. Цель, возможные методы. Качественный химический анализ неорганических и органических веществ

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества (гл. 2.1), в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I 2 и наоборот.

Качественный анализ всегда предшествует количественному.

В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO 4 . При этом растворы теряют окраску.

Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.

При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.

Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.

К химическим реакциям в качественном анализе предъявляют следующие требования.

1. Реакция должна протекать практически мгновенно.

2. Реакция должна быть необратимой.

3. Реакция должна сопровождаться внешним эффектом (АС):

а) изменением окраски раствора;

б) образованием или растворением осадка;

в) выделением газообразных веществ;

г) окрашиванием пламени и др.

4. Реакция должна быть чувствительной и по возможности специфичной.

Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими , а добавляемое для этого вещество - реагентом . Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем », а в растворах - «мокрым путем ».

К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.

Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см 3 . Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.

Для качественного химического анализа используют все известные типы реакций: кислотно-основные, окислительно-восстановительные, осаждения, комплексообразования и другие.

Качественный анализ растворов неорганических веществ сводится к обнаружению катионов и анионов. Для этого используют общие и частные реакции. Общие реакции дают сходный внешний эффект (АС) со многими ионами (например, образование катионами осадков сульфатов, карбонатов, фосфатов и т.д.), а частные - с 2-5 ионами. Чем меньше число ионов дают сходный АС, тем селективнее (избирательнее) считается реакция. Реакция называется специфической , когда позволяет обнаружить один ион в присутствии всех остальных. Специфической, например, на ион аммония является реакция:

NH 4 Cl + KOH  NH 3  + KCl + H 2 O

Аммиак обнаруживают по запаху или по посинению красной лакмусовой бумажки, смоченной в воде и помещенной над пробиркой.

Селективность реакций можно повысить, изменяя их условия (рН) или применяя маскирование. Маскирование заключается в уменьшении концентрации мешающих ионов в растворе меньше предела их обнаружения, например путем их связывания в бесцветные комплексы.

Если состав анализируемого раствора несложен, то его после маскировки анализируют дробным способом. Он заключается в обнаружении в любой последовательности одного иона в присутствии всех остальных с помощью специфических реакций, которые проводят в отдельных порциях анализируемого раствора. Поскольку специфических реакций немного, то при анализе сложной ионной смеси используют систематический способ. Этот способ основан на разделении смеси на группы ионов со сходными химическими свойствами путем перевода их в осадки с помощью групповых реактивов, причем групповыми реактивами воздействуют на одну и ту же порцию анализируемого раствора по определенной системе, в строго определенной последовательности. Осадки отделяют друг от друга (например, центрифугированием), затем растворяют определенным образом и получают серию растворов, позволяющих в каждом обнаружить отдельный ион специфической реакцией на него.

Существует несколько систематических способов анализа, называемых по применяемым групповым реактивам: сероводородный, кислотно-основный, аммиачно-фосфатный и другие. Классический сероводородный способ основан на разделении катионов на 5 групп путем получения их сульфидов или сернистых соединений при воздействии H 2 S, (NH 4) 2 S, NaS в различных условиях.

Более широко применяемым, доступным и безопасным является кислотно-основный метод, при котором катионы разделяют на 6 групп (табл. 1.3.1.). Номер группы указывает на последовательность воздействия реактивом.


Таблица 1.3.1

Классификация катионов по кислотно-основному способу

Номер группы Катионы Групповой реактив Растворимость соединений
I Ag + , Pb 2+ , Hg 2 2+ 2MHCl Хлориды нерастворимы в воде
II Ca 2+ , Sr 2+ , Ba 2+ 1MH 2 SO 4 Сульфаты нерастворимы в воде
III Zn 2+ , Al 3+ , Cr 3+ , Sn 2+ , Si 4+ , As 4MNaOH Гидроксиды амфотерны, растворимы в избытке щелочи
IV Mg 2+ , Mn 2+ , Fe 2+ , Fe 3+ , Bi 3+ , Sb 3+ , Sb 5+ 25 %-й NH 3 Гидроксиды нерастворимы в избытке NaOH или NH 3
Номер группы Катионы Групповой реактив Растворимость соединений
V Co 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Hg 2+ 25 %-й NH 3 Гидроксиды растворяются в избытке NH 3 с образованием комплексных соединений
VI Na + , K + , NH 4 + Нет Хлориды, сульфаты, гидроксиды растворимы в воде

Анионы при анализе в основном не мешают друг другу, поэтому групповые реактивы применяют не для разделения, а для проверки наличия или отсутствия той или иной группы анионов. Стройной классификации анионов на группы не существует.

Наиболее простым образом их можно разделить на две группы по отношению к иону Ba 2+ :

а) дающие хорошо растворимые соединения в воде: Cl - , Br - , I - , CN - , SCN - , S 2- , NO 2 2- , NO 3 3- , MnO 4- , CH 3 COO - , ClO 4 - , ClO 3 - , ClO - ;

б) дающие плохорастворимые соединения в воде: F - , CO 3 2- , CsO 4 2- , SO 3 2- , S 2 O 3 2- , SO 4 2- , S 2 O 8 2- , SiO 3 2- , CrO 4 2- , PO 4 3- , AsO 4 3- , AsO 3 3- .

Качественный химический анализ органических веществ подразделяют на элементный , функциональный , структурный и молекулярный .

Анализ начинают с предварительных испытаний органического вещества. Для твердых измеряют t плав. , для жидких - t кип или , показатель преломления. Молярную массу определяют по понижению t замерз или повышению t кип, то есть криоскопическим или эбулиоскопическим методами. Важной характеристикой является растворимость, на основе которой существуют классификационные схемы органических веществ. Например, если вещество не растворяется в Н 2 О, но растворяется в 5%-ном растворе NaOH или NaHCO 3 , то оно относится к группе веществ, в которую входят сильные органические кислоты, карбоновые кислоты с более чем шестью атомами углерода, фенолы с заместителями в орто- и параположениях, -дикетоны.

Таблица 1.3.2

Реакции для идентификации органических соединений

Тип соединения Функциональная груп-па, участвующая в реакции Реагент
Альдегид С = О а) 2,4 - динитрофенилгидрозид б) гидрохлорид гидроксиламина в) гидросульфат натрия
Амин - NH 2 а) азотистая кислота б) бензолесульфохлорид
Ароматический углеводород Азоксибензол и хлорид алюминия
Кетон С = О См. альдегид
Ненасыщенный углеводород - С = С - - С ≡ С - а) раствор KMnO 4 б) раствор Вr 2 в СCL 4
Нитросоединение - NO 2 а) Fe(OH) 2 (соль Мора + КОН) б) цинковая пыль + NH 4 Clв) 20% раствор NaOH
Спирт (R) - OH а) (NH 4) 2 б) раствор ZnCl 2 в HCl в) йодная кислота
Фенол (Ar) - OH a) FeCl 3 в пиридине б) бромная вода
Эфир простой (R΄)- OR а) йодоводородная кислота б) бромная вода
Эфир сложный (R΄) - COOR а) раствор NaOH (или КОН) б) гдрохлорид гидроксиламина

Элементным анализом обнаруживают элементы, входящие в молекулы органических веществ (C, H, O, N, S, P, Cl, и др.). В большинстве случаев органическое вещество разлагают, продукты разложения растворяют и в полученном растворе определяют элементы как в неорганических веществах. Например, при обнаружении азота пробу сплавляют с металлическим калием, получая KCN, который обрабатывают FeSO 4 , переводят в K 4 . Добавляя к последнему раствор ионов Fe 3+ , получают берлинскую лазурь Fe 4 3 - (AC на присутствие N).

И анализ вещества

Химическая идентификация

В практической деятельности специалистов часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания, что является предметом изучения аналитической химии.

Аналитическая химия – это наука о методах определения химического состава вещества и его структуры.

В современной аналитической химии можно выделить качественный анализ , который решает вопрос о том, какие компоненты входят в состав анализируемого объекта, и количественный анализ , который даёт информацию о количественном содержании компонентов. При проведении качественного и количественного анализа измеряют аналитический сигнал – свойство анализируемого вещества, которое позволяет судить о наличии в нём тех или иных компонентов. Это может быть сила тока, ЭДС системы, интенсивность излучения, цвет и т. д.

Классификацию видов анализа можно проводить по различным признакам. Например, в зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, а также от применения техники выполнения эксперимента методы анализа делят на макро-, полумикро-, микро- и ультрамикроанализы.

Полумикроанализ имеет ряд преимуществ: экономятся время и реагенты, повышается надежность результатов анализа благодаря использованию более специфических и высокочувствительных реагентов, уменьшается расход реактивов и материалов.

Задачей качественного анализа является определение химических элементов, ионов, атомов, молекул и т. д. в анализируемом веществе (объекте).

Качественный анализ можно проводить как химическими, так и инструментальными (физическими и физико-химическими) методами.

Анализ исследуемого вещества в качественном химическом анализе можно проводить «мокрым» и «сухим» путем. В первом случае анализ осуществляют в растворах путем добавления соответствующих реактивов. Во втором случае определение состава вещества основано на его способности окрашивать в характерный цвет бесцветное пламя горелки или давать окрашенные «перлы» при сплавлении с бурой. Открытие отдельных ионов в полумикроанализе производится в основном «мокрым путем».

Для открытия ионов в растворах применяют различные характерные реакции, которые сопровождаются внешними эффектами – возникновением аналитического сигнала , например, изменением цвета раствора, выпадением или растворением осадка, выделением газа.

Вещества, с помощью которых открывают ионы, называются реагентами на соответствующие ионы, а происходящие при этом химические превращения – аналитическими реакциями.

Применяемые в качественном анализе реакции должны протекать быстро, отличаться высокой чувствительностью и по возможности являться необратимыми.



Чувствительность реакций определяет возможность обнаружения вещества в растворе. Она характеризуется пределом обнаружения (открываемым минимумом) , предельной концентрацией, предельным разбавлением и минимальным объёмом предельно разбавленного раствора.

Предел обнаружения – это минимальное количество компонента, которое может быть открыто с помощью данной аналитической реакции. Предел обнаружения выражают в микрограммах (мкг), обозначают g (1g = 0.001 мг = 10 –6 г).

Предельная концентрация – это наименьшая концентрация (C min), при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией с вполне определенной вероятностью (P ), обычно равной единице. Предельную концентрацию обозначают C min, P и выражают в г/мл.

Предельное разбавление (V lim) – максимальный объём раствора, в котором может быть обнаружен 1 г данного вещества при помощи данной аналитической реакции. Предельное разбавление выражается в мл/г.

Предельная концентрация и предельное разбавление связаны соотношением

В качественном анализе применяются только такие реакции, предел обнаружения (открываемый минимум) которых не превышает 50 мкг.

По числу компонентов, взаимодействующих в данных условиях с применяемым реагентом и дающих аналитический сигнал, реакции и реагенты делятся на групповые, избирательные и специфические.

Групповыми называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал целая группа ионов, реагент называется групповым . Например, S 2– при pH = 5 осаждает Ag + , Pb 2+ , Bi 3+ , Cd 2+ , Sn 2+, 4+ и др. Следовательно, S 2– – групповой реагент, а осаждение сульфидов – групповая реакция. Групповые реакции в основном используют для разделения целых групп ионов.

В лабораторном практикуме для проведения систематического анализа катионов наиболее часто используется метод, основанный на разделении катионов по кислотно-основному принципу (табл. 14.1.1).

Таблица 11.1.1

Кислотно-основная классификация катионов

№ группы Название Катионы Групповой реагент
I Растворимая Na + , K + , NH 4 + нет
II Хлоридная Ag + , Pb 2+ , Hg 2 2+ 2н HCl осаждает соответствующие хлориды
III Сульфатная Ca 2+ , Ba 2+ , Sr 2+ 2н H 2 SO 4 осаждает соответствующие сульфаты
IV Амфотерная Al 3+ , Cr 3+ , Zn 2+ , Sn 2+ , Sn 4+ , As 3+ , As 5+ NaOH образует растворимые в избытке реагента гидроксиды
V Гидроксидная Fe 2+ , Fe 3+ , Mn 2+ , Mg 2+ , Bi 3+ , Sb 3+, Sb 5+ 2н NaOH осаждает соответствующие гидроксиды
VI Аммиакатная Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Hg 2+ 2н NH 4 OH образует гидроксиды, растворимые в избытке реагента с образованием аммиакатов

Избирательными (селективными) называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал ограниченное число компонентов. Такой реагент называется избирательным. Например, магнезиальная смесь (аммиачный раствор MgCl 2 и NH 4 Cl) образует белый мелкокристаллический осадок с двумя ионами PO 4 3– и AsO 4 3– . Избирательные реакции используют как для разделения, так и для обнаружения ионов.

Специфическими называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал один компонент. Реагент называется специфическим. Такие реакции очень удобны для обнаружения ионов, но число их ограниченно. Некоторые специфические реагенты для идентификации катионов представлены в табл. 11.1.2.

КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ, получение информации о качественном составе вещества, о природе его компонентов; один из основных видов химического анализа. Цели качественного химического анализа - обнаружение и идентификация компонентов аналитической пробы и/или опознание её как целостного объекта. Исходя из природы компонентов, различают изотопный, элементный, молекулярный, фазовый, структурно-групповой (функциональный) и другие виды качественного химического анализа. Обычно качественный химический анализ предшествует количественному химическому анализу.

Качественный химический анализ выполняют химическими методами анализа, физическими методами анализа, физико-химическими методами анализа и биохимическими методами анализа; используют также биологический метод анализа. Свойства пробы сравнивают со свойствами эталона, состав которого известен. Обычно эталон - предполагаемый компонент в чистом виде или его раствор. Свойства эталона могут быть изучены заранее и представлены в таблицах, справочниках и других базах данных. Совпадение какого-либо свойства пробы и эталона - единичный признак присутствия компонента; при этом компонент считают идентифицированным, если при испытании пробы выявлен ряд его независимых характеристик. Чем этих характеристик больше и чем они более специфичны именно для данного компонента, тем выше достоверность идентификации. Неспецифичность характеристик может приводить к ложной идентификации. Вывод «компонент отсутствует» также может быть ошибочным, если в пробе есть вещества, маскирующие опознаваемый компонент (например, переводящие его в другую форму), либо концентрация компонента в пробе ниже некоторого значения (предела обнаружения), зависящего от природы данного компонента и методики качественного химического анализа. Предел обнаружения (C min) - минимальное содержание компонента, необходимое для его обнаружения по данной методике с заданной надёжностью. Отрицательный результат обычно означает, что содержание компонента в пробе ниже C min .

До середины 17 века качественный химический анализ сводился к распознаванию чистых веществ по их цвету, запаху, вкусу, плотности и т.п.; учитывалось также изменение свойств пробы при прокаливании, окрашивание пламени при внесении в него вещества и др. Начиная с работ Р. Бойля, получил распространение элементный качественный химический анализ. Основным методом анализа стало проведение качественных химических реакций: к раствору пробы добавляют химический реагент, взаимодействующий с искомым компонентом, и о наличии в пробе этого компонента судят по образованию или исчезновению осадка, изменению цвета раствора, выделению газа и др. При образовании кристаллического осадка о его составе судят в основном по цвету, растворимости и форме кристаллов (на исследовании кристаллических осадков основана микрокристаллоскопия). Специфические качественные реакции позволяют обнаружить компонент без его выделения из пробы - так называемый дробный анализ (например, при взаимодействии иода с крахмалом синее окрашивание раствора однозначно указывает на присутствие иода). Неспецифичность многих качественных реакций потребовала разработки сложных схем систематического качественного химического анализа, включающих последовательное выделение из пробы групп ионов с подобными свойствами с помощью различных осадителей - групповых реагентов. В 18 веке шведским химиком Т. Бергманом предложена и в 19 веке немецкими химиками Г. Розе и К. Фрезениусом усовершенствована сероводородная схема систематического разделения и обнаружения химических элементов, основанная на использовании в качестве группового реагента Н 2 S. В анализе минералов и сплавов эту схему успешно использовали до 1970-х годов.

В конце 19 века В. Оствальд предложил рассматривать реакции разделения и обнаружения элементов в растворах как ионные реакции. Были предложены селективные и высокочувствительные реагенты органические на различные катионы и анионы, например, диметилглиоксим - реактив Чугаева (Л. А. Чугаев, 1905) для специфического обнаружения ионов Ni 2+ . Использование органических реагентов и маскирующих веществ при проведении качественного химического анализа способствовало созданию надёжных методик капельного анализа неорганических веществ (российский химик Н. А. Тананаев, австрийский химик Ф. Файгль). Успешно развивался качественный химический анализ органических веществ. Элементы, входящие в их состав (С, Н, N, О, S, Р, галогены), распознавали с помощью качественных реакций после термического разложения пробы и превращения элементов в реакционноспособные формы. Для установления состава и структуры органических соединений использовали химические методы функционального анализа.

Во 2-й половине 20 века чаще стали использоваться физические и физико-химические методы качественного химического анализа, имеющие ряд преимуществ перед химическими. Как правило, физические методы отличаются большей селективностью, экспрессностью, легче автоматизируются и дают более надёжные результаты. Если для химических методов C min порядка 10ˉ 4 ―10ˉ 6 моль/дм 3 , то некоторые физические методы позволяют обнаруживать примеси на уровне 10ˉ 8 ―10ˉ 12 моль/дм 3 . Физические методы основаны на измерении тех свойств пробы и эталона, которые зависят от природы, но не от содержания компонента. Так, при проведении атомно-эмиссионного спектрального анализа регистрируют спектр пробы, измеряют длины волн спектральных линий и проверяют наличие линий, характерных для искомого элемента и не зависящих от присутствия других элементов. Совпадение множества линий с точностью до погрешности измерения длины волны надёжно доказывает присутствие искомого элемента в пробе. Другие важные физические методы качественного химического анализа - рентгеновский спектральный анализ, ИК-спектроскопия, масс-спектрометрия, хромато-масс-спектрометрия. Реже используют кинетические и электрохимические методы анализа (например, полярографию), люминесцентный анализ. Резонансные методы (ЯМР- и ЭПР-спектрометрия) применяют для идентификации и установления структуры чистых веществ, а также для анализа смесей. Качественный химический анализ смесей органических веществ (нефтепродукты, лекарственные препараты, белки и др.) обычно включает фракционирование или полное разделение пробы методами хроматографии, экстракции, электрофореза и др. Характеристики удерживания компонентов в хроматографической колонке используются и для их идентификации. Современные направление в развитии качественного химического анализа - создание систем компьютерной идентификации, использующих базы данных или алгоритмы распознавания образов.

Литературу смотри при статьях Аналитическая химия, Химический анализ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЮЖНО-УРАЛЬСКИЙ ГАУ

ИНСТИТУТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

Кафедра общей химии и экологического мониторинга

по дисциплине «Аналитическая химия»

на тему: «Качественный анализ»

Выполнил: студент 1а группы Корепанова А.А

Проверила: Гизатуллина Юлия Абдуловна

Троицк 2017

качественный анализ реакция ион

Введение

Заключение

Введение

Аналитическая химия - установление качественного и количественного состава вещества или смеси веществ. В соответствии с этим аналитическая химия делится на качественный и количественный анализ.

Задачей качественного анализа является выяснение качественного состава вещества, т. е. из каких элементов или ионов состоит данное вещество.

При изучении состава неорганических веществ в большинстве случаев приходится иметь дело с водными растворами кислот, солей и оснований. Эти вещества являются электролитами и в растворах диссоциированы на ионы. Поэтому анализ сводится к определению отдельных ионов -- катионов и анионов.

При проведении качественного анализа можно работать с различными количествами исследуемого вещества. Имеются так называемые грамм-метод, при котором масса исследуемого вещества берется более 0,5 г (более 10 мл раствора), сантиграмм-метод (масса исследуемого вещества от 0,05 до 0,5 г, или 1--10 мл раствора), миллиграмм-метод (масса исследуемого вещества от 10 -6 г до 10 -3 г, или от 0,001 до 0,1 мл раствора) и др. Наиболее распространенным является сантиграмм-метод, или полумикрометод.

1. Методы качественного анализа

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества, в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I2 и наоборот.

Качественный анализ всегда предшествует количественному.

В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO4. При этом растворы теряют окраску.

Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.

При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.

Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.

К химическим реакциям в качественном анализе предъявляют следующие требования.

1. Реакция должна протекать практически мгновенно.

2. Реакция должна быть необратимой.

3. Реакция должна сопровождаться внешним эффектом (АС):

а) изменением окраски раствора;

б) образованием или растворением осадка;

в) выделением газообразных веществ;

г) окрашиванием пламени и др.

4. Реакция должна быть чувствительной и по возможности специфичной.

Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими, а добавляемое для этого вещество - реагентом. Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем », а в растворах - «мокрым путем ».

К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.

Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см3. Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.

2. Специфичность и чувствительность реакций

Чувствительность реакции характеризуется минимальным количеством определяемого компонента или минимальной его концентрацией в растворе, при которых с помощью данного реагента этот компонент может быть обнаружен.

Предельная концентрация C min -- это минимальная концентрация вещества в растворе, при которой данная реакция еще дает положительный результат. Предельное разбавление G -- величина, обратная предельной концентрации. Предельную концентрацию выражают отношением 1: G, которое показывает, в какой массе растворителя должна содержаться одна массовая часть вещества, чтобы внешний эффект был еще заметен. Например, для реакции Сu 2+ с аммиаком предельное разбавление равно 250 000 и предельная концентрация 1:250 000, что означает возможность открыть ионы меди в растворе, содержащем 1 г Сu 2+ в 250 000 г воды. Реакция считается тем чувствительнее, чем больше предельное разбавление.

Чувствительность реакции зависит от многих условий: кислотности среды, температуры, ионной силы раствора и других, поэтому каждую аналитическую реакцию следует проводить в строго определенных условиях. Если не соблюдать требуемых условий, то реакция может или совсем не пойти, или пойти в нежелательном направлении.

Аналитическая реакция, свойственная только данному иону, называется специфической реакцией. Это, например, реакция обнаружения иона NH + 4 действием щелочи в газовой камере, синее окрашивание крахмала при действии йода и некоторые другие реакции. При наличии специфических реакций можно было бы открыть любой ион непосредственно в пробе исследуемой смеси, независимо от присутствия в ней других ионов. Открытие ионов специфическими реакциями в отдельных пробах всего исследуемого раствора в произвольно выбранной последовательности называется дробным анализом.

Отсутствие специфических реакций для большинства ионов делает невозможным проведение качественного анализа сложных смесей дробным методом. Для таких случаев разработан систематический анализ. Он состоит в том, что смесь ионов с помощью особых групповых реагентов предварительно разделяют на отдельные группы.

Из этих групп каждый ион выделяют в строго определенной последовательности, а потом уже открывают характерной для него аналитической реакцией.

Реактивы, позволяющие в определенных условиях разделять ионы на аналитические группы, называются групповыми реагентами (реактивами). В основе использования групповых реагентов лежит избирательность их действия. В отличие от специфических избирательные (или селективные) реакции проходят с несколькими ионами или веществами. Например, С1---ионы образуют осадки с катионами Ag + , Hg 2 2+ и Pb 2+ , следовательно, эта реакция является селективной для указанных ионов, а соляная кислота НСl может использоваться в качестве группового реагента аналитической группы, включающей эти катионы.

3. Типы реакций, используемые в качественном анализе

Пирохимические реакции. Ряд методов качественного анализа основан на проведении химических реакций, проводимых сплавлением, нагреванием на древесном угле, в пламени газовой горелки или паяльной лампы. При этом вещества окисляются кислородом воздуха, восстанавливаются оксидом углерода, атомарным углеродом пламени или древесного угля. Окисление или восстановление может привести к образованию окрашенных продуктов. Одной из наиболее употребительных пирохимических реакций является проба окрашивания пламени. Пламя окрашивается в характерный для катиона цвет. Окрашивание пламени соединениями некоторых элементов представлено в таблице.

Цвет пламени

Цвет пламени

Карминово-красный

Сине-фиолетовый

Изумрудно-зеленый

Фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Кирпично-красный

Бледно-синий

Стронций

Карминово-красный

Изумрудно-зеленый

Желто-зеленый

Зеленый, голубой

Молибден

Желто-зеленый

Микрокристаллоскопические реакции - это реакции при проведении которых образуются осадки, состоящие из кристаллов характерной формы и цвета. Определяют внешнюю форму кристаллов, которые обладают определенной симметрией. Газовыделительные реакции - реакции в которых выделяются газообразные соединения. Для обнаружения отдельных газов применяют специфичные реактивы (сероводород обнаруживают ацетатом свинца - почернение, аммиак-фенолфталеином - покраснение в щелочной среде). Цветные реакции - основной тип реакций обнаружения веществ. Цвет сохраняется у всех соединений цветных катионов и анионов (манганаты, хроматы, дихроматы). Цвет может появиться и измениться в зависимости от условий под действием иона противоположного знака- например б/ц ионы йода и серебра образуют иодид серебра желто-коричневого цвета.

Открытие ионов, специфическим реакциями в отдельной пробе всего исследуемого раствора в любой последовательности называется дробным анализом. Систематический ход анализа в отличие от дробного анализа заключается в том, что смесь ионов с помощью особых реактивов предварительно разделяют на отдельные группы. Из этих групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной реакцией. Реактивы, позволяющие в определенной последовательности разделять ионы на аналитические группы, называются групповыми.

4. Маскирование ионов в качественном анализе

Многие качественные реакции являются общими для нескольких ионов, что не позволяет обнаружить их в присутствии друг друга. В этом случае применяют маскирование или удаление мешающих ионов одним из следующих способов:

Связывание мешающих ионов в комплексное соединение. Чаще всего для этой цели используют получение фторидных (Al3+, Fe3+), хлоридных (Ag+, Fe3+, Mn2+), тиоцианатных (Сu2+, Zn2+, Cd2+, Co2+, Ni2+), тиосульфатных (Pb2+, Bi3+, Cr3+, Cu2+, Ag+), аммиачных (Zn2+, Cd2+, Co2+, Ni2+), ЭДТА -- (большинство катионов) и других комплексов. Получаемый комплекс должен обладать необходимой устойчивостью, чтобы осуществить достаточно полное связывание мешающего иона. Возможность применения того или иного маскирующего реагента определяют по общей константе химической реакции с совмещенными равновесиями. При этом руководствуются прежде всего отсутствием взаимодействия определяемого иона с маскирующим реагентом и степенью маскирования мешающих ионов, исходя из которой и определяют требуемую величину константы равновесия. Большое значение константы равновесия свидетельствует о полноте связывания маскируемого нона (или о степени маскирования).

Удаление мешающих ионов в осадок. При этом руководствуются произведениями растворимости получающихся осадков и значением общей константы реакции с совмещенными равновесиями.

Часто для избирательного осаждения мешающих ионов используют малорастворимые реактивы, ПР которых меньше ПР осадка обнаруживаемых ионов и больше ПР осадков мешающих ионов. При этом обнаруживаемые ионы в силу равновесного состояния не связываются, мешающие -- выпадают в виде осадка. Подобным образом решают довольно сложные задачи избирательного удаления многих мешающих ионов. Чаще всего используют осаждение гидроксидов, карбонатов, сульфидов, сульфатов, фосфатов.

Экстракция органическими растворителями. Относится к числу широко применяемых методов удаления мешающих ионов. Экстракционному отделению подвергают соединения ионов, легко растворимые в органических растворителях. Чаще всего экстракцией удаляют ионы в виде хлоридных (Со2+, Sn2+), дитизонатных (Со2+, Ni2+, Сu2+, Zn2+, Cd2+, Hg2+), оксихинолятных (Mg2+, Са2+, Sr2+, Fe2+), диэтилдитиокарбаминатных (Mn2+, Co2+, Fe2+, Ni2+, Cu2+), купферонатных (Ва2+, Cr3+, Fe3+, Sn2+, Bi3+, Sb3+) и других комплексов. При этом используют органические растворители, не смешивающиеся с водой, -- бензол, гексан, хлороформ, высшие спирты. Экстракционное отделение осуществляют при определенном оптимальном значении рН, способствующем полной экстракции мешающих ионов.

Окисление мешающих ионов до высших степеней окисления.При этом получают ионы, не вступающие в реакцию с реагентом. Применяют для маскирования ионов Сг3+ (окисление до СгO42-), Sn2+ (окисление до Sn4+), Mn2+(окисление до МnO4- или MnO2), Fe2+ (перевод в Fe3+) и др. Окисление обычно проводят пероксидом водорода при нагревании.

Часто также используют восстановление катионов до элементного состояния или низших степеней окисления. При выборе восстановителя руководствуются значениями редокс-потенциалов Е°. Чаще всего применяют цинк, восстанавливающий в аммиачной среде катионы d-элементов (кроме Cr3+, Fe2+, Fe3+) и некоторых p-элементов (Pb2+, Sb3+, Bi3+). Иногда используют восстановители, действующие селективно. Например, элементное железо восстанавливает до металла Sb3+, Cu2+, Bi3+, переводит Sn4+ в Sn2+, хлорид олова (II) восстанавливает Fe3+ до Fе2+.

5. Дробные реакции обнаружения ионов

Дробные реакции предназначены для обнаружения ионов либо в присутствии всех остальных, либо после предварительного удаления (1 -- 2 операции), либо после маскировки мешающих ионов. Специфичных реакций, позволяющих обнаружить данный ион в присутствии всех остальных, известно немного. Поэтому многие реакции приходится проводить после предварительной обработки анализируемой пробы и маскировки или удаления катионов и веществ, мешающих определению При выборе и проведении дробных реакций обычно необходимо: подобрать наиболее специфичную реакцию обнаружения анализируемого иона; выяснить по литературным данным или экспериментально, какие катионы, анионы или другие соединения мешают обнаружению; установить специфичными реакциями присутствие мешающих ионов в анализируемой пробе; подобрать, руководствуясь табличными данными, маскирующий реагент, не вступающий в реакцию с анализируемым веществом; рассчитать полноту удаления мешающих ионов (по общей константе реакции); определить методику выполнения дробной реакции.

6. Аналитическая классификация ионов

В качественном анализе выделяют две методики проведения анализа вещества: дробный анализ и систематический анализ.

Дробный анализ основан на открытии ионов специфическими реакциями, проводимыми в отдельных порциях исследуемого раствора. Так например, ион Fe2+ можно открыть при помощи реактива К3 в присутствии любых ионов. Так как специфических реакций немного, то в ряде случаев мешающее влияние посторонних ионов устраняют маскирующими средствами. Например, ион Zn2+ можно открыть в присутствии Fe2+ при помощи реактива (NH4)2, связывая мешающие ионы Fe2+ гидротартратом натрия в бесцветный комплекс.

Дробный анализ имеет ряд преимуществ перед систематическим: возможность обнаруживать ионы в отдельных порциях в любой последовательности, а также экономия времени и реактивов. Однако, большинство аналитических реакций недостаточно специфично и дает сходный эффект с несколькими ионами. Специфических реакций немного и мешающее влияние многих ионов нельзя устранить маскирующими средствами. Поэтому для проведения полного анализа и получения более надежных результатов в процессе анализа приходится прибегать к разделению ионов на группы, а затем открывать их в определенной последовательности. Последовательное разделение ионов, а затем их последующее открытие и является систематическим методом анализа. Лишь некоторые ионы открывают дробным методом. Систематическим анализом называют полный анализ исследуемого объекта, осуществляемый путем разделения исходной аналитической системы на несколько подсистем (групп) в определенной последовательности на основе сходства и различий аналитических свойств компонентов системы. Систематический ход анализа основан на том, что сначала с помощью групповых реактивов смесь ионов разделяют на группы и подгруппы, а затем уже в пределах этих подгрупп обнаруживают каждый ион характерными реакциями. Групповыми реагентами действуют на смесь ионов последовательно и в строго определенном порядке. Для удобства определения в аналитической химии предложено объединять ионы в аналитические группы, дающие одинаковые или сходные эффекты (осадки) с определенными реактивами, и созданы аналитические классификации ионов (отдельно для катионов и анионов). Установление присутствия тех или иных катионов в исследуемом растворе значительно облегчает обнаружение анионов. Пользуясь таблицей растворимости, можно заранее предсказать наличие в исследуемом растворе отдельных анионов. Например, если соль хорошо растворяется в воде и в нейтральном водном растворе обнаружен катион Ва2+, то этот раствор не может содержать анионы SO42-, CO32-, SO32-. Поэтому вначале открывают катионы, присутствующие в исследуемом растворе, а затем анионы.

Для катионов практическое значение имеют две классификации: сероводородная и кислотно-основная. В основе сероводородной классификации и сульфидного (или сероводородного) метода систематического анализа лежит взаимодействие катионов с сульфидом (или полисульфидом) аммония или сероводородом. Серьёзный недостаток данного метода - использование ядовитого сероводорода, следовательно, необходимость использования специального оборудования.

Поэтому в учебных лабораториях предпочтительнее использование кислотно-основного метода систематического анализа. В основе этого метода лежит взаимодействие катионов с серной и соляной кислотой, гидроксидами натрия и аммония.

По кислотно-основной классификации катионы делят на шесть аналитических групп.

Заключение

Значение аналитической химии определяется необходимостью общества в аналитических результатах, в установлении качественного и количественного состава веществ, уровнем развития общества, общественной потребностью в результатах анализа, так же и уровнем развития самой аналитической химии.

Цитата из учебника по аналитической химии Н.А.Меншуткина 1897 года выпуска: «Представив весь ход занятий по аналитической химии в виде задач, решение которых предоставлено занимающемуся, мы должны указать на то, что для подобного решения задач аналитическая химия даст строго определенный путь. Эта определенность (систематичность решения задач аналитической химии) имеет большое педагогическое значение. Занимающийся приучается при этом применять свойства соединений к решению вопросов, выводить условия реакций, комбинировать их. Весь этот ряд умственных процессов можно выразить так: аналитическая химия приучает химически думать. Достижение последнего представляется самым важным для практических занятий аналитической химией».

Список использованной литературы

1. https://ru.wikipedia.org/wiki/Аналитическая_химия.

2. «Аналитическая химия. Химические методы анализа», Москва, «Химия», 1993 г.

3. http://www.chem-astu.ru/chair/study/anchem/.

4. http://studopedia.ru/7_12227_analiticheskaya-himiya.html.

Размещено на Allbest.ru

...

Подобные документы

    Применение качественного анализа в фармации. Определение подлинности, испытания на чистоту фармацевтических препаратов. Способы выполнения аналитических реакций. Работа с химическими реактивами. Реакции катионов и анионов. Систематический анализ вещества.

    учебное пособие , добавлен 19.03.2012

    Описание методов качественного определения урана и тория. Особенности химического анализа урана, описание хода испытания, химических реакций, используемых реактивов. Специфика качественного определения тория. Техника безопасности при выполнении работ.

    методичка , добавлен 28.03.2010

    Исследование возможности применения фотометрических реакций в фармацевтическом анализе для различных групп лекарственных веществ. Реакция с реактивом Марки. Приборы и компоненты для анализа. Реакция диазотирования, азосочетания и комплексообразования.

    курсовая работа , добавлен 25.04.2015

    Понятие "гетерогенная система". Специфические, групповые, общие осадочные реакции. Кристаллический и аморфный осадок. Проведение реакций обнаружения ионов полумикрометодом. Кислотно-основная, сероводородная и аммиачно-фосфатная классификация катионов.

    презентация , добавлен 14.11.2013

    Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат , добавлен 27.02.2010

    Рассмотрение пособов разделения смесей. Изучение особенностей качественного и количественного анализа. Описание выявления катиона Сu2+. Проведение анализа свойств веществ в предлагаемой смеси, выявление метода очистки и обнаружение предложенного катиона.

    курсовая работа , добавлен 01.03.2015

    Проведение качественного анализа смеси неизвестного состава и количественного анализа одного из компонентов по двум методикам. Методы определения хрома (III). Ошибки определения по титриметрическому и электрохимическому методу и их возможные причины.

    курсовая работа , добавлен 17.12.2009

    Анализ вещества, проводимый в химических растворах. Условия проведения аналитических реакций. Систематический и дробный анализ. Аналитические реакции ионов алюминия, хрома, цинка, олова, мышьяка. Систематический ход анализа катионов четвертой группы.

    реферат , добавлен 22.04.2012

    Понятие и сущность качественного анализа. Цель, возможные методы их описание и характеристика. Качественный химический анализ неорганических и органических веществ. Математическая обработка результатов анализа, и также описание значений показателей.

    реферат , добавлен 23.01.2009

    Понятие и виды сложных реакций. Обратимые реакции различных порядков. Простейший случай двух параллельных необратимых реакций первого порядка. Механизм и стадии последовательных реакций. Особенности и скорость протекания цепных и сопряженных реакций.

Качественный анализ может использоваться для идентификации в исследуемом объекте атомов (элементный анализ), молекул (молекулярный анализ), простых или сложных веществ (вещественный анализ), фаз гетерогенной системы (фазовый анализ). Задача качественного неорганического анализа обычно сводится к обнаружению катионов или анионов, присутствующих в анализируемой пробе. Качественный анализ необходим для обоснования выбора метода количественного анализа того или иного материала или способа разделения смеси веществ. Качественный химический анализ используют в сельском хозяйстве и при решении проблем защиты окружающей среды. В агрохимической службе он необходим для распознавания минеральных удобрений, а в контроле загрязненности среды - для обнаружения пестицидных остатков и др.

Типы химических реакций.

Пирохимические реакции. Ряд методов качественного анализа основан на проведении химических реакций, проводимых сплавлением, нагреванием на древесном угле, в пламени газовой горелки или паяльной лампы. При этом вещества окисляются кислородом воздуха, восстанавливаются оксидом углерода, атомарным углеродом пламени или древесного угля. Окисление или восстановление может привести к образованию окрашенных продуктов. Одной из наиболее употребительных пирохимических реакций является проба окрашивания пламени. Пламя окрашивается в характерный для катиона цвет. Окрашивание пламени соединениями некоторых элементов представлено в таблице.

Цвет пламени

Цвет пламени

Карминово-красный

Сине-фиолетовый

Изумрудно-зеленый

Фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Кирпично-красный

Бледно-синий

Стронций

Карминово-красный

Изумрудно-зеленый

Желто-зеленый

Зеленый, голубой

Молибден

Желто-зеленый

Микрокристаллоскопические реакции - это реакции при проведении которых образуются осадки, состоящие из кристаллов характерной формы и цвета. Определяют внешнюю форму кристаллов, которые обладают определенной симметрией. Газовыделительные реакции - реакции в которых выделяются газообразные соединения. Для обнаружения отдельных газов применяют специфичные реактивы (сероводород обнаруживают ацетатом свинца – почернение, аммиак–фенолфталеином - покраснение в щелочной среде). Цветные реакции - основной тип реакций обнаружения веществ. Цвет сохраняется у всех соединений цветных катионов и анионов (манганаты, хроматы, дихроматы). Цвет может появиться и измениться в зависимости от условий под действием иона противоположного знака– например б/ц ионы йода и серебра образуют иодид серебра желто–коричневого цвета.

Открытие ионов, специфическим реакциями в отдельной пробе всего исследуемого раствора в любой последовательности называется дробным анализом . Систематический ход анализа в отличие от дробного анализа заключается в том, что смесь ионов с помощью особых реактивов предварительно разделяют на отдельные группы. Из этих групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной реакцией. Реактивы, позволяющие в определенной последовательности разделять ионы на аналитические группы, называются групповыми .