задач физики.

Как правило, термин "Э. ч." употребляется в совр. физике не в своём точном значении, а менее строго - для наименования большой группы мельчайших наблюдаемых частиц материи, подчинённых условию, что они не являются атомами или атомными ядрами, т. е. объектами заведомо составной природы (исключение составляет протон - ядро атома водорода). Как показали исследования, эта группа частиц необычайно обширна. Помимо протона (р), нейтрона (n), электрона (е) и фотона (g) к ней относятся: пи-мезоны (p), мюоны (m), тау-лептоны (т), нейтрино трёх типов (v e , v m , v t), т. н. странные частицы (К-мезоны и гиперо-ны), очарованные частицы и прелестные (красивые) частицы (D- и B-мезоны и соответствующие барионы ),разнообразные резонансы ,в т. ч. мезоны со скрытым очарованием и прелестью (ncu-частщы, ипсилон-частицы )и, наконец, открытые в нач. 80-х гг. промежуточные векторные бозоны (W, Z) - всего более 350 частиц, в осн. нестабильных. Число частиц, включаемых по мере их открытия в эту группу, постоянно растёт, и можно уверенно утверждать, что оно будет расти и впредь. Очевидно, что такое огромное кол-во частиц не может выступать в качестве элементарных слагающих материи, и действительно, в 70-х гг. было показано, что большая часть перечисленных частиц (все мезоны и барионы) представляют собой составные системы. Частицы, входящие в эту последнюю группу, более точно следовало бы называть "субъядерными" частицами, т. к. они представляют собой специфические формы существования материи, неагрегированной в ядра. Использование названия "Э. ч." применительно ко всем упомянутым частицам имеет в осн. истории, причины и связано с периодом исследований (нач. 30-х гг.), когда единств. известными представителями данной группы были протон, нейтрон, электрон и частица эл--магн. поля - фотон. Тогда эти частицы с известным правом могли претендовать на роль Э. ч.

Открытие новых микроскопич. частиц постепенно разрушило эту простую картину строения материи. Однако вновь открываемые частицы по своим свойствам были в ряде отношений близки к первым четырём известным частицам: либо к протону и нейтрону, либо к электрону, либо к фотону. До тех пор пока кол-во таких частиц было не очень велико, сохранялось убеждение, что все они играют фундам. роль в строении материи, и их включали в категорию Э. ч. С нарастанием числа частиц от этого убеждения пришлось отказаться, но традиц. назв. "Э. ч." за ними сохранялось.

В соответствии со сложившейся практикой термин "Э. ч." будет употребляться ниже в качестве общего названия всех мельчайших частиц материи. В тех случаях, когда речь будет идти о частицах, претендующих на роль первичных элементов материи, при необходимости будет использоваться термин "истинно элементарные частицы ".

Краткие исторические сведения

Открытие Э. ч. явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в кон. 19 в. Оно было подготовлено детальными исследованиями спектров атомов, изучением элек-трич. явлений в жидкостях и газах, открытием фотоэлектричества, рентг. лучей, естеств. радиоактивности, свидетельствовавших о существовании сложной структуры материи.

Исторически первой открытой Э. ч. был электрон - носитель отрицательного элементарного электрич. заряда в атомах. В 1897 Дж. Дж. Томсон (J. J. Thomson) убедительно показал, что т. н. катодные лучи представляют собой поток заряж. частиц, к-рые впоследствии были названы электронами. В 1911 Э. Резерфорд (E. Rutherford), пропуская альфа-частицы от естеств. радиоакт. источника через тонкие фольги разл. веществ, пришёл к выводу, что положит. заряд в атомах сосредоточен в компактных образованиях- ядрах, а в 1919 обнаружил среди частиц, выбитых из атомных ядер, протоны - частицы с единичным положит. зарядом и массой, в 1840 раз превышающей массу электрона. Другая частица, входящая в состав ядра,- нейтрон - была открыта в 1932 Дж. Чедвиком (J. Chadwick) при исследованиях взаимодействия a-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не обладает электрич. зарядом. Открытием нейтрона завершилось выявление частиц, являющихся структурными элементами атомов и их ядер.

Вывод о существовании частицы эл--магн. поля - фотона-берёт своё начало от работы M. Планка (M. Planck, 1900). Для получения правильного описания спектра излучения абсолютно чёрного тела Планк вынужден был допустить, что энергия излучения делится на отд. порции (кванты). Развивая идею Планка, А. Эйнштейн в 1905 предположил, что эл--магн. излучение является потоком квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Прямые эксперим. доказательства существования фотона были даны P. Милликеном (R. Millikan) в 1912-15 при исследовании фотоэффекта и А. Комптоном (A. Compton) в 1922 при изучении рассеяния g-квантов на электронах (см. Комптона эффект ).

Идея о существовании нейтрино - частицы, исключительно слабо взаимодействующей с веществом, принадлежит В. Паули (W. Pauli, 1930), указавшему, что подобная гипотеза позволяет устранить трудности с законом сохранения энергии в процессах бета-распада радиоакт. ядер. Экспериментально существование нейтрино было подтверждено при исследовании процесса обратного бета-распада лишь в 1956 [Ф. Райнес (F. Reines) и К. Коуэн (С. Cowan)].

С 30-х и до нач. 50-х гг. изучение Э. ч. было тесно связано с исследованием космических лучей . В 1932 в составе космич. лучей К. Андерсоном (С. Anderson) был обнаружен позитрон (е +)- частица с массой электрона, но с положит, электрич. зарядом. Позитрон был первой открытой античастицей . Существование позитрона непосредственно вытекает из релятивистской теории электрона, развитой П. Дираком (P. Dirac) в 1928-31 незадолго до обнаружения позитрона. В 1936 Андерсон и С. Неддер-мейер (S. Neddermeyer) обнаружили при исследовании космич. лучей мюоны (обоих знаков электрич. заряда) - частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие к нему по свойствам.

В 1947 также в космич. лучах группой С. Пауэлла (S. Powell) были открыты p + - и p - -мезоны с массой в 274 электронные массы, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено X. Юкавой (H. Yukawa) в 1935.

Кон. 40-х-нач. 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших назв. "странные". Первые частицы этой группы - К + -и К - -мезоны, L-гипероны - были открыты в космич. лучах, последующие открытия странных частиц были сделаны на ускорителях заряженных частиц - установках, создающих интенсивные потоки протонов и электронов высоких энергий. При столкновении с веществом ускоренные протоны и электроны рождают новые Э. ч., к-рые затем регистрируются с помощью сложных детекторов.

С нач. 50-х гг. ускорители превратились в осн. инструмент для исследования Э. ч. В 90-х гг. макс. энергии частиц, разогнанных на ускорителях, составили сотни млрд. электронвольт (ГэВ), и процесс наращивания энергий продолжается. Стремление к увеличению энергий ускоренных частиц обусловлено тем, что на этом пути открываются возможности изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц, а также возможностью рождения всё бo-лее тяжёлых частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира.

Ввод в строй протонных ускорителей с энергиями в миллиарды эВ позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигмаги-перон (I960). В 1964 была открыта самая тяжёлая частица из группы гиперонов - W - (с массой ок. двух масс протона).

Начиная с 60-х гг. с помощью ускорителей выявлено большое число крайне неустойчивых (по сравнению с другими нестабильными Э. ч.) частиц, получивших назв. резо-нансов . Массы большинства превышают массу протона. [Первый из них-D (1232), распадающийся на p-мезон и нуклон,- известен с 1953.] Оказалось, что резо-нансы составляют осн. часть Э. ч.

В 1974 обнаружены массивные (3-4 протонные массы) и в то же время относительно устойчивые пси-частицы, со временем жизни примерно в 10 3 раз большим времени жизни, типичного для резонансов. Они оказались тесно связанными с новым семейством Э. ч.- очарованных, первые представители к-рого (D-мезоны, L с -барионы) открыты в 1976.

В 1977 обнаружены ещё более тяжёлые (ок. 10 протонных масс) ипсилон-частицы, так же, как и пси-частицы, аномально устойчивые для частиц таких больших масс. Они явились провозвестниками существования ещё одного необычного семейства прелестных, или красивых, частиц. Его представители - В-мезоны - открыты в 1981-83, L b -барионы - в 1992.

В 1962 выяснено, что в природе существует не один тип нейтрино, а, по крайней мере, два: электронное v e и мюонное v m . 1975 принёс открытие т-лептона, частицы почти в 2 раза тяжелее протона, но в остальном повторяющей свойства электрона и мюона. Вскоре стало ясно, что с ним связан ещё один тип нейтрино v т.

Наконец, в 1983 в ходе экспериментов на протон-антипротонном коллайдере (установке для осуществления встречных столкновений пучков ускоренных частиц) открыты самые тяжёлые из известных Э. ч.: заряженные промежуточные бозоны W b (m W 80 ГэВ) и нейтральный промежуточный бозон Z 0 (m Z = 91 ГэВ).

T. о., почти за 100 лет, прошедшие после открытия электрона, выявлено огромное число разнообразных микрочастиц материи. Мир Э. ч. оказался достаточно сложно устроенным. Неожиданными во мн. отношениях оказались свойства обнаруженных Э. ч. Для их описания, помимо характеристик, заимствованных из классич. физики, таких, как электрич. заряд, масса, момент количества движения, потребовалось ввести много новых спец. характеристик, в частности для описания странных, очарованных и прелестных (красивых) Э. ч.- странность [К. Нишиджима (К. Nishijima), M. Гелл-Ман (M. Gell-Mann), 1953], очарование [Дж. Бьёркен (J. Bjorken), Ш. Глэшоу (Sh. Glashow), 1964], красота . Уже названия приведённых характеристик отражают необычность описываемых ими свойств Э. ч.

Изучение внутр. строения материи и свойств Э. ч. с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классич. механики и , что потребовали для своего описания совершенно новых теоретич. построений. Такими новыми теориями явились прежде всего частная (спец.) относительности теория (Эйнштейн, 1905) и квантовая механика (H. Бор, Л. де Бройль, В. Гейзенберг, Э. Шрёдингер, M. Борн; 1924-27). Теория относительности и квантовая механика ознаменовали собой подлинную революцию в науке о природе и заложили основы для описания явлений микромира. Однако для описания процессов, происходящих с Э. ч., оказалось недостаточно. Понадобился следующий шаг - квантование классич. полей (т. н. вторичное квантование )и разработка квантовой теории поля . Важнейшими этапами на пути её развития были: формулировка квантовой электродинамики (Дирак, 1929), квантовой теории бета-распада [Э. Ферми (E. Fermi), 1934] - предшественницы совр. феноменологической теории слабых взаимодействий, квантовой мезодинамики (X. Юкава, 1935). Этот период завершился созданием последоват. вычислит. аппарата квантовой электродинамики [С. Томона-га (S. Tomonaga), P. Фейнман (R. Feynman), Ю. Швин-гер (J. Schwinger); 1944-49], основанного на использовании техники перенормировки .Эта техника была обобщена в дальнейшем и на др. варианты квантовой теории поля.

Существенный этап последующего развития квантовой теории поля был связан с разработкой представлений о т. н. калибровочных полях или Янга - Миллса полях (Ч. Янг, P. Миллс, 1954), которые позволили установить взаимосвязь свойств симметрии взаимодействия с полей. Квантовая теория калибровочных полей в настоящее время является основой для описания взаимодействий Э. ч. У этой теории имеется ряд серьёзных успехов, и всё же она ещё очень далека от завершённости и не может пока претендовать на роль всеобъемлющей теории Э. ч. Возможно, понадобятся ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и свойств пространства-времени, прежде чем такая теория будет построена.

Основные свойства элементарных частиц. Классы взаимодействий

Все Э. ч--объекты исключительно малых масс и размеров. У большинства из них массы m имеют порядок величины массы протона, равной 1,6·10 -24 г (заметно меньше лишь масса электрона: 9·10 -28 г). Определённые из опыта размеры протона, нейтрона, p- и К-мезонов по порядку величины равны 10 -13 см (см. "Размер" элементарной частицы) . У электрона и мюона определить размеры не удалось, известно лишь, что они меньше 10 -16 см. Микроскопич. массы и размеры Э. ч. лежат в основе квантовой специфики их поведения. Характерные длины волн, которые следует приписать Э. ч. в квантовой теории (=/тс-комптоновская длина волны) , по порядку величин близки к типичным размерам, на к-рых осуществляется их взаимодействие (напр., для p-мезона /тс 1,4 · 10 -13 см). Это и приводит к тому, что квантовые закономерности являются определяющими в поведении Э. ч.

Наиб. важное квантовое свойство всех Э. ч--их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч.- это специфич. кванты материи, более точно - кванты соответствующих полей физических . Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, напр., процесс рождения p + -мезона при столкновении двух протонов (p+pp+ n + p +) или процесс электрона и позитрона, когда взамен исчезнувших частиц возникают, напр., два g-кванта (е + +е - g+ g). Но и процессы упругого рассеяния частиц, напр. е - +р-> е - +р, также связаны с поглощением нач. частиц и рождением конечных частиц. Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в к-ром продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад Э. ч. подобен распаду возбуждённого атома на осн. состояние и фотон. Примерами распадов Э. ч. могут служить (знак "тильда" над символом частицы здесь и в дальнейшем соответствует античастице).

Разл. процессы с Э. ч. при относительно небольших энергиях [до 10 ГэВ в системе центра масс (с. ц. м.)] заметно отличаются по интенсивности их протекания. В соответствии с этим порождающие их взаимодействия Э. ч. можно феноменологически разделить на неск. классов: сильное взаимодействие, электромагнитное взаимодействие и слабое взаимодействие .Все Э. ч. обладают, кроме того, гравитационным взаимодействием .

Сильное взаимодействие выделяется как взаимодействие, к-рое ответственно за процессы с Э. ч., протекающие с наибольшей интенсивностью по сравнению с др. процессами. Оно приводит к самой сильной связи Э. ч. Именно сильное взаимодействие обусловливает связь протонов и нейтронов в ядрах атомов и обеспечивает исключит. прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

Эл--магн. взаимодействие характеризуется как взаимодействие, в основе к-рого лежит связь с эл--магн. полем. Процессы, обусловленные им, менее интенсивны, чем процессы сильного взаимодействия, а порождаемая им связь Э. ч. заметно слабее. Эл--магн. взаимодействие, в частности, ответственно за процессы излучения фотонов, за связь атомных электронов с ядрами и связь атомов в молекулах.

Слабое взаимодействие, как показывает само название, слабо влияет на поведение Э. ч. или вызывает очень медленно протекающие процессы изменения их состояния. Иллюстрацией этого утверждения может служить, напр., тот факт, что нейтрино, участвующие только в слабом взаимодействии, беспрепятственно пронизывают, напр., толщу Земли и Солнца. Слабое взаимодействие ответственно за сравнительно медленные распады т. н. квазистабильных Э. ч. Как правило, времена жизни этих частиц лежат в диапазоне 10 -8 -10 -12 с, тогда как типичные времена переходов для сильного взаимодействия Э. ч. составляют 10 -23 с.

Гравитац. взаимодействия, хорошо известные по своим макроскопич. проявлениям, в случае Э. ч. в силу чрезвычайной малости их масс на характерных расстояниях ~10 -13 см дают исключительно малые эффекты. В дальнейшем (за исключением раздела 7) они обсуждаться не будут.

"Силу" разл. классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами соответствующих констант взаимодействий . Для сильного, эл--магн., слабого и гравитац. взаимодействий протонов при энергии процессов ~ 1 ГэВ BC. ц. м. эти параметры соотносятся как 1:10 -2:10 -10:10 -38 . Необходимость указания ср. энергии процесса связана с тем, что в феноменологич. теории слабого взаимодействия безразмерный параметр зависит от энергии. Кроме того, интенсивности разл. процессов очень по-разному зависят от энергии, а феноменологическая теория слабого взаимодействия при энергиях больших M W в с. ц. м. перестаёт быть справедливой. Всё это приводит к тому, что относит. роль разл. взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц и разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях.

По совр. представлениям, при энергиях выше M W (т. е. 80 ГэВ в с. ц. м.) слабое и эл--магн. взаимодействия сравниваются по силе и выступают как проявление единого электрослабого взаимодействия . Выдвинуто также привлекательное предположение о возможном выравнивании констант всех трёх видов взаимодействий, включая сильное, при сверхвысоких энергиях, больших 10 16 ГэВ (модель т. н. Великого объединения) .

В зависимости от участия в тех или иных видах взаимодействий все изученные Э. ч., за исключением фотона, W - и Z-бозонов, разбиваются на две осн. группы: адроны и лептоны . Адроны характеризуются прежде всего тем, что они участвуют в сильном взаимодействии, наряду с эл--магнитным и слабым, тогда как лептоны участвуют только в эл--магнитном и слабом взаимодействиях. (Наличие общего для той и другой группы гравитац. взаимодействия подразумевается.) Массы адронов по порядку величины близки к массе протона (т р ) , иногда превышая её в неск. раз; мин. массу среди адронов имеет p-мезон: т p 1 / 7 m p , . Массы лептонов, известных до 1975-76, были невелики (0,1 m p)- отсюда их название. Однако более поздние данные свидетельствуют о существовании тяжёлых т-лептонов с массой ок. двух масс протона.

Адроны-самая обширная группа из известных Э. ч. В неё входят все барионы и мезоны, а также т. н. резонан-сы (т. е. большая часть упомянутых 350 Э. ч.). Как уже указывалось, эти частицы имеют сложное строение и на самом деле не могут рассматриваться как элементарные. Лептоны представлены тремя заряженными (е, m, т) и тремя нейтральными частицами (v e , v m , v т). Фотон, W + и Z 0 -бозоны образуют вместе важную группу калибровочных бозонов, осуществляющих перенос эл--слабого взаимодействия. Элементарность частиц из этих двух последних групп пока не подвергается серьёзному сомнению.

Характеристики элементарных частиц

Каждая Э. ч., наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определ. физ. величин или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и нек-рый общий множитель- единицу измерения; об этих числах говорят как о квантовых числах Э. ч. и задают только их, опуская единицы измерения.

Общие характеристики всех Э. ч--масса (т) , время жизни (т), спин (J )и электрич. заряд (Q) .

В зависимости от времени жизни т Э. ч. делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности совр. измерений, являются электрон (т>2 · 10 22 лет), протон (т>5 · 10 32 лет), фотон и все типы нейтрино. К квазистабильным относят частицы, распадающиеся за счёт эл--магн. и слабого взаимодействий. Их времена жизни лежат в интервале от 900 с для свободного нейтрона до 10 -20 с для S 0 -гиперона. Резо-нансами наз. Э. ч., распадающиеся за счёт сильного взаимодействия. Их характерные времена жизни 10 -22 -10 -24 с. В табл. 1 они помечены значком * и вместо т приведена более удобная величина: ширина резонанса Г=/т.

Спин Э. ч. J является целым или полуцелым кратным величине. В этих единицах спин p- и К-мезонов равен 0, у протона, нейтрона и всех лептонов J= 1/2, у фотона, W b -и Z-бозонов J= 1. Существуют частицы и с большим спином. Величина спина Э. ч. определяет поведение ансамбля одинаковых (тождественных) частиц или их статистику (Паули, 1940). Частицы полуцелого спина подчиняются Ферми - Дирака статистике (отсюда назв. фермионы), к-рая требует антисимметрии волновой ф-ции системы относительно перестановки пары частиц (или нечётного числа таких перестановок) и, следовательно, "запрещает" двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип ).Частицы целого спина подчиняются Базе - Эйнштейна статистике (отсюда назв. бозоны), к-рая требует волновой ф-ции относительно перестановок частиц и допускает нахождение любого числа частиц целого спина в одном и том же состоянии. Статистич. свойства Э. ч. оказываются существенными в тех случаях, когда при рождении или распаде образуется неск. одинаковых частиц.


П р и м е ч а н и е. Знаком * слева помечены частицы (как правило, резонансы), для к-рых вместо времени жизни т приведена ширина Г=/t. Истинно нейтраль ные частицы помещены посередине между частицами и античастицами. Члены одного изотопического мульти плета расположены на одной строке (в тех случаях , когда известны характеристики каждого члена мульти плета,- с небольшим смещением по вертикали). Изме нение знака чётности P у антибарионов не указано, рав но как и изменение знаков S, С, b y всех античастиц. Для лептонов и промежуточных бозонов внутренняя чётность не является точным (сохраняющимся) кванто вым числом и потому не обозначена. Цифры в скобках в конце приводимых физических величин обозначают существующую ошибку в значении этих величин, относящуюся к последним из приведённых цифр .

Электрич. заряды изученных Э. ч. (кроме ) являются целыми кратными величине е= 1,6·10 -19 Кл (4,8 · 10 -10 CGS), наз. элементарным электрическим зарядом . У известных Э. ч. Q = 0, + 1, b2.

Помимо указанных величин, Э. ч. дополнительно характеризуются ещё рядом квантовых чисел, наз. "внутренними". Лептоны несут специфич. лептонное число (L )трёх типов: электронное L e , равное +1 для е - и v e , мюонное L m , равное +1 для m - и v m , и L t , равное +1 для т - и v t .

Для адронов L= 0, и это ещё одно проявление их отличия от лептонов. В свою очередь, значит. части адронов следует приписать т. н. барионное число В (|B| = I) . Адроны с B=+ 1 образуют подгруппу барионов (сюда входят протон, нейтрон, гипероны; очарованные и прелестные бары-оны; барионные резонансы), а адроны с B = 0 - подгруппу мезонов (p-мезоны, К-мезоны, очарованные и прелестные мезоны, бозонные резонансы). Назв. подгрупп адронов происходят от греч. слов baruV - тяжёлый и mEsоV - средний, что на нач. этапе исследований Э. ч. отражало сравнит. величины масс известных тогда барионов и мезонов. Более поздние данные показали, что массы барионов и мезонов сопоставимы. Для лептонов B =0. Для фотона, W b - и Z-бозонов B = 0 и L = 0.

Изученные барионы и мезоны подразделяются на уже упоминавшиеся совокупности: обычных (нестранных) частиц (протон, нейтрон, p-мезоны), странных частиц (гипероны, К-мезоны), очарованных и прелестных частиц. Этому разделению отвечает наличие у адронов особых квантовых чисел: странности S , очарования С и прелести (красоты) b с допустимыми значениями (по модулю) 0, 1, 2, 3. Для обычных частиц S =C=b =0, для странных частиц S 0, C = b = 0, для очарованных частиц С0, b = 0, а для прелестных b O. Наряду с этими квантовыми числами часто используется также квантовое число гиперзаряд Y=B+S+C + b , имеющее, по-видимому, более фундам. значение.

Уже первые исследования обычных адронов выявили наличие среди них семейств частиц, близких по массе и с очень сходными свойствами по отношению к сильному взаимодействию, но с разл. значениями электрич. заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Такие семейства позже были обнаружены среди странных, очарованных и прелестных адронов. Общность свойств частиц, входящих в такие семейства, является отражением существования у них одинакового значения квантового числа - изотопического спина I , принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно наз. изотопическими мультиплетами . Число частиц в мультиплете n связано с I соотношением n = 2I +1. Частицы одного изотопич. мультиплета отличаются друг от друга значением "проекции" изотопич. спина I 3 , и соответствующие значения Q даются выражением


Важная характеристика адронов - внутренняя чётность P , связанная с операцией пространств. инверсии: P принимает значения + 1.

Для всех Э. ч. с ненулевыми значениями хотя бы одного из квантовых чисел Q, L, В, S, С, b существуют античастицы с теми же значениями массы т , времени жизни т, спина J и для адронов изотопич. спина I , но с противоположными знаками указанных квантовых чисел, а для барионов с противоположным знаком внутр. чётности Р . Частицы, не имеющие античастиц, наз. истинно нейтральными частицами . Истинно нейтральные адроны обладают спец. - зарядовой чётностью (т. е. чётностью по отношению к операции зарядового сопряжения) С со значениями + 1; примерами таких частиц могут служить p 0 - и h-мезоны (С=+1), r 0 - и f-мезоны (С=-1)и др.

Квантовые числа Э. ч. разделяются на т о ч н ы е (т. е. такие, к-рые связаны с физ. величинами, сохраняющимися во всех процессах) и н е т о ч н ы е (для к-рых соответствующие физ. величины в ряде процессов не сохраняются). Спин J связан со строгим законом сохранения и потому является точным квантовым чис.чом. Другое точное квантовое число-электрич. заряд Q . В пределах точности проведённых измерений сохраняются также квантовые числа B и L , хотя для этого не существует серьёзных теоретич. предпосылок. Более того, наблюдаемая барионная асимметрия Вселенной наиб. естественно может быть истолкована в предположении нарушения сохранения барионного числа В (А. Д. Сахаров, 1967). Тем не менее наблюдаемая стабильность протона есть отражение высокой степени точности сохранения B и L (нет, напр., распада pe + + p 0). Не наблюдаются также распады m - e - +g, т - m - +g и т. д. Однако большинство квантовых чисел адронов неточные. Изотопич. спин, сохраняясь в сильном взаимодействии, не сохраняется в эл--магн. и слабом взаимодействиях. Странность, очарование и прелесть сохраняются в сильном и эл--магн. взаимодействиях, но не сохраняются в слабом взаимодействии. Слабое взаимодействие изменяет также внутр. и зарядовую чётности совокупности частиц, участвующих в процессе. С гораздо большей степенью точности сохраняется комбинированная чётность CP (СР-чётностъ) , однако и она нарушается в нек-рых процессах, обусловленных . Причины, вызывающие несохранение мн. квантовых чисел адронов, не ясны и, по-видимому, связаны как с природой этих квантовых чисел, так и с глубинной структурой эл--слабого взаимодействия.

В табл. 1 приведены наиб. хорошо изученные Э. ч. из групп лептонов и адронов и их квантовые числа. В спец. группу выделены калибровочные бозоны. Раздельно даны частицы и античастицы (изменение P у антибарионов не указано). Истинно нейтральные частицы помещены в центре первой колонки. Члены одного изотопич. мультиплета расположены в одной строке, иногда с небольшим смещением (в тех случаях, когда даются характеристики каждого члена мультиплета).

Как уже отмечалось, группа лептонов весьма немногочисленна, а массы частиц в осн. малы. Для масс всех типов нейтрино существуют довольно жёсткие ограничения сверху, но каковы их истинные значения, предстоит ещё выяснить.

Осн. часть Э. ч. составляют адроны. Увеличение числа известных Э. ч. в 60-70-х гг. происходило исключительно за счёт расширения данной группы. Адроны в своём большинстве представлены резонансами. Обращает на себя внимание тенденция к росту спина по мере роста массы резонансов; она хорошо прослеживается на разл. группах мезонов и барионов с заданными I , S и С. Следует также отметить, что странные частицы несколько массивнее обычных частиц, очарованные частицы массивнее странных, а прелестные частицы массивнее очарованных.

Классификация элементарных частиц. Кварковая модель адронов

Если классификация калибровочных бозонов и лептонов не вызывает особых проблем, то большое число адронов уже в нач. 50-х гг. явилось основанием для поиска закономерностей в распределении масс и квантовых чисел барионов и мезонов, к-рые могли бы составить основу их классификации. Выделение изотопич. мультиплетов адронов было первым шагом на этом пути. С матем. точки зрения группировка адронов в изотопич. мультиплеты отражает наличие у сильного взаимодействия симметрии, связанной с вращения группой , более формально, с унитарной группой SU (2) - группой преобразований в комплексном двумерном пространстве [см. Симметрия SU (2 )] . Предполагается, что эти преобразования действуют в нек-ром специфич. внутр. пространстве - т. н. изотопич. пространстве, отличном от обычного. Существование изотопич. пространства проявляется только в наблюдаемых свойствах симметрии. На матем. языке изотопич. мультиплеты суть неприводимые представления группы симметрии SU (2).

Концепция симметрии как фактора, определяющего существование разл. групп и семейств Э. ч. в совр. теории, является доминирующей при классификации адронов и других Э. ч. Предполагается, что внутр. квантовые числа Э. ч., позволяющие объединять те или иные группы частиц, связаны со спец. типами симметрии, возникающими за счёт свободы преобразований в особых внутр. пространствах. Отсюда и происходит назв. "внутренние квантовые числа".

Внимательное рассмотрение показывает, что странные и обычные адроны в совокупности образуют более широкие объединения частиц с близкими свойствами, чем изотопич. мультиплеты. Их принято называть супермульти-плетами . Число частиц, входящих в наблюдаемые супер-мультиплеты, равно 8 и 10. С точки зрения симметрии возникновение супермультиплетов истолковывается как проявление существования у сильного взаимодействия группы симметрии более широкой, чем группа SU(2) , а именно унитарной группы SU (3)- группы преобразований в трёхмерном комплексном пространстве [Гелл-Ман, Ю. Нееман (Y. Neeman), 1961]; см. Симметрия SU(3) . Соответствующая симметрия получила назв. унитарной симметрии. Группа SU (3) имеет, в частности, неприводимые представления с числом компонент 8 и 10, к-рые можно сопоставить наблюдаемым супермультиплетам: октету и декуплету. Примерами супермультиплетов могут служить следующие группы частиц с одинаковыми значениями J P (т. е. с одинаковыми парами значений J и P):


Унитарная симметрия менее точная, чем изотопич. симметрия. В соответствии с этим различие в массах частиц, входящих в октеты и декуплеты, довольно значительно. По этой же причине разбиение адронов на супермульти-плеты сравнительно просто осуществляется для Э. ч. не очень больших масс. При больших массах, когда имеется много разл. частиц с близкими массами, это разбиение осуществить сложнее.

Обнаружение среди адронов выделенных супермульти-плетов фиксированных размерностей, отвечающих опре-дел. представлениям унитарной группы SU (3), явилось ключом к важнейшему заключению о существовании у адронов особых структурных элементов - кварков .

Гипотеза о том, что наблюдаемые адроны построены из частиц необычной природы - кварков, несущих спин 1 / 2 , обладающих сильным взаимодействием, но в то же время, не принадлежащих классу адронов, была выдвинута Дж. Цвейгом (G. Zweig) и независимо Гелл-Маном в 1964 (см. Кварковые модели) . Идея кварков была подсказана матем. структурой представлений унитарных групп. Ma-тем. формализм открывает возможность описания всех представлений группы SU(n )(и, следовательно, всех связанных с ней мультиплетов адронов) на основе перемножения самого простого (фундам.) представления группы, содержащего n компонент. Необходимо только допустить существование особых частиц, связанных с этими компонентами, что и было сделано Цвейгом и Гелл-Маном для частного случая группы SU(3) . Эти частицы были названы кварками.

Конкретный кварковый состав мезонов и барионов был выведен из того факта, что мезоны, как правило, входят в супермультиплеты с числом частиц, равным 8, а бари-оны-8 и 10. Эта закономерность легко воспроизводится, если предположить, что мезоны составлены из кварка и антикварка, символически: M=(q ) , а барион-из трёх кварков, символически: B = (qqq) . B силу свойств группы SU (3) 9 мезонов разбиваются на супермультиплеты из 1 и 8 частиц, а 27 барионов-на супермультиплеты, содержащие 1, 10 и дважды по 8 частиц, что и объясняет наблюдаемую выделенность октетов и декуплетов.

T. о., выявленное экспериментами 60-х гг. существование супермультиплетов, составленных из обычных и странных адронов, позволило сделать вывод о том, что все эти адроны построены из 3 кварков, обычно обозначаемых и, d, s (табл. 2). Вся совокупность известных к тому моменту фактов прекрасно согласовывалась с этим предложением.

Табл. 2 .-Характеристики кварков


* Предварительная экспериментальная оценка .

Последующее обнаружение пси-частиц, а затем ипсилон-частиц, очарованных и прелестных адронов показало, что для объяснения их свойств трёх кварков недостаточно и необходимо допустить существование ещё двух типов кварков c и b , несущих новые квантовые числа: очарование и прелесть. Это обстоятельство не поколебало, однако, основные положения кварковой модели. Был сохранён, в частности, центр. пункт её схемы строения адронов: M=(q ), B = (qqq) . Более того, именно на основе предположения о кварковом строении пси- и ипсилон-частиц удалось дать физ. толкование их во многом необычным свойствам.

Исторически открытие пси- и ипсилон-частиц, равно как и новых типов очарованных и прелестных адронов, явилось важным этапом в утверждении представлений о кварковом строении всех сильновзаимодействующих частиц. Согласно совр. теоретич. моделям (см. ниже), следовало ожидать существования ещё одного - шестого t -кварка, к-рый и был обнаружен в 1995.

Указанная выше кварковая структура адронов и матем. свойства кварков как объектов, связанных с фундам. представлением группы SU(n) , приводят к следующим квантовым числам кварков (табл. 2). Обращают на себя внимание необычные (дробные) значения электрич. заряда Q , а также В , не встречающиеся ни у одной из изученных Э. ч. С индексом a у каждого типа кварка q i (i = 1, 2, 3, 4, 5, 6) связана особая характеристика кварков - цвет ,к-рой нет у наблюдаемых адронов. Индекс a принимает значения 1, 2, 3, т. е. каждый тип кварка (q i )представлен тремя разновидностями q a i . Квантовые числа каждого типа кварка не меняются при изменении цвета, поэтому табл. 2 относится к кваркам любого цвета. Как было показано позднее, величины q a (для каждого i ) при изменении a с точки зрения их трансформац. свойств следует рассматривать как компоненты фундам. представления ещё одной группы SU (3), цветовой, действующей в цветовом трёхмерном пространстве [см. Цветовая симметрия SU (3)].

Необходимость введения цвета вытекает из требования антисимметрии волновой ф-ции системы кварков, образующих барионы. Кварки, как частицы со спином 1 / 2 , должны подчиняться статистике Ферми-Дирака. Между тем имеются барионы, составленные из трёх одинаковых кварков с одинаковой ориентацией спинов: D ++ (), W - (), к-рые явно симметричны относительно перестановок кварков, если последние не обладают дополнит. степенью свободы. Такой дополнит. степенью свободы и является цвет. С учётом цвета требуемая антисимметрия легко восстанавливается. Уточнённые ф-ли структурного состава мезонов и барионов выглядят при этом следующим образом:


где e abg - полностью антисимметричный тензор (Леви-Чи-виты символ )(1/ 1/ -нормировочные множители). Важно отметить, что ни мезоны, ни барионы не несут цветовых индексов (лишены цвета) и являются, как иногда говорят, "белыми" частицами.

В табл. 2 приведены лишь "эффективные" массы кварков. Это связано с тем, что кварки в свободном состоянии, несмотря на многочисленные тщательные их поиски, не наблюдались. В этом, кстати, проявляется ещё одна особенность кварков как частиц совершенно новой, необычной природы. Поэтому прямых данных о массах кварков нет. Имеются лишь косвенные оценки величин масс кварков, к-рые могут быть извлечены из их разл. динамических проявлений в характеристиках адронов (включая массы последних), а также в разл. процессах происходящих с ад-ронами (распады и т. п.). Для массы t -кварка дана предварительная эксперим. оценка.

Всё многообразие адронов возникает за счёт разл. сочетаний и-, d-, s-, с - и b -кварков, образующих связанные состояния. Обычным адронам соответствуют связанные состояния, построенные только из и - и d -кварков [для мезонов с возможным участием комбинаций (s .), (с ) и (b )]. Наличие в связанном состоянии, наряду с u - и d -кварками, одного s-, с - или b -кварка означает, что соответствующий адрон странный (S = - 1), очарованный (C= + 1) или прелестный (b = - 1). В состав бариона может входить два и три s -кварка (соответственно с - и b -кварка), т. е. возможны дважды и трижды странные (очарованные, прелестные) барионы. Допустимы также сочетания разл. числа s - и с -, b -кварков (особенно в барионах), к-рые соответствуют "гибридным" формам адронов (странно-очарованным, странно-прелестным). Очевидно, что чем больше s-, с - или b -кварков содержит адрон, тем он массивнее. Если сравнивать основные (не возбуждённые) состояния адронов, именно такая картина и наблюдается (табл. 1).

Поскольку спин кварков равен 1 / 2 , приведённая выше кварковая структура адронов имеет своим следствием целочисленный спин у мезонов и полуцелый - у барионов, в полном соответствии с экспериментом. При этом в состояниях, отвечающих орбитальному моменту l =0, в частности в осн. состояниях, значения спина мезонов должны равняться 0 или 1 (для антипараллельной и параллельной ориентации спинов кварков), а спина барионов: 1 / 2 или 3 / 2 (для спиновых конфигураций и ). С учётом того, что внутр. чётность системы кварк-антикварк отрицательна, значения J P для мезонов при l = 0 равны 0 - и 1 - , для барионов: 1 / 2 + и 3 / 2 + . Именно эти значения наблюдаются у адронов, имеющих наименьшую массу при заданных значениях I и S , С, b .

В качестве иллюстрации в табл. 3 и 4 приведён квар-ковый состав мезонов с J P = 0 - и барионов J P = 1 / 2 + (всюду предполагается необходимое суммирование по цветам кварков).

Табл. 3.- Кварковый состав изученных мезонов с J P =0 - ()


Табл. 4.- Кварковый состав изученных барионов с J P = 1/2 + ()


П р и м е ч а н и е. Символ {} означает симметризацию по переменным частицам; символ -антисимметризацию .

T. о., кварковая модель естеств. образом объясняет происхождение осн. групп адронов и их наблюдаемые квантовые числа. Более детальное динамическое рассмотрение позволяет также сделать ряд полезных заключений относительно взаимосвязи масс внутри разл. семейств адронов.

Правильно передавая специфику адронов с наименьшими массами и спинами, кварковая модель естеств. образом объясняет также общее большое число адронов и преобладание среди них резонансов. Многочисленность адронов есть отражение их сложного строения и возможности существования разл. возбуждённых состояний кварковых систем. Все возбуждённые состояния кварковых систем неустойчивы относительно быстрых переходов за счёт сильного взаимодействия в нижележащие состояния. Они-то и образуют осн. часть резонансов. Небольшую долю резонансов составляют также кварковые системы с параллельной ориентацией спинов (за исключением W -). Кварковые конфигурации с антипараллельной ориентацией спинов, относящиеся к осн. состояниям, образуют квазистабильные адроны и стабильный протон.

Возбуждения кварковых систем происходят как за счёт изменения вращат. движения кварков (орбитальные возбуждения), так и за счёт изменения их пространств. расположения (радиальные возбуждения). В первом случае рост массы системы сопровождается изменением суммарного спина J и чётности P системы, во втором случае увеличение массы происходит без изменения J P .

При формулировке кварковой модели кварки рассматривались как гипотетич. структурные элементы, открывающие возможность очень удобного описания адронов. В последующие годы были проведены эксперименты, к-рые позволяют говорить о кварках как о реальных материальных образованиях внутри адронов. Первыми были эксперименты по рассеянию электронов на нуклонах на очень большие углы. Эти эксперименты (1968), напоминающие классич. опыты Резерфорда по рассеянию a-частиц на атомах, выявили наличие внутри нуклона точечных заряж. образований (см. Партоны ).Сравнение данных этих экспериментов с аналогичными данными по рассеянию нейтрино на нуклонах (1973-75) позволили сделать заключение о ср. величине квадрата электрич. заряда этих точечных образований. Результат оказался близким к ожидаемым дробным значениям (2 / 3) 2 е 2 и (1 / 3) 2 е 2 . Изучение процесса рождения адронов при аннигиляции электрона и позитрона, к-рый предположительно идёт через следующие стадии:

указало на наличие двух групп адронов, т. н. струй (см. Струя адронная ),генетически связанных с каждым из образующихся кварков, и позволило определить спин кварков. Он оказался равным 1 / 2 . Общее число рождённых в этом процессе адронов свидетельствует также о том, что в промежуточном состоянии каждый тип кварка представлен тремя разновидностями, т. е. кварки трёхцветны.

T. о., квантовые числа кварков, заданные на основании теоретич. соображений, получили всестороннее эксперим. подтверждение. Кварки фактически приобрели статус новых Э. ч. и являются серьёзными претендентами на роль истинно Э. ч. для сильновзаимодействующих форм материи. Число известных видов кварков невелико. До длин <=10 -16 см кварки выступают как точечные бесструктурные образования. Бесструктурность кварков, конечно, может отражать лишь достигнутый уровень исследования этих материальных образований. Однако ряд специфич. особенностей кварков даёт известные основания предполагать, что кварки являются частицами, замыкающими цепь структурных составляющих сильновзаимодействующей материи.

От всех других Э. ч. кварки отличаются тем, что в свободном состоянии они, по-видимому, не существуют, хотя имеются чёткие свидетельства их существования в связанном состоянии. Эта особенность кварков, скорее всего, связана со спецификой их взаимодействия, порождаемого обменом особыми частицами - глюонами , приводящего к тому, что силы притяжения между ними не ослабляются с расстоянием. Как следствие, для отделения кварков друг от друга требуется бесконечная энергия, что, очевидно, невозможно (теория т. н. конфайнмента или пленения кварков; см. Удержание цвета ).Реально при попытке отделить кварки друг от друга происходит образование дополнит. адронов (т.н. адронизация кварков). Невозможность наблюдения кварков в свободном состоянии делает их совершенно новым типом структурных единиц вещества. Неясно, напр., можно ли в этом случае ставить вопрос о составных частях кварков и не обрывается ли тем самым последовательность структурных составляющих материи. Всё сказанное подводит к выводу, что кварки, наряду с лептонами и калибровочными бозонами, также не имеющими наблюдаемых признаков структуры, образуют группу Э. ч., к-рая имеет наибольшие основания претендовать на роль истинно Э. ч.

Элементарные частицы и квантовая теория поля. Стандартная модель взаимодействий

Для описания свойств и взаимодействий Э. ч. в совр. теории существ. значение имеет понятие физического поля, к-рое ставится в соответствие каждой частице. Поле есть специфич. форма распределённой в пространстве материи; оно описывается ф-цией, задаваемой во всех точках пространства-времени и обладающей определ. трансформац. свойствами по отношению к преобразованиям Лоренца группы (скаляр, спинор, вектор и т. д.) и групп "внутр." симметрии (изотопич. скаляр, изотопич. спинор и т. д.). Эл--магн. поле, обладающее свойствами четырёхмерного вектора A m (x )(m= 1, 2, 3, 4),- исторически первый пример физ. поля. Поля, сопоставляемые Э. ч., имеют квантовую природу, т. е. их энергия и импульс слагаются из множества отд. порций - квантов, причём полная энергия e k и импульс p k кванта связаны соотношением спец. теории относительности: e 2 k 2 k с 2 + т 2 с 4 . Каждый такой квант и есть Э. ч. с массой т , с заданной энергией e k и импульсом p k . Квантами эл--магн. поля являются фотоны, кванты др. полей соответствуют всем остальным известным Э. ч. Ma-тем. аппарат квантовой теории поля (КТП) позволяет описать рождение и уничтожение частицы в каждой пространственно-временной точке.

Трансформац. свойства поля определяют осн. квантовые числа Э. ч. Трансформационные свойства по отношению к преобразованиям группы Лоренца задают спин частиц: скаляру соответствует спин J= 0, спинору - спин J= 1 / 2 , вектору - спин J= 1 и т.д. Трансформац. свойства полей по отношению к преобразованиям "внутр." пространств ("зарядового пространства", "изотопического пространства", "унитарного пространства", "цветного пространства") определяют существование таких квантовых чисел, как L, В, I, S , С, b , a для кварков и глюонов также и цвета. Введение "внутр." пространств в аппарате теории - пока чисто формальный приём, к-рый, однако, может служить указанием на то, что размерность физ. пространства-времени, отражающаяся в свойствах Э. ч., реально больше четырёх - т.е. больше размерности пространства-времени, характерного для всех макроскопич. физ. процессов.

Масса Э. ч. не связана непосредственно с трансформац. свойствами полей. Это дополнительная их характеристика, происхождение к-рой не понято до конца.

Для описания процессов, происходящих с Э. ч., в КТП используется Лагранжев формализм лагранжиане , построенном из полей, участвующих во взаимодействии частиц, заключены все сведения о свойствах частиц и динамике их поведения. Лагранжиан включает в себя два гл. слагаемых: лагранжиан , описывающий поведение свободных полей, и лагранжиан взаимодействия , отражающий взаимосвязь разл. полей и возможность превращения Э. ч. Знание точной формы позволяет в принципе, используя аппарат матрицы рассеяния (S -матрицы), рассчитывать вероятности переходов от исходной совокупности частиц к заданной конечной совокупности частиц, происходящих под влиянием существующего между ними взаимодействия. T. о., установление структуры , открывающее возможность количеств. описания процессов с Э. ч., является одной из центр. задач КТП.

Существ. продвижение в решении этой задачи было достигнуто в 50-70-х гг. на основе развития идеи о векторных калибровочных полях, сформулированной в уже упоминавшейся работе Янга и Миллса. Отталкиваясь от известного положения о том, что всякий наблюдаемый экспериментально закон сохранения связан с инвариантностью описывающего систему лагранжиана относительно преобразований нек-рой группы симметрии (Нётер теорема ),Янг и Миллс потребовали, чтобы эта инвариантность выполнялась локально, т. е. имела место при произвольной зависимости преобразований от точки пространства-времени. Оказалось, что выполнение этого требования, физически связанного с тем, что взаимодействие не может мгновенно передаваться от точки к точке, возможно только при введении в структуру лагранжиана спец. калибровочных полей векторной природы, определ. образом трансформирующихся при преобразованиях группы симметрии. Причём структуры свободного лагранжиана и оказались в указанном подходе тесно связанными: знание в значит. мере предопределяло вид

Последнее обстоятельство обусловлено тем, что требование локальной калибровочной инвариантности может быть выполнено только в том случае, когда во всех производных, действующих на свободные поля в , осуществлена замена Здесь g - константа взаимодействия; V a m - калибровочные поля; T a - генераторы группы симметрии в матричном представлении, соответствующем свободному полю; r - размерность группы.

В силу сказанного в видоизменённом лагранжиане автоматически возникают члены строго определ. структуры, описывающие взаимодействие полей, исходно входивших в , со вновь введёнными калибровочными полями. При этом калибровочные поля осуществляют роль переносчиков взаимодействия между исходными полями. Конечно, поскольку в лагранжиане появились новые калибровочные поля, свободный лагранжиан должен быть дополнен членом, связанным с ними, и подвергнуться процедуре видоизменений, описанной выше. При точном соблюдении калибровочной инвариантности калибровочные поля отвечают бозонам с нулевой массой. При нарушении симметрии масса бозонов отлична от нуля.

В таком подходе задача построения лагранжиана, отражающего динамику взаимодействующих полей, по существу сводится к правильному отбору системы полей, составляющих первоначальный свободный лагранжиан и фиксации его формы. Последняя, впрочем, при заданных трансформационных свойствах относительно группы Лоренца однозначно определяется требованием релятивистской инвариантности и очевидным требованием вхождения только структур, квадратичных по полям.

T. о., основным для описания динамики является вопрос о выборе системы первичных полей, образующих , т. е. фактически всё тот же центр. вопрос физики Э. ч.: "Какие частицы (и соответственно поля) следует считать наиболее фундаментальными (элементарными) при описании наблюдаемых частиц материи?".

Совр. теория, как уже отмечалось, выделяет в качестве таких частиц бесструктурные частицы со спином 1 / 2: кварки и лептоны. Такой выбор позволяет, опираясь на принцип локальной калибровочной инвариантности, построить весьма успешную схему описания сильного и эл--слабого взаимодействий Э. ч., получившую назв. с т а н д а р т н о й м о д е л и.

Модель исходит прежде всего из допущения, что для сильного взаимодействия имеет место точная симметрия SU c (3), отвечающая преобразованиям в "цветовом" трёхмерном пространстве. При этом предполагается, что кварки преобразуются по фундам. представлению группы SU c (3). Выполнение требования локальной калибровочной инвариантности для кваркового лагранжиана приводит к появлению в структуре теории восьми безмассовых калибровочных бозонов, названных глюонами, взаимодействующих с кварками (и между собой) строго определ. образом (Фритцш, Гёлл-Ман, 1972). Разработанная на этой основе схема описания сильного взаимодействия получила назв. квантовой хромодинамики . Правильность её предсказаний подтверждена многочисл. экспериментами, в т. ч. получены убедительные свидетельства существования глюонов. Имеются также серьёзные основания полагать, что аппарат квантовой хромодинамики содержит в себе объяснение явления конфайнмента.

При построении теории эл--слабого взаимодействия было использовано то обстоятельство, что существование пар лептонов с одинаковым лептонным числом (L e , L v , L t), но с разным электрич. зарядом (е - , v e ; m - , v m ; т - , v т) можно трактовать как проявление симметрии, связанной с группой т.н. слабого изоспина SU сл (2), а сами пары рассматривать как спинорные (дублетные) представления этой группы. Аналогичная трактовка возможна в отношении пар кварков, участвующих в слабом взаимодействии. Отметим, что рассмотрение в рамках этой схемы слабого взаимодействия с участием кварка b снеобходимостью ведёт к заключению о существовании у него изотопического партнёра кварка t , составляющего пару (t, b) . Выделение слабым взаимодействием определ. спиральности (левой) у участвующих в нём фермионов дополнительно можно рассматривать как проявление существования симметрии U сл (1), связанной со слабым гиперзарядом Y сл. При этом левым и правым фермионам следует приписывать разные значения гиперзаряда Y сл, а правые фермионы нужно рассматривать как изотопические скаляры. В принятом построении естественно возникает соотношение Q = I 3 cл + 1 / 2 Y сл, уже встречавшееся нам у адронов.

Т.о., внимательный анализ эл--слабого взаимодействия лептонов и кварков позволяет выявить у них наличие симметрии (заметно, впрочем, нарушенной), отвечающей группе SU сл (2)U cл ( 1) . Если отвлечься от нарушения этой симметрии и воспользоваться строгим условием локальной калибровочной инвариантности, то возникнет теория эл--слабого взаимодействия кварков и лептонов, в к-рой фигурируют четыре безмассовых бозона (два заряженных и два нейтральных) и две константы взаимодействия, соответствующие группам SU сл (2) и U сл (1). В этой теории члены лагранжиана, отвечающие взаимодействию с заряж. бозонами, правильно воспроизводят известную структуру заряженных токов , но не обеспечивают наблюдаемое в слабых процессах короткодействие, что и неудивительно, т. к. нулевая масса промежуточных бозонов ведёт к дальнодействию. Отсюда следует лишь то, что в ре-алистич. теории слабого взаимодействия массы промежуточных бозонов должны быть конечными. Это находится в соответствии и с фактом нарушенности симметрии SU сл (2)U сл (1).

Однако прямое введение конечных масс промежуточных бозонов в построенный описанным выше образом лагранжиан невозможно, т. к. входит в противоречие с требованием локальной калибровочной инвариантности. Учесть непротиворечивым образом нарушение симметрии и добиться появления в теории конечных масс промежуточных бозонов удалось с помощью важного предположения о существовании в природе особых скалярных полей F (Хиггса полей) , взаимодействующих с фермионными и калибровочными полями и обладающих специфическим самовзаимодействием, ведущим к явлению спонтанного нарушения симметрии [П. Хиггс (P. Higgs), 1964]. Введение в лагранжиан теории в простейшем варианте одного дублета (по группе слабого изоспина) полей Хиггса приводит к тому, что вся система полей переходит к новому, более низкому по энергии вакуумному состоянию, отвечающему нарушенной симметрии. Если исходно вакуумное среднее от поля F было равно нулю <Ф> 0 = 0, то в новом состоянии <Ф> 0 = Ф 0 0. Нарушение симметрии и появление в теории конечного F 0 приводит за счёт Хиггса механизма к неисчезающей массе заряж. промежуточных бозонов W + и к возникновению смешивания (линейной комбинации) двух нейтральных бозонов, фигурирующих в теории. В результате смешивания возникают безмассовое эл--магн. поле, взаимодействующее с эл--магн. током кварков и лептонов, и поле массивного нейтрального бозона Z 0 , взаимодействующее с нейтральным током строго заданной структуры. Параметр (угол) смешивания (Вайн-берга угол )нейтральных бозонов в этой схеме задаётся отношением констант взаимодействия групп U сл (l) и SU сл (2): tgq W =g"/g . Этот же параметр определяет связь масс m W и m Z (m Z = m W / cosq W )и связь электрич. заряда е с константой группы слабого изоспина g: e = g sinq W . Обнаружение в 1973 при изучении рассеяния нейтрино нейтральных слабых токов, предсказанных описанной выше схемой, и последовавшее затем в 1983 открытие W -и Z-бозонов с массами соответственно 80 ГэВ и 91 ГэВ блестяще подтвердили всю концепцию единого описания эл--магн. и слабого взаимодействий. Эксперим. определение значения sin 2 q W = 0,23 показало, что константа g и электрич. заряд е близки по величине. Стало понятно, что "слабость" слабого взаимодействия при энергиях, заметно меньших m W и m Z , в осн. обусловлена большой величиной массы промежуточных бозонов. Действительно, константа феноменологической четырёхфермионной теории слабого взаимодействия Ферми G F в изложенной схеме равна G F =g 2 /8m 2 W . Это означает, что эфф. константа слабого взаимодействия при энергии в с. ц. м. ~т р равна G F m p 2 10 -5 , а её квадрат близок к 10 -10 , т.е. к значению, приводившемуся выше. При энергиях же в с.ц.м., больших или порядка m W , единственным параметром, характеризующим слабое взаимодействие, становится величина g 2 / 4p или е 2 / 4p, т.е. слабое и эл--магн. взаимодействия становятся сравнимыми по интенсивности и должны рассматриваться совместно.

Построение единого описания эл--магн. и слабого взаимодействий является важным достижением теории калибровочных полей, сравнимым по значимости с разработкой Максвеллом в кон. 19 в. единой теории эл--магн. явлений. Количеств. предсказания теории эл--слабого взаимодействия во всех проведённых измерениях оправдывались с точностью 1%. Важным физ. следствием указанного построения является заключение о существовании в природе частицы нового типа - нейтрального Хиггса бозона . На нач. 90-х гг. такая частица обнаружена не была. Проведённые поиски показали, что её масса превышает 60 ГэВ. Теория не даёт, однако, точного предсказания для величины массы бозона Хиггса. Можно лишь утверждать, что значение его массы не превышает 1 ТэВ. Оценочные значения массы этой частицы лежат в диапазоне 300-400 ГэВ.

Итак, "стандартная модель" отбирает в качестве фун-дам. частиц три пары кварков (и, d )(с , s) (t, b )и три пары лептонов (v e ,e - )(v m ,m -) (v t , т -), обычно группируемых в соответствии с величиной их масс в семейства (или поколения) следующим образом:


и постулирует, что их взаимодействия удовлетворяют симметрии SU сл (3)SU сл (2)U сл (l). Как следствие, получается теория, в к-рой переносчиками взаимодействия являются калибровочные бозоны: глюоны, фотон, W b и Z. И хотя "стандартная модель" весьма успешно справляется с описанием всех известных фактов, относящихся к Э.ч., всё же, скорее всего, она является промежуточным этапом в построении более совершенной и всеобъемлющей теории Э.ч. В структуре "стандартной модели" ещё достаточно много произвольных, эмпирически определяемых параметров (значений масс кварков и лептонов, значений констант взаимодействия, углов смешивания и т. п.). Число поколений фермионов в модели также не определено. Пока эксперимент уверенно утверждает лишь то, что число поколений не превышает трёх, если в природе не существует тяжёлых нейтрино с массами в неск. десятков ГэВ.

С точки зрения свойств симметрии взаимодействий более естественно было бы ожидать, что во всеобъемлющей теории Э.ч. вместо прямого произведения групп симметрии будет фигурировать одна группа симметрии G с одной отвечающей ей константой взаимодействия. Группы симметрии "стандартной модели" в этом случае можно было бы трактовать как продукты редукции большой группы при нарушении связанной с ней симметрии. На этом пути, в принципе, могла бы возникнуть возможность Великого объединения взаимодействий. Формальной основой такого объединения может служить свойство изменения с энергией эфф. констант взаимодействия калибровочных полей g i 2 /4p = a i (i =1, 2, 3), возникающее при учёте высших порядков теории (т. н. бегущие константы). При этом константа a 1 связана с группой U(I); a 2 - с группой SU(2); a 3 -с группой SU(3) . Упомянутые очень медленные (логарифмические) изменения описываются выражением

связывающим значения эфф. констант a i (M )и a i (m) при двух различающихся значениях энергии: M и m (M > m). Характер этих изменений разный для разл. групп симметрии (и, следовательно, разл. взаимодействий) и даётся коэффициентами b i , вбирающими в себя информацию как о структуре групп симметрии, так и об участвующих во взаимодействии частицах. Поскольку b 1 , b 2 и b 3 различны, допустима возможность того, что, несмотря на заметные расхождения величин a i -1 (m) при исследованных энергиях m, при очень больших энергиях M все три значения a i -1 (M )совпадут, т. е. будет реализовано Великое объединение взаимодействий. Тщательный анализ, однако, показал, что в рамках стандартной модели, используя известные значения a i -1 (m), получить совпадение всех трёх значений a i -1 (М )при каком-то большом M невозможно, т.е. вариант теории с Великим объединением в этой модели не реализуем. В то же время было выяснено, что в схемах, отличных от стандартной модели, с изменённым составом осн. (фундам.) полей или частиц, Великое объединение может иметь место. Изменения в составе осн. частиц ведут к изменениям в значениях коэффициентов "b i " и тем самым обеспечивают возможность совпадения a i (M ) при больших M .

Руководящей идеей при выборе изменённого состава осн. частиц теории явилась идея возможного существования в мире Э. ч. суперсимметрии , к-рая устанавливает определ. взаимосвязи между частицами целого и полуцелого спина, фигурирующими в теории. Для соблюдения требований суперсимметрии, напр. в случае стандартной модели, каждой частице должна быть поставлена в соответствие частица со спином, смещённым на 1 / 2 - Причём в случае точной суперсимметрии все эти частицы должны иметь одинаковые массы. Так, кваркам и лептонам спина 1 / 2 должны быть поставлены в соответствие их суперсимметричные партнёры (суперпартнёры) со спином нуль, всем калибровочным бозонам со спином 1 -их суперпартнёры со спином 1 / 2 , а бозону Хиггса спина нуль - суперпартнёр со спином 1 / 2 . Поскольку в исследованной области энергии суперпартнёры кварков, лептонов и калибровочных бозонов заведомо не наблюдаются, суперсимметрия, если она существует, должна быть заметно нарушенной, а массы суперпартнёров должны иметь значения, значительно превышающие значения масс известных фермионов и бозонов.

Последовательное выражение требования суперсимметрии находят в минимальной суперсимметричной модели (MCCM), в к-рой в дополнение к уже перечисленным изменениям в составе частиц стандартной модели число бозонов Хиггса увеличивается до пяти (из них два являются заряженными и три - нейтральными частицами). Соответственно в модели возникают пять суперпартнёров бозонов Хиггса со спином 1 / 2 - MCCM - простейшее обобщение стандартной модели на случай суперсимметрии. Значение M , при к-ром происходит совпадение a i (M )(Великое объединение), в MCCM примерно равно 10 16 ГэВ.

С гипотезой о существовании суперсимметрии связана одна из перспективных возможностей развития теории калибровочных полей, разрешающая к тому же ряд её внутр. проблем, связанных с устойчивостью фигурирующих в ней параметров. Суперсимметрия, как было отмечено, позволяет сохранить в теории Э. ч. привлекательную возможность Великого объединения взаимодействий. Решающим подтверждением факта существования суперсимметрии явилось бы обнаружение суперпартнёров известных частиц. По оценкам, их массы лежат в диапазоне от сотен ГэВ до 1 ТэВ. Частицы таких масс будут доступны для изучения на протонных коллайдерах следующего поколения.

Проверка гипотезы о существовании суперсимметрии и поиски суперсимметричных частиц, безусловно, одна из важнейших задач физики Э. ч., к-рой в ближайшем будущем, несомненно, будет уделяться первоочередное внимание.

Некоторые общие проблемы теории элементарных частиц

Новейшее развитие физики частиц явно выделило из всех микросоставляющих материи группу частиц, играющих особую роль и имеющих наибольшие основания (на нач. 90-х гг.) именоваться истинно Э. ч. К ней относятся фундам. фермионы спина 1 / 2 - лептоны и кварки, составляющие три поколения, и калибровочные бозоны спина 1 (глюоны, фотоны и промежуточные бозоны), являющиеся переносчиками сильного и эл--слабого взаимодействий. К этой группе, скорее всего, следует присоединить частицу со спином 2, гравитон ,как переносчика гравитац. взаимодействия, связывающего все частицы. Особую группу составляют частицы спина 0, бозоны Хиггса, пока, впрочем, не обнаруженные.

Многие вопросы тем не менее остаются без ответа. Так, остаётся неясным, существует ли физ. критерий, фиксирующий число поколений элементарных фермионов. Не понятно, насколько принципиальным является отличие в свойствах кварков и лептонов, связанное с присутствием у первых цвета, или это отличие специфично только для изученной области энергии. К этому вопросу примыкает вопрос о физ. природе Великого объединения, поскольку в его формализме кварки и лептоны рассматриваются как объекты с близкими свойствами.

Важно понять, не указывает ли существование различных "внутр." квантовых чисел кварков и лептонов (В, L, I, S, С, b и т. д.) на более сложную геометрию микромира, отвечающую большему числу измерений, чем привычная нам четырёхмерная геометрия макроскопич. пространства-времени. С этим вопросом тесно связан вопрос о том, какова макс. группа симметрии G , к-рой удовлетворяют взаимодействия Э. ч. и в к-рую вложены группы симметрии, проявляющие себя в изученной области энергий. Ответ на этот вопрос помог бы определить предельное число переносчиков взаимодействия Э. ч. и выяснить их свойства. Не исключено, что макс. группа G фактически отражает свойства симметрии нек-pогo многомерного пространства. Этот круг идей нашёл известное отражение в теории суперструн , к-рые являются аналогами обычных струн в пространствах с числом измерений, большим четырёх (обычно в пространстве 10 измерений). Теория суперструн трактует Э. ч. как проявления специфических возбуждений суперструн, отвечающие разл. спинам. Считается, что лишние (сверх четырёх) измерения не обнаруживают себя в наблюдениях в силу т. н. компактификации, т. е. образования замкнутых подпространств с характерными размерами ~10 -33 см. Внеш. проявлением существования этих подпространств являются наблюдаемые "внутр." квантовые числа Э. ч. Каких-либо данных, подтверждающих правильность подхода к трактовке свойств Э. ч., связанного с представлением о суперструнах, пока не существует.

Как видно из сказанного, в идеале завершённая теория Э. ч. должна не только правильно описывать взаимодействия заданной совокупности частиц, отобранных в качестве фундаментальных, но и содержать в себе объяснение того, какими факторами определяется число этих частиц, их квантовые числа, константы взаимодействия, значения их масс и т. п. Должны быть также поняты причины выделен-ности наиб. широкой группы симметрии G и одновременно природа механизмов, обусловливающих нарушение симметрии по мере перехода к более низким энергиям. В этом плане первостепенное значение имеет прояснение роли бозонов Хиггса в физике Э.ч. Модели, к-рые предлагает совр. теория Э. ч., ещё далеки от удовлетворения всем перечисленным критериям.

Описание взаимодействий Э.ч., как уже отмечалось, связано с калибровочными теориями поля. Эти теории имеют развитый матем. аппарат, к-рый позволяет производить расчёты процессов с Э.ч. на том уровне строгости, что и в квантовой электродинамике. Однако в аппарате калибровочных теорий поля, в его совр. формулировке, присутствует один существ. изъян, общий с квантовой электродинамикой,- в процессе вычислений в нём появляются бессмысленные бесконечно большие выражения. С помощью спец. приёма переопределения наблюдаемых величин (масс и констант взаимодействия) - перенормировки - удаётся устранить бесконечности из окончат. результатов вычислений. Однако процедура перенормировки - чисто формальный обход трудности, существующей в аппарате теории, к-рая на каком-то уровне точности может сказаться на степени согласия предсказаний теории с измерениями.

Появление бесконечностей в вычислениях связано с тем, что в лагранжианах взаимодействий поля разных частиц отнесены к одной точке x , т. е. предполагается, что частицы точечные, а четырёхмерное пространство-время остаётся плоским вплоть до самых малых расстояний. В действительности указанные предположения, по-видимому, неверны по неск. причинам:

а) истинно Э. ч., как носителям конечной массы, естественней всего приписать, хоть и очень малые, но конечные размеры, если мы хотим избежать бесконечной плотности материи;

б) свойства пространства-времени на малых расстояниях, скорее всего, радикально отличны от его макроскопич. свойств (начиная с нек-рого характерного расстояния, к-рое обычно наз. фундаментальной длиной);

в) на самых малых расстояниях (~ 10 -33 см) сказывается изменение геом. свойств пространства-времени за счёт влияния квантовых гравитац. эффектов (флуктуации метрики; см. Квантовая теория гравитации) .

Возможно, эти причины тесно связаны между собой. Так, именно учёт гравитац. эффектов наиб. естественно приводит к размерам истинно Э.ч. порядка 10 -33 см, а фундам. длина может фактически совпадать с т. н. планковской длиной l Пл = 10 -33 см, где x -гравитац. постоянная (M. Марков, 1966). Любая из этих причин должна привести к модификации теории и устранению бесконечностей, хотя практическое выполнение этой модификации может оказаться очень сложным.

Одна из интересных возможностей последовательного учёта эффектов гравитации связана с распространением идей суперсимметрии на гравитац. взаимодействие (теория супергравитации , в особенности расширенной супергравитации). Совместный учёт гравитац. и других видов взаимодействий приводит к заметному сокращению числа расходящихся выражений в теории, но ведёт ли супергравитация к полной ликвидации расходимостей в расчётах, строго не доказано.

T. о., логическим завершением идей Великого объединения, скорее всего, станет включение в общую схему рассмотрения взаимодействий Э. ч. также и гравитац. взаимодействия, учёт к-рого может оказаться принципиальным на самых малых расстояниях. Именно на базе одновременного учёта всех видов взаимодействий наиб. вероятно ожидать создания будущей теории Э. ч.

Лит.: Элементарные частицы и компенсирующие поля. Сб. ст., пер. с англ., M., 1964; Коккедэ Я., Теория кварков, пер. с англ., M.. 1971; Марков M. А., О природе материи, M., 1976; Глэ-шоу Ш., Кварки с цветом и ароматом, пер. с англ.. "УФН", 1976, т. 119, в. 4, с. 715; Бернстейн Дж., Спонтанное нарушение симметрии, калибровочные теории, механизм Хиггса и т.п., в кн.: Квантовая теория калибровочных полей. Сб. ст., пер. с англ., M., 1977 (Новости фундаментальной физики, в. 8); Боголюбов H. H., Ширков Д. В., Квантовые поля, 2 изд., M., 1993; Окунь Л. Б., Лептоны и кварки, 2 изд., M., 1990.

В физике элементарных частиц калибровочные бозоны – это бозоны, которые переносчиками фундаментальных взаимодействий природы. Точнее, элементарные частицы, взаимодействия которых описываются калибровочной теорией, действуют друг на друга при помощи обмена калибровочными бозонами, обычно как виртуальными частицами.
В Стандартной модели существует три типа калибровочных бозонов: фотоны, W и Z бозоны и глюоны. Каждый тип соответствует одному из трех взаимодействий, описывается в рамках Стандартной модели: фотоны – калибровочные бозоны электромагнитного взаимодействия, W и Z бозоны переносят слабое взаимодействие, а глюоны переносят сильное взаимодействие. Через конфайнмент изолированные глюоны не появляются при низких энергиях. Впрочем, при низких энергиях возможно наблюдение массивных глюболив (glueballs), существование которых на 2006 год экспериментально не подтверждено.
Количество калибровочных бозонов
В квантовой калибровочной теории калибровочные бозоны являются квантами калибровочных полей. Следовательно, калибровочных бозонов существует столько же, сколько источников калибровочных полей. В квантовой электродинамике калибровочная группа – U (1); в этом простейшем случае всего один калибровочный бозон. В квантовой хромодинамике сложнее группа SU (3) имеет 8 источников, что соответствует 8 глюонов. Три W и Z бозоны соответствуют, грубо говоря, трем источникам SU (2) в теории электрослабого взаимодействия.
Массивные калибровочные бозоны
По техническим причинам, включающим калибровочную инвариантность, калибровочные бозоны математически описываются уравнениями поля для безмасових частиц. Следовательно, на наивном теоретическом уровне восприятия все калибровочные бозоны должны быть безмасовимы, а взаимодействия, которые они описывают, должны быть взаимодействиями дальнего действия. Конфликт между этой идеей и экспериментальным фактом, что слабое взаимодействие имеет очень малый радиус действия, требует дальнейшего теоретического исследования.
По Стандартной модели W и Z бозоны получают массу через механизм Хиггса. В механизме Хиггса четыре калибровочных бозона (SU (2) Х U (1) симметрии) электрослабого взаимодействия соединяются в поле Хиггса. Это поле подвержено спонтанному нарушению симметрии через форму его потенциала взаимодействия. В результате через Вселенную проходит ненулевой конденсат поля Хиггса. Этот конденсат соединяется с тремя калибровочными бозонами электрослабого взаимодействия (W ± и Z), сообщая им массу; калибровочный бозон оставшийся остается безмасовим (фотон). Эта теория также предсказывает существование скалярного бозона Хиггса, который до сих пор обнаружен не был.
Теории великого объединения
В теориях великого объединения (ТВО) появляются дополнительные калибровочные X и Y бозоны. Они управляют взаимодействиями между кварками и лептоны, нарушая закон сохранения барионного числа и вызывая распад протона. Эти бозоны имеют огромную по квантовым меркам массу (возможно, даже большую, чем W и Z бозоны) из-за нарушения симметрии. До сих пор не получено ни одного экспериментального подтверждения существования этих бозонов (например, в серии наблюдений за распадами протонов на японской установке Супер-Камиоканде).
Гравитоны
Четвертая фундаментальное взаимодействие, гравитация, также может переноситься бозоном, который был назван гравитон. При отсутствии экспериментальной очевидности и математически последовательной теории квантовой гравитации неизвестно, гравитон калибровочным бозоном или нет. Роль калибровочной инвариантности в Общей теории относительности играет похожая симметрия – инвариантность дифеоморфизму.