Между молекулами любого вещества действуют силы взаимодействия или молекулярные силы . Эти силы имеют электромагнитную природу. Так как массы молекул очень малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать. Каждая молекула представляет собой сложную систему, состоящую из заряженных частиц: электронов и атомных ядер. Поэтому при взаимодействии молекул одновременно действуют как силы притяжения их разноименных зарядов, так и силы отталкивания одноименных. И те, и другие с увеличением расстояния между молекулами быстро уменьшаются. Однако убывание сил отталкивания должно быть более быстрым, чем сил притяжения, в результате чего силы отталкивания будут преобладать на малых расстояниях между молекулами, а силы притяжения - на более дальних расстояниях.

На рис.1 изображена зависимость силы взаимодействия молекул от расстояния между ними. Как видно из рисунка, на очень больших расстояниях электромагнитного взаимодействия между молекулами практически нет. При сближении молекул, оставаясь в целом электрически нейтральными, молекулы будут ориентироваться таким образом, что их обращенные друг к другу стороны будут иметь разноименные заряды. В результате между молекулами будут возникать силы притяжения. При дальнейшем сближении молекул силы притяжения между ними будут возрастать. Если молекулы сблизятся до такой степени, что их электронные облака начнут заметно проникать друг в друга, то электроны и ядра различных молекул будут резко отталкиваться с силой, которая очень быстро растет с уменьшением расстояния между молекулами. На таких расстояниях будут преобладать силы отталкивания.

Рис.1 Зависимость силы взаимодействия молекул от расстояния между ними

Таким образом, на каждую молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания.

Существует такое расстояние между молекулами , на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия.

Примеры решения задач

ПРИМЕР 1

Задание Что из приведенных ниже фактов или явлений является наиболее наглядным опытным подтверждением взаимодействия между молекулами? Указать правильное утверждение:

а) растекание масла на поверхности воды;

б) расширение твердых тел, жидкостей и газов в результате нагревания;

в) наблюдение атомов и молекул с помощью электронного микроскопа;

г) возникновение сил упругости при деформациях твердых тел.

Ответ Правильным является утверждение г). Причиной возникновения сил упругости при деформациях твердых тел является взаимодействие между молекулами вещества этих тел. Силы взаимодействия между молекулами таковы, что на малых расстояниях (по сравнению с размерами самих молекул) молекулы отталкиваются, а на больших расстояниях - притягиваются. В недеформированном теле молекулы расположены на расстояниях, соответствующих устойчивому равновесию молекул, т.е. когда силы притяжения и отталкивания молекул компенсируют друг друга. Однако, когда мы растягиваем или сжимаем тело, расстояния между молекулами увеличиваются (или уменьшаются), в результате чего начинают преобладать либо силы притяжения, либо силы отталкивания, что приводит к возникновению сил упругости.

Взаимодействие атомов и молекул вещества. Между молекулами вещества действуют одновременно силы притяжения и силы отталкивания. Эти силы в сильной степени зависят от расстояний между молекулами. Согласно экспериментальным и теоретическим исследованиям, межмолекулярные силы взаимодействия обратно пропорциональны n-ой степени расстояния между молекулами. где для сил притяжения n=7, а для сил отталкивания n=9…15.


Силы отталкивания гораздо больше сил притяжения на малых расстояниях (r


В газах расстояние между молекулами во много раз превышают размеры самих молекул. Вследствие этого силы взаимодействия между молекулами газа малы. Каждая молекула движется свободно от других молекул с огромными скоростями (сотни метров в секунду), испытывая редкие столкновения и меняя при этом направление и модуль скорости. Длина свободного пробега » молекул газа зависит от давления и температуры газа. При нормальных условиях »~10-7 м. В жидкостях расстояние между молекулами значительно меньше, чем в газах. Силы взаимодействия между молекулами велики, вследствие чего молекулы жидкости совершают колебания около некоторого положения равновесия, затем делают скачок, колеблются в новом окружении, затем снова делают скачок и т.д.


В твердых телах расстояние между молекулами еще меньше, вследствие чего силы взаимодействия между молекулами настолько велики, что молекулы совершают лишь колебания с малой амплитудой около некоторого постоянного положения равновесия – узла кристаллической решетки.

Между молекулами вещества действуют одновременно силы притяжения и силы отталкивания. Эти силы в большой степени зависят от расстояний между молекулами.

Согласно экспериментальным и теоретическим исследованиям межмолекулярные силы взаимодействия обратно пропорциональны n -й степени расстояния между молекулами:

\(~F_r \sim \pm \frac{1}{r^n},\)

где для сил притяжения n = 7, а для сил отталкивания n = 9 ÷ 15.

Взаимодействие двух молекул можно описать при помощи графика зависимости проекции равнодействующей F r сил притяжения и отталкивания молекул от расстояния r между их центрами. Направим ось r от молекулы 1 , центр которой совпадает с началом координат, к находящемуся от него на расстоянии r 1 центру молекулы 2 (рис. 1, а).

Тогда проекция силы отталкивания молекулы 2 от молекулы 1 на ось r будет положительной. Проекция силы притяжения молекулы 2 к молекуле 1 будет отрицательной.

Силы отталкивания (рис. 3, б) гораздо больше сил притяжения на малых расстояниях (r < r 0), но гораздо быстрее убывают с увеличением r . Силы притяжения тоже быстро убывают с увеличением r , так что, начиная с некоторого расстояния r m , взаимодействием молекул можно пренебречь. Наибольшее расстояние r m , на котором молекулы еще взаимодействуют, называется радиусом молекулярного действия (r m ~ 1,57 · 10 -9 м).

При r = r 0 силы отталкивания по модулю равны силам притяжения.

Расстояние r 0 соответствует устойчивому равновесному взаимному положению молекул.

В различных агрегатных состояниях вещества расстояние между его молекулами различно. Отсюда и различие в силовом взаимодействии молекул и существенное различие в характере движения молекул газов, жидкостей и твердых тел.

В газах расстояния между молекулами в несколько раз превышают размеры самих молекул. Вследствие этого силы взаимодействия между молекулами газа малы и кинетическая энергия теплового движения молекул намного превышает потенциальную энергию их взаимодействия. Каждая молекула движется свободно от других молекул с огромными скоростями (сотни метров в секунду), меняя направление и модуль скорости при столкновениях с другими молекулами. Длина свободного пробега λ молекул газа зависит от давления и температуры газа. При нормальных условиях λ ~ 10 -7 м.

В жидкостях расстояние между молекулами значительно меньше, чем в газах. Силы взаимодействия между молекулами велики, и кинетическая энергия движения молекул соизмерима с потенциальной энергией их взаимодействия, вследствие чего молекулы жидкости совершают колебания около некоторого положения равновесия, затем скачкообразно переходят в новые положения равновесия через очень малые промежутки времени (10 –8 с), что приводит к текучести жидкости. Таким образом, в жидкости молекулы совершают в основном колебательные и поступательные движения. В твердых телах силы взаимодействия между молекулами настолько велики, что кинетическая энергия движения молекул намного меньше потенциальной энергии их взаимодействия. Молекулы совершают лишь колебания с малой амплитудой около некоторого постоянного положения равновесия - узла кристаллической решетки.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. .

При рассмотрении реальных газов - газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях < 10-9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.

В XX в., по мере развития представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависимость сил межмолекулярного взаимодействия от расстояния г между молекулами, где F0 и Fп - соответственно силы отталкивания и притяжения, a F - их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяжения - отрицательными.

На расстоянии г = г0 результирующая сила F = 0, т. е. силы притяжения и отталкивания уравновешивают друг друга. Таким образом, расстояние г0 соответствует равновесному расстоянию между молекулами, на котором бы они находились в отсутствие теплового движения. При г < г0 преобладают силы отталкивания (F > 0), при г > г0-силы притяжения (F < 0). На расстояниях г > 10-9 м межмолекулярные силы взаимодействия практически отсутствуют (F = 0).

Элементарная работа A силы F при увеличении расстояния между молекулами на dr совершается за счет уменьшения взаимной потенциальной энергии молекул, т. е.

Из анализа качественной зависимости потенциальной энергии взаимодействия молекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимодействия не действуют (г  ), то П = 0. При постепенном сближении молекул между ними появляются силы притяжения (F < 0), которые совершают положительную работу (A = Fdr > 0). Тогда, согласно (60.1), потенциальная энергия взаимодействия уменьшается, достигая минимума при r = r0. При г < г0 с уменьшением г силы отталкивания (F > 0) резко возрастают и совершаемая против них работа отрицательна (A = Fdr < 0). Потенциальная энергия начинает тоже резко возрастать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих молекул в состоянии устойчивого равновесия (г = г0) обладает минимальной потенциальной энергией.

2.Уравнение реального газа Ван-дер-Ваальса

Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальс (1837-1923) вывел уравнение состояния реального газа. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm - молярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):

Для произвольного количества вещества v газа (v = m/M) с учетом того, что V = vVm, уравнение Ван-дер-Ваальса примет вид

где поправки а и b - постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b).

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.

3.Переход из газообразного состояния в жидкое и твёрдое

Конденсация - переход воды из газообразного в жидкое состояние. При конденсации в атмосфере образуются мельчайшие капли диаметром порядка нескольких микрометров. Более круп­ные капли образуются путем слияния мелких капель или в результате таяния ледяных кристаллов.

Конденсация начинается, если воздух достигает насыщения, а это чаще всего происходит в атмосфере при понижении температуры. Водяной пар с понижением температуры до точки росы достигает состояния насыщения. При дальнейшем пониже­нии температуры избыток водяного пара сверх того, что нужно для насыщения, переходит в жидкое состояние.

Охлаждение воздуха чаще всего происходит адиабатически вследствие его расширения без отдачи тепла в окружающую роду. Такое расширение происходит преимущественно при подъеме воздуха.

Известно, что пока воздух не насыщен, он охлаждается адиабатически на 1С на каждые 100 м подъема. Синим образом, для воздуха, не очень далекого от насыщения, вполне достаточно подняться вверх на несколько сотен метров, и крайнем случае на одну-две тысячи метров, чтобы в нем начиналась конденсация.

При формировании туманов главной причиной охлаждения воздуха является уже не адиабатический подъем, а отдача тепла из воздуха земной поверхности.

В атмосферных условиях происходит не только конденса­ция, но и сублимация - образование кристаллов, переход водяно­го пара в твердое состояние. Этот процесс происходит при очень низких температурах - ниже -40°С. Твердые осадки, выпадаю­щие из облаков, обычно имеют хорошо выраженное кристалличе­ское строение; всем известны сложные формы снежинок - шестилучевые звездочки с многочисленными разветвлениями. В облаках и осадках обнаруживаются и более простые формы кристаллов, а также замерзшие капли. Кристаллы возникают и на земной поверхности при отрицательных температурах (иней, изморозь и др.).

Молекулярные силы. Между молекулами вещества существуют силы взаимодействия, называемые молекулярными силами. Если бы между молекулами не было сил притяжения, то все вещества при любых условиях находились бы только в газообразном состоянии. Лишь благодаря силам притяжения молекулы удерживаются друг возле друга и образуют жидкие и твердые тела.

Однако одни только силы притяжения не могут обеспечить существование устойчивых образований из атомов и молекул. На очень малых расстояниях между молекулами действуют силы отталкивания.

Строение атомов и молекул. Атом, а тем более молекула, – это сложная система, состоящая из отдельных заряженных частиц – электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, между ними на малых расстояниях действуют значительные электрические силы. Происходит взаимодействие между электронами и ядрами соседних молекул. Описание движения частиц внутри атомов и молекул и сил взаимодействия между молекулами очень сложная задача. Ее рассматривают а атомной физике. Мы приведем только результат: примерную зависимость силы взаимодействия двух молекул от расстояния между ними.

Атомы и молекулы состоят из заряженных частиц противоположных знаков заряда. Между электронами одной молекулы и атомными ядрами другой действуют силы притяжения. Одновременно между электронами обеих молекул и между их ядрами действуют силы отталкивания.
Вследствие электрической нейтральности атомов и молекул молекулярные силы являются короткодействующими. На расстояниях, превышающих размеры молекул в несколько раз, силы взаимодействия между ними практически не сказываются.

Зависимость молекулярных сил от расстояния между молекулами. Рассмотрим, как меняется в зависимости от расстояния между молекулами проекция силы взаимодействия между ними на прямую, соединяющую центры молекул. На расстояниях, превышающих 2-3 диаметра молекул, сила отталкивания практически равна нулю. Заметна лишь сила притяжения. По мере уменьшения расстояния сила притяжения возрастает и одновременно начинает сказываться сила отталкивания. Эта сила очень быстро возрастает, когда электронные оболочки атомов начинают перекрываться. В результате на сравнительно больших расстояниях молекулы притягиваются, а на малых отталкиваются.

На рисунке 8 изображена примерная зависимость проекции силы отталкивания от расстояния между центрами молекул (верхняя кривая), проекции силы притяжения (нижняя кривая) и проекция результирующей силы (средняя кривая). Проекция силы отталкивания положительна, а проекция силы притяжения отрицательна. Тонкие вертикальные линии проведены для удобства выполнения сложения проекций сил.

На расстоянии r 0 , равном примерно сумме радиусов молекул, проекция результирующей силы F r = 0, так как сила притяжения равна по модулю силе отталкивания (рис. 9, а). При r > r 0 сила притяжения превосходит силу отталкивания и проекция результирующей силы (жирная стрелка) отрицательна (рис 9, б).

Если r → ∞, то F r → 0. На расстояниях r < r 0 сила отталкивания превосходит силу притяжения (рис. 9, в).

Происхождение сил упругости. Зависимость сил взаимодействия молекул от расстояния между ними объясняет появление силы упругости при сжатии и растяжении тел. Если пытаться сблизить молекулы на расстояние, меньшее r0, то начинает действовать сила, препятствующая сближению. Наоборот, при удалении молекул друг от друга действует сила притяжения, возвращающая молекулы в исходное положение после прекращения внешнего воздействия.

При малом смешении молекул из положений равновесна сила притяжения или отталкивания растут линейно с увеличением смещения. На малом участке кривую можно считать отрезком прямой (утолщенный участок кривой на рис 8). Именно поэтому при малых деформациях оказывается справедливым закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях молекул закон Гука уже несправедлив.

Так как при деформации тела изменяются расстояния между всеми молекулами, то на долю соседних слоев молекул приходится незначительная часть общей деформации. Поэтому закон Гука выполняется при деформациях в миллионы раз превышающих размеры молекул.

3!ГАЗООБРАЗНОЕ СОСТ.

ЖИДКОЕ СОСТ.

ТВЕРД СОСТ.

4! ГА́З (франц. gaz, от греч. chaos - хаос) , агрегатное состояние вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Газообразное состояние вещества является самым распространенным состоянием вещества Вселенной. Солнце, звезды, облака межзвездного вещества, туманности, атмосферы планет и т. д. состоят из газов, или нейтральных, или ионизованных (плазмы) . Газы широко распространены в природе: они образуют атмосферу Земли, в значительных количествах содержатся в твердых земных породах, растворены в воде океанов, морей и рек. Встречающиеся в природных условиях газы представляют собой, как правило, смеси химически индивидуальных газов. Газы равномерно заполняют доступное для них пространство, и в отличие от жидкостей и твердых тел, не образуют свободной поверхности. Они оказывают давление на ограничивающую заполняемое ими пространство оболочку. Плотность газов при нормальном давлении на насколько порядков меньше плотности жидкостей. В отличие от твердых тел и жидкостей, объем газов существенно зависит от давления и температуры. Свойства большинства газов - прозрачность, бесцветность и легкость - затрудняло их изучение, поэтому физика и химия газов развивались медленно.

Только в 17 в. было доказано, что воздух обладает весом (Э. Торричелли и Б. Паскаль) . Тогда же Я. ван Гельмонт ввел термин газы для обозначения воздухоподобных веществ. И только к середине 19 в. были установлены основные закономерности, которым подчиняются газы. К ним относятся закон Бойля - Мариотта, закон Шарля, закон Гей-Люссака, закон Авогадро. Наиболее полно изучены были свойства достаточно разряженных газов, в которых расстояния между молекулами при нормальных условиях порядка 10 нм, что значительно больше радиуса действия сил межмолекулярного взаимодействия. Такой газ, молекулы которого рассматриваются как невзаимодействующие материальные точки, называется идеальным газом. Идеальные газы строго подчиняются законам Бойля - Мариотта и Гей-Люссака. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах. Уравнение pV=RT называют уравнением состояния идеального газа. Оно было получено в 1834 Б. Клапейроном и обобщено Д. И. Менделеевым для любой массы газа. Входящая в это уравнение газовая постоянная R равна 8,31 Дж/моль. град. Уравнение Клапейрона - Менделеева справедливо только для идеальных газов. Для них выполняется также закон Дальтона. Молекулярно-кинетическая теория газов рассматривает газы как совокупность слабо взаимодействующих частиц (молекул или атомов) , находящихся в непрерывном хаотическом (тепловом) движении. На основе этих простых представлений кинетической теории удается объяснить основные физические свойства газов, особенно полно - свойства разреженных газов. У достаточно разреженных газов средние расстояния между молекулами оказываются значительно больше радиуса действия межмолекулярных сил. Так, например, при нормальных условиях в 1 см3 газа находится ~ 1019 молекул и среднее расстояние между ними составляет ~ 10-6 см. С точки зрения молекулярно-кинетической теории давление газов является результатом многочисленных ударов молекул газа о стенки сосуда, усредненных по времени и по стенкам сосуда. При нормальных условиях и макроскопических размерах сосуда число ударов об 1см2 поверхности составляет примерно 1024 в секунду. Любое вещество можно перевести в газообразное состояние соответствующим подбором давления и температуры. Поэтому возможную область существования газообразного состояния графически изображают в переменных: давление р - температура Т (на р-Т-диаграмме) . Существует критическая температура Тк, ниже которой эта область ограничена кривыми сублимации (возгонки) и парообразования

5! Число Авогадро:

6,02214129(27)·10²³ моль⁻¹

6!Ва́куум (от лат. vacuus - пустой) - пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлении значительно ниже атмосферного . Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d . Под d может приниматься расстояние между стенкамивакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.

7! Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.
Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.
Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми - Дирака или Бозе - Эйнштейна) .

Классический идеальный газ.
Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:
объём частицы газа равен нулю (то есть, диаметр молекулы пренебрежимо мал по сравнению со средним расстоянием между ними,) ;
импульс передается только при соударениях (то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях) ;
суммарная энергия частиц газа постоянна (то есть, нет передачи энергии за счет передачи тепла или излучения)
В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия - сумме энергий частиц газа. Свойства идеального газа описываются уравнением Менделеева - Клапейрона
где - давление, - концентрация частиц, - постоянная Больцмана, - абсолютная температура.

Равновесное распределение частиц классического идеального газа по состояниям описывается распределением Больцмана:
где - среднее число частиц, находящихся в -ом состоянии с энергией, а константа определяется условием нормировки:
где - полное число частиц.
Распределение Больцмана является предельным случаем (квантовые эффекты пренебрежимо малы) распределений Ферми - Дирака и Бозе - Эйнштейна, и, соответственно, классический идеальный газ является предельным случаем Ферми-газа и Бозе-газа.

Для любого идеального газа справедливо соотношение Майера:
где - универсальная газовая постоянная, - молярная теплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

9!Зако́н Ша́рля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путем зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 .Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон записывают так:

P - давление газа,

T - температура газа (в градусах Кельвина),

k - константа.

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде.