Введение…………………………………………………………………..2 Глава 1. Свойства звуков речи………………………………………….4 Краткие сведения из физиологической акустики……………….4 Сила………………………………………………………………...7 Громкость………………………………………………………….8 Высота, тембр……………………………………………………...9 Звуки речи………………………………………………………...10 Глава 2. Акустические свойства звуков речи………………………….13 2.1. Акустическая характеристика………………………………………13 2.2. Роль артикуляционного аппарата в образовании акустических характеристик звуков……………………………………………………..17 Заключение………………………………………………………………..21 Список литературы……………………………………………………….25

Введение

Звуки речи, как и всякий другой звук, есть результат колебательного движения упругой среды. Струя воздуха, нагнетаемая из легких, приводит в колебательное движениеголосовые связки, они передают движение частицам окружающей воздушной среды. Каждая из частиц делает сначала движение вперед от колеблющегося тела, затем возвращается назад. В результате получается периодическое изменение воздушного давления, то есть последовательные сгущения воздуха (при движении вперед) и разряжения (при движении назад). Это создает звуковую волну. Высота звука зависит от количества колебаний в единицу времени. От увеличения количества колебаний высота звука повышается, от уменьшения – понижается. Высоту звуков измеряют герцами – одно колебание в секунду. Человеческое ухо воспринимает звуки от 16 до 20 000 герц. Изменения высоты звуков в речи создает интонацию, мелодику речи. Сила звука определяется амплитудой колебаний звуковой волны: чем больше амплитуда, тем сильнее звук. В речи сила звука связывается с понятием о силовом ударении. Сила звука воспринимается слушающим как громкость. Ученые выделяют два порога: порог слышимости (когда звук слабо различим) и порог болевого ощущения. Длительность или долгота звука связана с продолжительностью данного звука во времени с его количеством колебаний: в русском языке, например, гласные под ударением длительнее безударных. Большую роль в акустической окраске звуков играет характер колебательного движения: если оно совершается ритмически, то есть через определенные интервалы повторяются такие же периоды, то такая звуковая волна создает музыкальный тон; это наблюдается при произношении гласных звуков, когда воздух из легких, проходя через голосовые связки, нигде больше не встречает преград. Если же колебательное движение прерывается, то ухо воспринимает такой звук как шум. Шумными являются согласные звуки: воздух, проходя через речевой аппарат, встречает на пути преграды (с участием неба, языка, зубов и губ). Тоны и шумы взаимодействуют в ротовом и носовом резонаторах, создавая индивидуальные тембры звуков, по которым мы и узнаем звуковую речь наших знакомых и родных. Глава 1. Свойства звуков речи Краткие сведения из физиологической акустики Адекватным раздражителем органа слуха, или слухового анализатора, является звук. Звук представляет собой колебательные движения среды (воздуха, воды, почвы и пр.). Речь возникает при колебании голосовых складок у нас в гортани. Эти звуковые колебания распространяются по воздуху и попадают в наше ухо. В звуке, как и во всяком колебательном движении, различают амплитуду, или размах, колебаний, период, или время, в течение которого совершается полное колебательное движение, и частоту, или число полных колебаний в 1 секунду. Источником звука является колеблющееся тело. В силу упругости, присущей любому веществу, любой среде, колебания, возникающие в одном месте, передаются на соседние участки, причем возникают уплотнения и разрежения среды. Эти уплотнения и разрежения распространяются во все стороны с определенной скоростью, зависящей от величины упругости и плотности среды. Так возникают звуковые волны, состоящие из чередующихся друг с другом уплотнений и разрежений среды. По характеру колебательных движений звуки делятся на две группы - тоны и шумы. В звуках различают три характерных свойства: силу, высоту и тембр. Звуки речи, как и всякие другие звуки, являются результатом воздействия колебательных движений воздушной среды на слуховой аппарат человека. Эти колебания возбуждаются каким-либо источником - колеблющейся струной, сильным потоком воздуха, проходящего через узкое отверстие, ударом тела о поверхность. При образовании звуков речи в качестве источников звука выступают определенные участки речевого тракта при их работе во время речи. Принято рассматривать звуки вообще и звуки речи в частности с двух сторон: во-первых, исследуют объективные свойства колебательных движений - их частоту, силу, спектральные характеристики; во-вторых, изучают те ощущения, которые так или иначе вызываются этими колебаниями в слуховой системе человека, - высоту, громкость, тембр. Закономерности восприятия звуков исследует специальная область акустики - психоакустика. Рассмотрим основные соотношения между акустическими и психоакустическими свойствами. Частота колебательных движений определяется их числом в единицу времени: так, если колеблющееся тело совершает за секунду 100 колебательных движений, то частота получающегося при этом звука - 100 герц (герц - единица измерения частоты, названная так в честь немецкого физика, а ее сокращенное обозначение - Гц). Диапазон речевых частот, т. е. тех колебаний, которые могут быть обнаружены при анализе акустических свойств звуков речи, - от 50 до 10 000 Гц, что составляет лишь часть диапазона звуков, слышимых человеческим ухом. При восприятии частота колебания определяет высоту слышимого звука - чем выше частота колебаний, тем более высоким кажется нам звук. Однако эта связь - не линейная, так как увеличение частоты, например, в 10 раз не приводит к ощущению повышения звука тоже в 10 раз. При описании акустических характеристик частоту обычно обозначают латинской буквой f- от англ. frequency.

Заключение

Речевой аппарат человека является системой, приспособленной к порождению акустических колебаний для образования звуковых последовательностей. Условно мы можем говорить о том, что некоторые участки речевого тракта обеспечивают возникновение источников звука, а другие - резонансную систему. Существует три вида источников звука при речеобразовании: голосовой и два шумовых - турбулентный и импульсный. Голосовой источник возникает при колебании голосовых связок, и его работа обеспечивается как дыхательной системой, так и гортанью. Звук, возникающий в результате колебания голосовых связок, содержит основную частоту и гармоники, однако сразу же обратим внимание на то, что в обычных условиях мы этого звука никогда не слышим, поскольку он поступает в надгортанные полости, где всегда в значительной мере преобразуется. С голосовым источником образуются все гласные, сонанты и звонкие шумные согласные. Турбулентный источник шума возникает при сужении в каком-либо месте речевого тракта при прохождении по нему воздушной струи. В результате этого сужения воздух, проходящий по относительно широкому проходу, в месте сужения создает вихревые потоки, соприкосновение которых с краями сужения речевого тракта создает специфический шум. С турбулентным источником шума образуются все шумные щелевые согласные. Импульсный источник шума возникает при резком раскрытии смычки произносительных органов. Во время смычки в полости рта создается избыточное воздушное давление, поскольку воздушная струя не находит выхода из речевого тракта. При раскрытии смычки происходит выравнивание давления за местом смычки и атмосферного - и в результате возникает короткий и резкий щелчок - импульсный шум, характеризующий образование взрывных согласных. Акустические свойства звуков речи обеспечиваются участием одного, двух (или даже трех) источников: при производстве гласных источник голосовой, при глухих шумных щелевых - турбулентный, глухих взрывных - импульсный; звонкие щелевые образуются при участии двух источников - голосового и турбулентного, звонкие взрывные - голосового и импульсного. Источник звука вызывает колебательные движения воздуха в резонаторах - в надгортанных полостях. Ротовая, носовая полости глотки образуют целую систему резонаторов, собственные частотные характеристики которых могут очень существенно изменяться в зависимости от положения губ, языка, мягкого неба, т. е. в зависимости от того, какой звук артикулируется. Те усиления в спектре звука, которые зависят от конфигурации речевого тракта, называют формантами звука, поскольку именно они и формируют акустический образ произносимого звука. В специальной литературе форманты обозначаются латинской буквой F, а расположение формант на шкале частот связывается с номерами формант: самая близкая к частоте голосового источника форманта обозначается римской цифрой I, и далее форманты нумеруются в порядке возрастания их частоты; FI, FII, FIII, FIV. Число формант, которое необходимо учитывать при характеристике каждого звука, разными учеными определяется по-разному. Наиболее распространенной является точка зрения, в соответствии с которой достаточно четырех формант, при этом первая и вторая форманты имеют большее значение, чем третья и четвертая. Количество формант, существенных для акустических характеристик звука, сопоставимо с количеством резонансных полостей речевого тракта, однако было бы неверно думать, что каждая форманта связана с определенным резонатором. Между артикуляционными и акустическими характеристиками существует, безусловно, связь, которую можно определить как зависимость частот формант от ряда, подъема и огубленности. Считается, что частота FI связана с подъемом гласного: чем более открытый гласный, тем выше частота FI, чем более закрытый, тем она ниже; частота FII связана с рядом гласного: чем более передним является гласный, тем выше частота FII, чем более задним, тем она ниже. Огубленность гласного понижает частоту всех формант. При характеристике русских гласных мы убедимся в справедливости этого правила, однако не будем забывать о его известной упрощенности: фактически каждая из формант определяется всеми участками речевого тракта, а число формант, существенных для восприятия звука, больше двух. Рассматривая роль отдельных участков речевого тракта в образовании акустических характеристик, мы убедились в том, что и дыхательная система, и голосообразование, и собственно артикуляторные процессы определяют как характер источника звука, так и систему резонансных полостей, т. е., в конечном счете, по характеру артикуляции можно предвидеть акустический эффект, а по акустическим свойствам можно восстановить тот артикуляторный процесс, результатом которого явился данный звук. ќто обстоятельство позволяет исследователям фонетики пользоваться для своих наблюдений такими экспериментальными методиками, которые обеспечивают наилучшее объяснение фонетических явлений. Например, для исследования фонетических характеристик звуков, появляющихся в спонтанной речи, практически невозможно применять методы анализа и записи артикуляций, поскольку все они достаточно сложны и не обеспечивают необходимой естественности речепроизводства. Однако, учитывая тот факт, что акустические характеристики несут в себе много информации об артикуляционных процессах, можно анализировать магнитные записи спонтанной речи, проведенные в наиболее естественных условиях, и по акустическим данным интерпретировать сущность происходящих в речи артикуляторных процессов.

Список литературы

Аванесов Р.И. Русское литературное произношение: Учебное пособие для студентов пед. ин-тов по спец. № 2101 "Рус.яз и лит." - 6-е изд., перераб. и доп. - М.: Просвещение, 1984. Акишина А.А., Барановская С.А. Русская фонетика. - 2-е изд., испр. -М.: Рус.яз., 1990. Березин Ф.М., Головин Б.Н. Общее языкознание: Учеб. пособие для студентов пед. ин-тов по спец № 2101 "Рус.яз и лит." - М.: Просвещение, 1979. Биологические и кибернетические аспекты речевой деятельности. Сборник обзоров. - М.: Институт научной информации по общественным наукам, 1955. Бондарко Л.В. Звуковой строй современного русского языка. Учеб. пособие для студентов пед. ин-тов по спец. "Рус.яз. и лит." - М.: Просвещение, 1977. Бондарко Л.В.Осциллографический анализ речи. - Л., 1965. Деркач М.Ф., Гумецкий Л.Я.и др. Динамические спектры речевых сигналов. Львов, 1983. Макеев (Ерет) А.К. Естественная система фонем интеллекта (ЕСФИ). В книге: Актуальные проблемы фундаментальных наук. Т. 12. Секции Эргономика и искусственный интеллект, иностранные языки, семинар “Проблемы современной организации науки и производства. Инжиниринг. Маркетинг”./ Под ред. Федорова И.Б. –М.: Издательство МГТУ, 1991. Моисеев А.И. Звуки и буквы, буквы и цифры...: Кн. для внеклас. чтения учащихся 8 - 10 кл.сред.шк. - М.: Просвещение, 1987. Озеран А.Е. Машинопись. Изд. 2-е, перераб. и доп. - Минск: Вышейш. школа, 1976. Сапожников М.А. Речевой сигнал в кибернетике и связи. М., 1963. Современный русский язык: Учеб. пособие по спец. № 2121 "Педагогика и методология нач. обучения" /Попов Р.Н., Валькова Д.П., Маловицкий Л.Я., Федоров А.К. - 2-е изд., исп. и доп. - М.: Просвещение, 1986. Фланаган Дж. Анализ, синтез и восприятие речи. М., 1968. Начало формы

С акустической точки зрения в звуке различают тон и шум.

Вторым признаком звука является его высота, она звисит от частоты колебаний, чем больше частота колебаний, тем звук выше (от 16 до 20 тыс. герц).

Но для языкознания важна не абсолютная, а относительная высота звука - разница между высотой разных звуков. Высота одного и того же звуа может меняться в звисимости от интонации, а это важно.

Сила звука (зависит от амплитуды колебаний, чем больше амплитуда, тем сильнее звук).

Ее нельзя смешивать с громкостью (восприятие интенсивности звука слуховым аппаратом человека, фон).

Звуки, одинаковые по силе, но разные по высоте, - звуки разной громкости.

Тембр - зависит от соотношения основного тона и дополнительных тонов, обертон.
С акустической точки зрения в звуковой речи, прежде всего, различают тон и шум. Тон возникает в результате периодических колебаний, а шум из непериодических колебаний. В разных группах звуков соотношение тона и шума различно. Вторым важным признаком звука является высота. Она зависит от частоты колебаний. Чем больше частота колебаний звука, тем он выше. Для языкознания важна не абсолютная, а относительная высота звука, высота одного и того же звука может меняться в зависимости от интонации, а это важно для выделения ударных слогов. Сила звука зависит от амплитуды колебаний. Силу звука нельзя смешивать с громкостью. Под громкостью понимают восприятие интенсивности звука слуховым аппаратом человека. Звуки одинаковы по силе, но разны по высоте, воспринимаются как звуки разной громкости, более высокие звуки воспринимаются как более громкие. Следующий признак – это тембр звука. Именно по нему мы различаем людей.


Артикуляционная характеристика звуков речи.

Зависит от функционирования речевого аппарата, который остоитиз:

Дыхательногоаппарта (легкие, диафрагма, бронхи, трахея);

Надгортанные полости (глотки, рта, носа).

Органы речи делятся на активные и пассивные.

Пассивные - твердое небо, альвеолы, зубы.

В результате совместной работы органов речи в преобразование звуков называется артикуляцией. Она сотоит из трех этапов:

a0 Приступ (экскурсия) - органы речи занимают положение, необходимое для произношения какого-либо звука.

b0 Центральный (главный) - выдержка, произнесение звука.

c0 Отступ (рекурсия) - возвращение органов речи в первоначальное положение.

В работе органов речи есть общие черты, не зависимо от тогом, на каком языке говорят люди и в то же время, каждый народ обладает своими произносительными особенностями. Эти особенности объясняются привычкой говорящих на данном языке к определенному укладу органов речи.


Привычные артикуляционные навыки, которые типичны для всех говорящих на данном языке, называются его артикуляционной базой.

Классификация гласных звуков

В языкознании чаще всего используется классификация гласных, основанная на артикуляционных признаках с учетом акустических признаков гласных. Особое значение при классификации гласных имеет работа языка и губ. Движение языка может происходить по горизонтали или по вертикали. Движение языка по вертикали определяет подъем гласного.

По подъему определяют: верхнего подъема, среднего подъема и нижнего подъема. Гласные верхнего подъема называются узкими (закрытыми) гласными, нижнего – широкими (открытыми) гласными.

Движение языка по горизонтали определяет ряд гласного. Гласные могут быть переднего, среднего ряда.

Качество гласного зависит от формы ротового резонатора. Если губы напряжены и округлены, то гласные называются огубленными. Степень огубления в различных языках может быть различной (в англ. меньше, чем в русском). Если губы не напряжены и не округлены, гласные называются неогубленными.

С акустической точки зрения гласные различаются степенью сонорности и высотой тона. Различают чистые и носовые гласные. Важно деление гласных по длительности: долгие и краткие. Но в различных языках роль длительности различна (англ., нем., фр.) Долгота и краткость гласного служат для распознавания слов. В русском длительность гласного является лишь эмфатическим средством. В некоторых языках существует 3 ступени длительности гласного (эстонский). Длительность гласного обычно связывают с другим его признаком (напр., в нем. долг. гласн. – закрыт., кр. – откр.) Дополнительным признаком гласного является напряженность (ненапряженность). Напряженные гласные произносятся четко. Степень напряжения в языках различна (напр., в рус.гласные менее напр., чем во фр. и нем.) Но в пределах одного языка степень напряженности гласных различна. Так ударные гласные наиболее напряжены, чем безударные. Гласные верхнего подъема также более напряжены, чем гласные нижнего ряда. Главным для классификации гласных является деление на монофтонги и дифтонги. Большинство гласных – монофтонги (однозвучные, цельные по составу). Особую группу составляют дифтонги. При произношении дифтонгов переход от одной артикуляции к другой осуществляется в виде скольжения, что приводит к их смещению. Дифтонгами богаты англ. и нем. Главные элементы, составляющие дифтонги, всегда относятся к одному слогу, причем один из компонентов дифтонга является слогообразующим. Если слогообразующим является первый компонент, то такой дифтонг называется нисходящим (нем., англ.), если слогообразующим явл. второй элемент – восходящим (румынский).

ФОНЕТИЧЕСКАЯ ТРАНСКРИПЦИЯ. ПРИНЦИПЫ ФОНЕТИЧЕСКОЙ ТРАНСКРИПЦИИ

Для более точной передачи звучащей речи на письме используют фонетическую транскрипцию - особую систему, основанную на единообразных отношениях между звуками и буквами: каждый звук обозначается одним, притом одним и тем же знаком; каждый знак всегда обозначает один и тот же звук.
В основе русской фонетической транскрипции лежит русский алфавит, за исключением букв е, ё, ю, я, щ, й, которые не соответствуют принципам транскрипции. Особое звуковое значение имеют буквы Ъ и Ь: они обозначают краткие редуцированные звуки.

Для обозначения русских гласных звуков используются следующие знаки: а, э, о, и, ы, у, и, е. Для обозначения русских согласных - б, п,в, ф, к, г, д, т, з, с, л, м, н, р, х (и их мягкие варианты), ж, ш, ц. Кроме того, в русской транскрипции для обозначения среднеязычного палатального согласного используют букву из латиницы - j, а звонкий заднеязычный фрикативный в словах двухгодичный обозначается у. Дополнительные особенности звуков отмечаются специальными дополнительными (диакритическими) значками: мягкость - апострофом или знаком минуты [сэт"]; ударность - знаком ударения: акутом - основное (/); грависом - побочное, второстепенное (\); долгота - горизонтальной чертой над знаком - отдать; краткость - дужкой под знаком; слоговый характер согласного - ло^ро; носовой характер согласного - о~.

2. КЛАССИФИКАЦИЯ ЗВУКОВ РЕЧИ

Как физическое явление звук речи представляет собой результат колебательных движений голосовых связок. Источник колебательных движений образует непрерывные упругие волны, которые воздействуют на человеческое ухо, в результате чего мы и воспринимаем звук. Свойства звуков изучаются акустикой. При описании звуков речи рассматриваются объективные свойства колебательных движений - их частота, сила, и те звуковые ощущения, которые возникают при восприятии звука - громкость, тембр. Часто слуховая оценка свойств звука не совпадает с его объективными характеристиками.
Высота звука зависит от частоты колебаний в единицу времени: чем больше число колебаний, тем выше звук; чем меньше колебаний, тем звук ниже. Высота звука определяется в герцах. Для восприятия звука важна не абсолютная, а относительная частота. При сравнении звука с частотой колебаний в 10 000 ГЦ со звуком в 1 000Гц первый будет оценивать как более высокий, но не в десять раз, а всего лишь в 3 раза. Высота звука зависит также от массивности голосовых связок - их длины и толщины. У женщин связки тоньше и короче, поэтому женские голоса обычно выше, чем мужские.
Сила звука определяется амплитудой (размахом) колебательных движений голосовых связок. Чем больше отклонение колеблющегося тела от исходной точки, тем интенсивнее звук. В зависимости от амплитуды меняется давление звуковой волны на барабанные перепонки. Силу звука в акустике принято измерять в децибелах (дБ). Сила звука зависит и от объема резонирующей полости. С точки зрения слушающего сила воспринимается как громкость: увеличение звукового давления приводит к увеличению громкости. Между силой и громкостью нет прямой зависимости. Звуки равные по силе, но с разной высотой воспринимаются по-разному. Так, звуки с частотой до 3000Гц воспринимаются как более громкие.
Звуки русского языка различаются по времени своего звучания. Длительность звучания измеряют в тысячных долях секунды - мс. По долготе звучания различают ударные и безударные гласные звуки. Безударные гласные первого и второго предударного слога также различны по времени. Длительность смычных взрывных согласных практически равна нулю.
Фонетическим паспортом человека называют тембр звука. Тембр звука создается путем наложения на основной тон, возникающий в результате ритмических колебаний голосовых связок, обертонов, являющихся результатом колебаний отдельных частей звучащего тела. Частота колебаний обертонов всегда в кратное число выше частоты колебаний основного тона, а сила слабее, чем выше высота. Резонаторы могут изменять соотношение тонов и обертонов, что отражается на тембровом рисунке звука.
С развитием электроакустической (в 1920-1930 гг.), а затем (в середине 60-х гг.) - компьютерной (электронной) техники стало возможным более детальное изучение акустических характеристик звука речи.

ФОНЕТИКА

Человеческий язык – это прежде всего звучащая речь. Звуки языка, как отмечалось выше, изучает фонетика.

В фонетике звуки изучаются с разных сторон, или в разных аспектах:

1) Акустический аспект. Т.е. изучение звуков речи как физического явления

2) Анатомо-физиологическ ий (или биологический, или артикуляционный), т.е. изучение звуков как результата работы ряда органов человека, т.е. органов речи.

Способность органов слуха воспринимать звуки называется перцепцией , а совокупность движений органов речи при образовании звуков называется артикуляцией.

3) Лингвистический (или функциональный) аспект – это изучение функций звуковых единиц языка, т.е. использование их в языке.

Этим аспектам соответствуют три фонетические дисциплины:

Акустика речи,

Физиология речи (антропофоника),

Фонология.

Акустический аспект изучения звуков (акустика речи)

По своей физической природе звуки речи являются колебательными движениями воздушной среды, вызванными звучащим телом (органами речи) и воспринимаемыми человеческим слухом. Эти движения характеризуются определенными физическими (или акустическими) свойствами, рассмотрением которых и занимается акустика.

Звуковые колебания могут быть ритмичными или периодическими, в результате их возникают тоны . Колебания могут быть и аритмичными, или непериодическими, они приводят к возникновению шумов. В языковых звуках шумы и тоны обычно сочетаются. Гласные – в основном тоны, глухие согласные – шумы, в сонорных р, л, м, н больше тона, а в звонких шумных – больше шума.

Существуют два плана признаков, характеризующих звуки: 1) воспринимаемые признаки звука: а) высота, б) сила или громкость, в) длительность, г) тембр, 2) их акустические корреляты (т.е. связанные с ними взаимной зависимостью, обусловленностью) : а) частота, б) интенсивность, в) время звучания, г) спектр.

Гармоническое колебание, происходящее по закону синуса, характеризуется максимальным смещением от положения равновесия – амплитудой колебания и временем, которое затрачивается на совершение полного колебания, - периодом колебания. Величина, обратная периоду, - частота колебания. Единицей частоты является герц (Гц). Человеческое ухо способно воспринять звуковые колебания в полосе частот от 20 до 20000 герц.

Частота колебаний обусловливает высоту звука. Частота колебаний голосовых связок обусловливает высоту голоса. Высота голоса при пении колеблется в полосе частот от 75 – 80 герц в секунду (бас) до 1000 – 1200 Гц в секунду (сопрано).

Звуки с большой частотой называются высокими, а с низкой частотой – низкими. Длина слышимых звуковых волн от 15 м (самые низкие звуки) до 3 м (самые высокие звуки).

Амплитуда колебания обусловливает силу звука. Восприятие звуковых колебаний органами слуха основано на явлении резонанса. Внутри уха имеется около 4,5 тысяч тончайших волокон различной длины, как бы «настроенных на различные тоны. Барабанная перепонка передает им колебания, но воспринимают колебания только волокна. «настроенные» природой на частоту, которую имеет переданное барабанной перепонкой колебание.

Колеблющийся источник звука излучает энергию в окружающий воздух.

Интенсивность звуковой волны воспринимается слуховым аппаратом как громкость.

Источник звука может колебаться многими способами. Струна музыкального инструмент, если она настроена, издает определенные тон. Однако если трогать струну в разных местах, то возникают звуки одного тона, но разных оттенков. Звуки одной тональности имеют разную окраску потому. Что колебание струны может происходить с различной частотой. Наименьшая (или основная) частота имеет место при колебании всей струны в целом, что дает основной тон. Большие частоты возникают при колебании частей струны. Эти частоты являются кратными основной частоте и относятся к собственным колебаниям струны. Собственные колебания струны, кроме основного тона, дают звуки, которые называются обертонами. Звук струны складывается из основного тона и обертонов. Трогая струну в различных точках, мы создаем различные спектры колебания. Спектр колебания содержит обертоны разной силы, которые и создают окраску звука, его тембр.

На явлении резонанса основано не только восприятие звуковых колебаний, но и их образование. Колебание одного тела может быть воспринято и усилено резонаторами – другими телами или «воздушным столбом». Чем больше резонатор, тем ниже его собственный звук, чем меньше резонатор, тем выше его собственный звук. Резонирующие тела имеют собственные колебания, равные или близкие по частоте колебаниям звучащего тела. Благодаря резонаторам усиливаются различные составные тоны звука, при этом главный тон, создаваемый резонированием и приобретающий определенные свойства в зависимости от области резонирования, называется формантов звука. Форманты представляют собой постоянные характеристики звуков речи.

Акустические свойства звуков речи изучаются в современной науке точными методами при помощи специальной аппаратуры.

Звуки как явление физическое являются результатом колебательных движений воздушной среды. Звуки речи представляют собой частный случай звуков вообще: это звуки, производимые произносительным аппаратом человека и воспринимаемые его слуховыми органами. Источники звуков речи разделяются на голосовые и шумовые. Голосовой источник возникает при колебании голосовых связок; он порождает гласные и звонкие согласные. Колебания голосовых связок являются периодическими (точнее - приблизительно периодическими ). Шумовые источники представлены двумя типами. Турбулентный источник возникает при сужении в каком-либо месте речевого тракта, когда по нему проходит воздушная струя. Таким способом образуются щелевые согласные. Импульсный источник возникает при резком раскрытии смычки произносительных органов, что порождает короткий, резкий щелчок, характеризующий образование взрывных согласных.

Акустические характеристики звуков речи

При описании звуков речи рассматривают как объективные свойства колебательных движений - их частоту, силу, спектральный состав, так и те звуковые ощущения, которые так или иначе соответствуют этим свойствам, - высоту, громкость, тембр. Таким образом, у звуков речи имеются объективные характеристики, не зависящие от восприятия, и субъективные характеристики, обусловленные тем, что звуки воспринимаются человеком.

Частота и высота звука

Частота звука определяется числом колебаний голосовых связок. Чем чаще происходят колебания, тем больше частота звука. Частота колебаний голосовых связок зависит от их массивности - длины и толщины. Чем длиннее и толще связки, тем меньше колебаний они совершают. У мужчин связки длиннее и толще, поэтому и голоса у них, как правило, ниже, чем у женщин. Единицей измерения частоты колебаний служит герц (Гц). Так, звук частотой 200 Гц образуется при 200 колебаниях в секунду. Ухо человека способно воспринимать звуки в диапазоне от 16 до 20 000 Гц. В то же время частотные характеристики звуков человеческой речи располагаются примерно в пределах от 50 до 10 000 Гц.

Среди звуков речи различаются тоны и шумы. Звуки, возбуждаемые периодическими колебаниями, являются тонами; возбуждаемые непериодическими колебаниями - шумами. Гласные звуки - это в основном тоны, согласные - шумы. Периодическими являются колебания, периоды которых равны. Периодом колебания называется отрезок времени, за который совершается одно полное колебание.

Высота звука есть ощущение его частоты. Звуки, характеризующиеся большей частотой, воспринимаются как более высокие. Единицей измерения высоты звука является мел. В целом ощущение высоты звука растет с увеличением его частоты. До частоты 500 Гц высота строго пропорциональна числу колебаний. Так, звук в 200 Гц по сравнению со звуком в 100 Гц воспринимается как более высокий в два раза. После частоты 500 Гц и особенно 1000 Гц ощущение высоты отстает от объективной частоты, т.е. звук частотой, например, 10 000 Гц по сравнению со звуком 1000 Гц оценивается как более высокий, но не в десять раз, а только в три раза.

Сила (интенсивность) и громкость звука

Сила звука определяется амплитудой (размахом) колебательных движений источника звука - голосовых связок. Чем больше амплитуда, т.е. отклонение колеблющегося тела от исходной точки (точки покоя), тем интенсивнее звук. В зависимости от амплитуды изменяется звуковое давление, добавочное к атмосферному, на барабанные перепонки. Оно измеряется силой, действующей на единицу площади. Минимальная сила звука, воспринимаемая слухом при данной частоте, называется порогом слышимости , максимальная сила - порогом болевого ощущения. Этими порогами снизу и сверху ограничена область слухового восприятия человека. Силу звука в акустике принято измерять в условных единицах - децибелах (дБ). Для частоты 1000 Гц уровень силы звука, соответствующего порогу слышимости, равен 0 дБ, а соответствующего порогу болевого ощущения - 130 дБ. Звуковое давление на втором пороге при той же частоте в три миллиона раз превышает давление на первом пороге.

Сила звука (объективная характеристика) оценивается слухом как его громкость (субъективная характеристика). Увеличение звукового давления (силы) приводит к увеличению громкости, уменьшение силы - к уменьшению громкости. Между силой звука и громкостью существует довольно сложная зависимость, определяемая частотой. Звуки, одинаковые или близкие по силе, но различные по частоте, могут восприниматься как звуки различной громкости. Так, звуки с частотой от 1000 до 3000 Гц воспринимаются как более громкие, чем звуки с частотой 100-200 Гц. Наоборот, как равногромкие воспринимаются, например, звуки силой 40 и 80 дБ при частоте соответственно 1000 и 2000 Гц. В пределах частотного диапазона (от 100 до 8000 Гц), в котором располагаются звуки человеческой речи, уровни громкости и силы различаются незначительно. Поэтому громкость часто характеризуют лишь через уровень силы. Вот примерные характеристики некоторых звучаний: порог слышимости - 0 дБ, тиканье ручных часов - 20 дБ, шепот - 40 дБ, речь вполголоса - 60 дБ, громкая речь - 80 дБ, симфонический оркестр - 100-110 дБ, порог болевого ощущения -130 дБ.

Спектр и тембр звука

Объективной характеристикой звука является спектр. Но мы подойдем к этому понятию, идя от более традиционного и более ясного понятия "тембр". Оно основывается на понятиях сложного звука и резонанса.

Голосовые связки человека можно сравнить со струнами. При колебании струны как единого целого возникает тон, называемый основным тоном. Он характеризуется наибольшей силой и самой низкой частотой, которую может издавать струна. Но одновременно с колебанием целой струны колеблются и ее части: половина, треть, четверть и т.д. При этом возникают тоны, которые в два, три, четыре и т.д. раза выше основного тона; они называются обертонами. У звука с частотой основного тона 100 Гц обертоны будут в 200, 300, 400 Гц и т.д. Из сочетания основного тона и обертонов создаются сложные звуки. Именно сложные звуки порождаются голосовыми связками.

Другая причина возникновения сложных звуков заключается в явлении резонанса , т.е. в способности полых (пустых внутри) тел, называемых резонаторами , в силу того, что они имеют собственную частоту колебаний, реагировать на частоты, порождаемые источником звука - голосовыми связками. Резонаторы в основном усиливают обертоны, составляющие сложный звук, но могут и избирательно ослаблять их. Таким образом, у звука с частотой основного тона в 100 Гц могут оказаться усиленными и одновременно ослабленными разные обертоны. В итоге возникают такие сложные звуки, которые характеризуются различным тембром. Соотношение относительной силы основного тона и накладывающихся на него обертонов создает гармоническую структуру звука, которая определяет его тембр. Тембр звука надо отличать от тембра голоса, который индивидуален для каждого человека.

Сложный звук, возникший в гортани в процессе артикулирования вследствие постоянного изменения конфигурации надгортанных резонаторных полостей (глотки и рта) определенным образом видоизменяется: одни его составляющие усиливаются, другие ослабляются. Полость носа также является резонатором, но она свою конфигурацию не меняет. В силу особенностей устройства речевых резонаторов они реагируют не на конкретные частоты, а на области, полосы частот, например полосы от 1000 до 2000 Гц. Области усиления частот, или иначе - области концентрации звуковой энергии, называются формантами. Формантная структура звука определяет его спектр. Ею характеризуются главным образом гласные, причем наиболее непосредственно их лингвистические характеристики связаны с частотным положением нижних формант - 1-й и 2-й. Спектр звука в определенной степени влияет на субъективное восприятие тембра. Понятие спектра было введено в акустику по аналогии со спектром света в оптике. Разработка спектрального анализа звуков началась в 1920-1930-х гг. в связи с развитием электроакустической, а позднее электронной и компьютерной техники.