Сегодня мы с вами вместе разберем интересный вопрос, касающийся биологии школьного курса, а именно: типы хромосом, их строение, выполняемые функции и так далее.

Для начала необходимо понять, что же это такое, хромосома? Так принято называть структурные элементы ядра в эукариотических клетках. Именно эти частички и содержат ДНК. В последней заключена наследственная информация, которая передается от родительского организма потомкам. Это возможно при помощи генов (структурных единиц ДНК).

Перед тем как мы подробно рассмотрим типы хромосом, важно познакомиться с некоторыми вопросами. Например, почему они названы именно таким термином? Еще в 1888 году такое название им дал ученый В. Вальдейер. Если переводить с греческого языка, то дословно мы получим цвет и тело. С чем же это связано? Можно узнать в статье. Очень интересен и тот факт, что хромосомами принято называть кольцевую ДНК у бактерий. И это несмотря на то, что структура последних и хромосом эукариот сильно отличается.

История

Итак, нам стало понятно, что хромосомой называют организованную структуру ДНК и белка, которая содержится в клетках. Очень интересно, что один кусочек ДНК содержит очень много генов и других элементов, которые кодируют всю генетическую информацию организма.

Перед рассмотрением типов хромосом, предлагаем немного поговорить об истории развития этих частичек. И так, эксперименты, которые начал проводить ученый Теодор Бовери еще в середине 1880 годов, продемонстрировали связь хромосом и наследственности. Тогда же Вильгельмом Ру была высказана следующая теория - каждая хромосома имеет разную генетическую нагрузку. Эта теория была протестирована и доказана Теодором Бовери.

Благодаря работе Грегора Менделя в 1900-х годах, Бовери смог отследить связь правил наследования и поведения хромосом. Открытия Бовери смогли повлиять на следующих цитологов:

  • Эдмунд Бичер Уилсон.
  • Уолтер Саттон.
  • Теофилус Пейнтер.

Работа Эдмунда Уилсона заключалась в связывании теорий Бовери и Саттона, которая описана в книге «Клетка в развитии и наследственности». Работа была опубликована примерно в 1902 году и посвящалась хромосомной теории наследственности.

Наследственность

И еще минута теории. В своих трудах исследователь Уолтер Саттон смог выяснить, сколько все-таки содержится в ядре клетки хромосом. Уже было сказано ранее, что ученый считал эти частички носителями наследственной информации. Помимо этого, Уолтер выяснил, что все хромосомы состоят из генов, вот они как раз и являются виновниками того, что потомкам передаются родительские свойства и функции.

Параллельно велись работы Теодором Бовери. Как уже говорилось ранее, оба ученых исследовали ряд вопросов:

  • передача наследственной информации;
  • формулировка основных положений о роли хромосом.

Эту теорию сейчас называют теорией Бовери-Саттона. Дальнейшая ее разработка была проведена в лаборатории американского биолога Томаса Моргана. Совместно ученые смогли:

  • установить закономерности размещения генов в данных структурных элементах;
  • разработать цитологическую базу.

Строение

В этом разделе мы предлагаем рассмотреть строение и типы хромосом. Итак, речь идет о структурных клетках, которые хранят и передают наследственную информацию. Из чего же состоят хромосомы? Из ДНК и белка. Помимо этого, составляющие части хромосом образуют хроматин. Белки при этом играют немаловажную роль для упаковки ДНК в ядре клетки.

Диаметр ядра не превышает показателя пять мкм, а ДНК упаковано полностью в ядро. Итак, ДНК в ядре имеет петельную структуру, которую поддерживают белки. Последние при этом узнают последовательности нуклеотидов для их сближения. Если вы собираетесь изучать строение хромосом под микроскопом, то лучшее для этого время - метафаза митоза.

Хромосома имеет форму небольшой палочки, которая состоит из двух хроматид. Последние удерживаются центромерой. Очень важно заметить и то, что каждая отдельная хроматида состоит из хроматиновых петель. Все хромосомы могут находиться в одном из двух состояний:

  • активном;
  • неактивном.

Формы

Сейчас мы рассмотрим существующие типы хромосом. В этом разделе вы сможете узнать, какие существуют формы этих частичек.

Все хромосомы обладают своим индивидуальным строением. Отличительная черта - особенности окрашивания. Если вы изучаете морфологию хромосом, то стоит обратить внимание на некоторые значительные вещи:

  • расположение центромеры;
  • длина и положение плеч.

Итак, существуют следующие основные типы хромосом:

  • метацентрические хромосомы (их отличительная черта - расположение центромеры посередине, эту форму еще принято называть равноплечием);
  • субметацентрические (отличительная черта - смещение перетяжки в одну из сторон, другое название - неравноплечие);
  • акроцентрические (отличительная черта - нахождение центромеры практически на одном из концов хромосомы, другое название - палочковидные);
  • точковые (такое название они получили из-за того, что их форма очень трудно определяется, что связано с маленьким размером).

Функции

Независимо от типа хромосом у человека и других существ эти частички выполняют массу различных функций. О чем идет речь можно прочесть в данном разделе статьи.

  • В хранении наследственной информации. Хромосомы являются носителями генетической информации.
  • В передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК.
  • В реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК, и соответственно того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

ДНК и РНК

Мы рассмотрели, какие типы хромосом существуют. Теперь переходим к детальному изучению вопроса роли ДНК и РНК. Очень важно заметить, что именно нуклеиновые кислоты составляют порядка пяти процентов массы клетки. Они представляются нам в качестве мононуклеотидов и полинуклеотидов.

Всего существует два типа этих нуклеиновых кислот:

  • ДНК, что расшифровывается как дезоксирибонуклеиновые кислоты ;
  • РНК, расшифровка - рибонуклеиновые кислоты.

Помимо этого, важно запомнить, что данные полимеры состоят из нуклеотид, то есть мономеров. Эти мономеры и у ДНК, и у РНК в основном по строению схожи. Каждый отдельный нуклеотид также состоит из нескольких компонентов, а точнее, трех, соединенных между собой прочными связями.

Теперь немного о биологической роли ДНК и РНК. Для начала важно заметить, что в клетке может встретиться три вида РНК:

  • информационная (снятие информации с ДНК, выполнение роли матрицы для синтеза белка);
  • транспортная (переносит аминокислоты для синтеза белка);
  • рибосомальная (участвует в биосинтезе белка, образовании структуры рибосомы).

А в чем же заключается роль ДНК? Эти частички хранят в себе информацию наследственности. Участки этой цепи содержат специальную последовательность азотистых оснований, которые и отвечают за наследственные признаки. Помимо этого, роль ДНК заключается и в передаче этих признаков в процессе деления ядер клеток. При помощи РНК в клетках проводится синтез РНК, благодаря чему и происходит синтез белков.

Хромосомный набор

Итак, мы рассматриваем типы хромосом, наборы хромосом. Переходим к подробному рассмотрению вопроса, касающегося хромосомного набора.

Число этих элементов является характерным признаком вида. Для примера возьмем муху-дрозофилу. У нее всего насчитывается восемь, а у приматов - сорок восемь. Человеческий организм обладает сорока шестью хромосомами. Сразу обращаем ваше внимание на то, что их количество для всех клеток организма одинаково.

Помимо этого, важно понимать, что существует два возможных вида набора хромосом:

  • диплоидный (характерен для эукариотических клеток, является полным набором, то есть 2n, присутствуют в соматических клетках) ;
  • гаплоидный (половина полного набора, то есть n, присутствуют в половых клетках).

Необходимо знать, что хромосомы образуют пары, представители которой являются гомологами. Что означает этот термин? Гомологичными называют хромосомы, которые имеют одинаковую форму, строение, местоположение центромеры и так далее.

Половые хромосомы

Сейчас мы подробнее рассмотрим следующий тип хромосом - половые. Это не одна, а пара хромосом, различных у мужских и женских особей одного вида.

Как правило, один из организмов (мужской или женский) является обладателем двух одинаковых, достаточно крупных Х-хромосом, при этом генотип - ХХ. Особь другого пола обладает одной Х-хромосомой и немного меньшего размера Y-хромосомой. При этом генотип - XY. Важно заметить и то, что в некоторых случаях формирование мужского пола происходит при отсутствии одной из хромосом, то есть генотип Х0.

Аутосомы

Это парные частички у организмов с хромосомным определением пола одинаковые и у мужского пола, и у женского. Если говорить более просто, то все хромосомы (кроме половых) - это аутосомы.

Обратите внимание на то, что наличие, копии и структура никак не зависит от пола эукариот. Все аутосомы имеют порядковый номер. Если взять человека, то двадцать две пары (сорок четыре хромосомы) являются аутосомами, а одна пара (две хромосомы) - половые хромосомы.

Хромосомы - наиважнейший элемент клетки. Они отвечают за передачу и реализацию наследственной информации и в эукариотической клетке локализуются в ядре.

По химическому строению хромосомы представляют собой комплексы дезоксирибонуклеиновых кислот (ДНК) и связанных с ними белков, а также небольшого количества других веществ и ионов. Таким образом, хромосомы являются дезоксирибонуклеопротеидами (ДНП).

Каждая хромосома в интерфазе включает одну длинную двухцепочечную молекулу ДНК. Ген - это последовательность определенного количество следующих друг за другом нуклеотид, составляющих ДНК. Гены, входящие в состав ДНК одной хромосомы, следуют друг за другом. В интерфазе в клетке протекает множество процессов, многие участки хромосомы деспирализованы в разной степени. На многих участках ДНК идет синтез РНК.

В период клеточного деления (как при митозе, так и при мейозе) хромосомы спирализуются (происходит их компактизация). При этом их длина сокращается, а синтез на них РНК становится невозможным. До спирализации каждая хромосома удваивается . Говорят, что хромосома становится состоящей из двух хроматид . То есть в период интерфазы хромосома состояла из одной хроматиды.

В компактизации хроматид важную роль играют белки, входящие в состав хромосомы.

Таким образом, в зависимости от фазы клеточного цикла по внешнему строению хромосомы могут быть представлены 1) в виде невидимого в световой микроскоп хроматина (в интерфазе) и состоять из одной хроматиды или 2) в форме двух спирализованных хроматид, видимых в световой микроскоп (в фазах клеточного деления, начиная с метафазы).

В строении хромосом есть еще один важный элемент - центромера (первичная перетяжка). Она имеет белковую природу и отвечает за движение хромосомы, также к ней крепятся нити веретена деления. В зависимости от места расположения центромеры различают равноплечие (метацентрические), неравноплечие (субметацентрические) и палочковидные (акроцентрические) хромосомы. У первых центромера находится по-середине, разделяя каждую хроматиду на два равных плеча, у вторых плечи неравной длины, а у третьих центромера находится у одного из концов хроматиды.

В удвоенных хромосомах хроматиды соединены между собой в области центромеры.

1 - хроматида; 2 - центромера; 3 - короткое плечо; 4 - длинное плечо.

Наличие первичной перетяжки в строении хромосом обязательно. Однако кроме них бывают вторичные перетяжки (ядрышковые организаторы ), они наблюдаются не у всех хромосом. В ядре на вторичных перетяжках хромосом происходит синтез ядрышек.

На концах хроматид находятся так называемые теломеры . Они препятствуют слипанию хромосом.

В гаплоидном наборе каждая хромосома по своему строению уникальна. Положение центромеры (и обусловленные этим длины плеч хромосомы) позволяет отличать каждую среди остальных.

В диплоидном наборе у каждой хромосомы есть гомологичная ей, имеющая такое же строение и тот же набор генов (но возможно других их аллелей) и доставшаяся от другого родителя.

Для каждого вида живых организмов характерен свой кариотип , т. е. свое количество хромосом и их особенности (длина, положение центромер, особенности химического строения). По кариотипу можно определить биологический вид.

Хромосома представляет собой вытянутую, структурированную совокупность генов, которая несет информацию о наследственности и образована из конденсированного . Хроматин состоит из ДНК и белков, которые плотно упакованы вместе для образования волокон хроматина. Конденсированные волокна хроматина образуют хромосомы. Хромосомы расположены в наших . Наборы хромосом соединяются вместе (один от матери и один от отца) и известны как .

Схема строения хромосомы на этапе метафазы

Недублированные хромосомы являются одноцепочечными и состоят из области , которая соединяет плечи хромосомы. Короткое плече обозначают буквой p , а длинное буквой q . Конечные области хромосом называются теломерами, которые состоят из повторяющихся некодирующих последовательностей ДНК, укорачивающихся во время деления клетки.

Дублирование хромосом

Хромосомное дублирование происходит до процессов деления посредством или . Процессы репликации ДНК позволяют сохранить правильное число хромосом после деления родительской клетки. Дуплицированная хромосома состоит из двух идентичных хромосом, называемых , которые связаны в области центромера. Сестринские остаются вместе до конца процесса деления, где они разделяются волокнами веретена и заключаются в . Как только парные хроматиды отделены друг от друга, каждая из них становится .

Хромосомы и деление клеток

Одним из наиболее важных элементов успешного деления клеток является правильное распределение хромосом. В митозе это означает, что хромосомы должны распределяться между двумя дочерними клетками. В мейозе хромосомы распределяются между четырьмя дочерними клетками. Веретено деления отвечает за перемещение хромосом во время деления клеток.

Такой тип движения клеток связан с взаимодействием между микротрубочками веретена и моторными белками, работающими вместе для разделения хромосом. Жизненно важно, чтобы в дочерних клетках сохранялось правильное количество хромосом. Ошибки, возникающие при делении клеток, способны приводить к неуравновешенными хромосомным числами, имеющим слишком много или недостаточно хромосом. Это отклонение известено как анеуплоидия и может происходит в аутосомных хромосомах во время митоза или в половых хромосомах во время мейоза. Аномалии в хромосомных числах могут приводить к врожденным дефектам, нарушениям развития и смерти.

Хромосомы и производство белков

Производство белка является жизненно важным клеточным процессом, который зависит от ДНК и хромосом. ДНК содержит сегменты, называемые генами, кодирующими белки. Во время производства белка ДНК разматывается, а его кодирующие сегменты транскрибируются в транскрипт РНК. Затем транскрипт РНК транслируется с образованием белка.

Мутация хромосом

Мутации хромосом - это изменения, которые происходят в хромосомах и обычно являются результатом ошибок, происходящих во время мейоза или при воздействии мутагенов, таких как химические вещества или радиация.

Поломка и дублирование хромосом может привести к нескольким типам структурных изменений хромосомы, которые обычно вредны для человека. Эти типы мутаций приводят к хромосомам с дополнительными генами, находящимися в неправильной последовательности. Мутации также могут продуцировать клетки с неправильным числом хромосом. Аномальные числа хромосом обычно возникают в результате нерасхождения или нарушения гомологичных хромосом во время мейоза.

Лекция №3

Тема: Организация потока генетической информации

План лекции

1. Структура и функции клеточного ядра.

2. Хромосомы: структура и классификация.

3. Клеточный и митотический циклы.

4. Митоз, мейоз: цитологическая и цитогенетическая характеристика, значение.

Структура и функции клеточного ядра

Основная генетическая информация заключена в ядре клеток.

Клеточное ядро (лат. – nucleus ; греч. – karyon ) было описано в 1831г. Робертом Броуном. Форма ядра зависит от формы и функций клетки. Размеры ядер изменяются в зависимости от метаболической активности клеток.

Оболочка интерфазного ядра (кариолемма ) состоит из наружной и внутренней элементарных мембран. Между ними находится перинуклеарное пространство . В мембранах имеются отверстия – поры. Между краями ядерной поры располагаются белковые молекулы, которые образуют поровые комплексы. Отверстие пор закрыто тонкой пленкой. При активных процессах обмена веществ в клетке большинство пор открыто. Через них идет поток веществ – из цитоплазмы в ядро и обратно. Количество пор у одного ядра

Рис. Схема строения клеточного ядра

1 и 2 – наружная и внутренняя мембраны ядерной оболочки, 3

– ядерная пора, 4 – ядрышко, 5 – хроматин, 6 – ядерный сок

достигает 3-4 тысяч. Наружная ядерная мембрана соединяется с каналами эндоплазматической сети. На ней обычно располагаются рибосомы . Белки внутренней поверхности ядерной оболочки формируют ядерную пластинку . Она поддерживает постоянной форму ядра, к ней прикрепляются хромосомы.

Ядерный сок – кариолимфа , коллоидный раствор в состоянии геля, который содержит белки, липиды, углеводы, РНК, нуклеотиды, ферменты. Ядрышко – непостоянный компонент ядра. Оно исчезает в начале клеточного деления и восстанавливается в конце его. Химический состав ядрышек: белок (~90%), РНК (~6%), липиды, ферменты. Ядрышки образуются в области вторичных перетяжек спутничных хромосом. Функция ядрышек: сборка субъединиц рибосом.

Хроматин ядра – это интерфазные хромосомы. Они содержат ДНК, белки-гистоны и РНК в соотношении 1:1,3:0,2. ДНК в соединении с белком образует дезоксирибонуклеопротеин (ДНП). При митотическом делении ядра ДНП спирализуется и образует хромосомы.

Функции клеточного ядра:

1) хранит наследственную информацию клетки;

2) участвует в делении (размножении) клетки;

3) регулирует процессы обмена веществ в клетке.

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Рис. Типы хромосом

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин ). Более светлые участки – участки слабой спирализации (эухроматин ).

Типы хромосом выделяют по расположению центромеры (рис.).

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.

3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом: хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.


Похожая информация.


Важнейшие из органелл клетки представляют собой микроскопические структуры , находящиеся в ядре. Они были открыты одновременно несколькими учёными, в том числе российским биологом Иваном Чистяковым.

Название нового клеточного компонента было придумано не сразу. Его дал немецкий учёный В. Вальдейер, который,окрашивая гистологические препараты, обнаружил некие тельца, хорошо окрашивающиеся фуксином. Тогда ещё не было точно известно какую роль в выполняют хромосомы.

Вконтакте

Значение

Структура

Рассмотрим, какое строение и функции имеют эти уникальные клеточные образования. В состоянии интерфазы их практически не видно. На этой стадии удваивается молекула и образуется две сестринские хроматиды .

Строение хромосомы можно рассмотреть в момент ее подготовки к митозу или мейозу (делению). Подобные хромосомы называются метафазными , потому что образуются на стадии метафазы, подготовки к делению. До этого момента тельца представляют собой невзрачные тонкие нити темного оттенка , которые называют хроматином .

При переходе в метафазную стадию строение хромосомы меняется: ее образуют две хроматиды, соединенные центромерой — так именуется первичная перетяжка . При делении клетки удваивается также количество ДНК . Схематический рисунок напоминает букву Х. Они содержат в составе, кроме ДНК, белки (гистоновые, негистоновые) и рибонуклеиновую кислоту — РНК.

Первичная перетяжка разделяет тело клетки (нуклеопротеидной структуры) на два плеча, немного сгибая их. На основе места расположения перетяжки и длины плеч была разработана следующая классификация типов:

  • метацентрические, они же равноплечие, центромера делит клетку ровно пополам;
  • субметацентрические. Плечи не одинаковы , центромера смещена ближе к одному концу;
  • акроцентрические. Центромера сильно смещена и находится почти скраю;
  • телоцентрическая. Одно плечо полностью отсутствует, у людей не встречается .

У некоторых видов имеется вторичная перетяжка , которая может располагаться в разных точках. Она отделяет часть, которая именуется спутником. От первичной отличается тем, что не имеет видимого угла между сегментами . Ее функция заключается в синтезировании РНК на матрице ДНК. У людей встречается в 13, 14, 21 и 15, 21 и 22 парах хромосом . Появление в другой паре несет угрозу тяжёлого заболевания.

Теперь остановимся на том, какую хромосомы выполняют функцию. Благодаря воспроизводству разных типов и-РНК и белков они осуществляют четкий контроль за всеми процессами жизни клетки и организма в целом. Хромосомы в ядре эукариот выполняют функции синтезирования белков из аминокислот, углеводов из неорганических соединений, расщепляют органические вещества до неорганических, хранят и передают наследственную информацию .

Диплоидный и гаплоидный наборы

Специфика строения хромосом может отличаться, смотря где они образуются. Как называется набор хромосом в соматических клеточных структурах? Он получил наименование диплоидного или двойного.Соматические клетки размножаются простым делением на две дочерние . В обычных клеточных образованиях каждая клеточка имеет свою гомологичную пару. Происходит это потому, что каждая из дочерних клеток должна иметь тот же объем наследственной информации , что и материнская.

Как соотносится число хромосом в соматических и половых клетках. Здесь числовое соотношение составляет два к одному. В процессе образования половых клеток происходит особый тип деле­ния , в итоге набор в зрелых яйцеклетках и сперматозо­идах становится одинарным. Какую функцию выполняют хромосомы можно объяснить, изучая особенности их устройства.

Мужские и женские половые клетки имеют половинчатый набор, называемый гаплоидным , то есть всего их насчитывается 23. Сперматозоид сливается с яйцеклеткой, получается новый организм с полным набором. Генетическая информация мужчины и женщины таким образом объединяется. Если бы половые клетки несли диплоидный набор (46), то при соединении получился бы нежизнеспособный организм .

Разнообразие генома

Число носителей генетической информации у разных классов и видов живых существ отличается.

Они обладают способностью окрашиваться специально подобранными красителями, в их структуре чередуются светлые и тёмные поперечные участки — нуклеотиды . Их последовательность и расположение носят специфический характер. Благодаря этому учёные научились различать клетки и, в случае необходимости, чётко указывать «поломанную».

В настоящее время генетики расшифровали человека и составили генетические карты, что позволяет методом анализа предположить некоторые серьёзные наследственные заболевания ещё до того, как они проявятся.

Появилась возможность подтверждать отцовство, определять этническую принадлежность , выявлять, не является ли человек носителем какой-либо патологии, до времени не проявляющейся либо дремлющей внутри организма, определять особенности негативной реакции на лекарства и многое другое.

Немного о патологии

В процессе передачи генного набора могут происходить сбои и мутации , приводящие к серьёзным последствиям, среди них встречаются

  • делеции — потеря одного участка плеча, вызывающая недоразвитие органов и клеток головного мозга;
  • инверсии – процессы, при которых фрагмент переворачивается на 180 градусов, результатом становится неправильная последовательность расположения генов ;
  • дупликации – раздвоение участка плеча.

Мутации могут возникать и между рядом находящимися тельцами — этот феномен был назван транслокацией. Известные синдромы Дауна, Патау, Эдвардса также являются следствием нарушения работы генного аппарата .

Хромосомные болезни. Примеры и причины

Классификация клеток и хромосом

Заключение

Значение хромосом велико. Без этих мельчайших ультраструктур невозможна передача генной информации , следовательно, организмы не смогут размножаться. Современные технологии могут читать, заложенный в них код и успешно предотвращать возможные болезни , которые раннее считались неизлечимыми.