Существуют природные, или естественные, источники света. Это Солнце, звезды, атмосферные электрические разряды (например, молния). Луну также причисляют к источникам света, хотя правильнее было бы отнести её к отражателям света, так как она сама свет не излучает, а лишь отражает падающие на нее солнечные лучи. Естественные источники света существуют в природе независимо от человека.

Источники света. Люминесцентная пампа: 1 - контакты; 2 - стеклянная трубка, изнутри покрытая люминофором и наполненная инертным газом. Лампа накаливания: 1 - баллон; 2 - нить накала; 3 - держатель; 4 - цоколь. Ртутная газоразрядная лампа.

Электрическая дуга тоже может быть источником света.

Но есть множество источников света, создаваемых человеком. Это тела, вещества и устройства, в которых энергия любого вида при определенных, зависящих от человека условиях преобразуется в свет. Простейшие и древнейшие из них - костер, факел, лучина. В древнем мире (Египте, Риме, Греции) в качестве светильников использовали сосуды, наполненные животным жиром. В сосуд опускали фитиль (кусок веревки или скрученную в жгут тряпицу), который пропитывался жиром и горел довольно ярко.

В дальнейшем, вплоть до конца XIX в., основными источниками света служили свечи, масляные и керосиновые лампы, газовые фонари. Многие из них (например, свечи и керосиновые лампы) дожили до наших дней. Все эти источники света основаны на сжигании горючих веществ, поэтому их еще называют тепловыми. В таких источниках свет излучают мельчайшие раскаленные твердые частицы углерода. Их световая отдача очень мала - всего около 1 лм/Вт (теоретический предел для источника белого света около 250 лм/Вт).

Величайшим изобретением в области освещения было создание в 1872 г. русским ученым А. Н. Лодыгиным электрической лампы накаливания. Лампа Лодыгина представляла собой стеклянный сосуд с помещенным внутрь его угольным стержнем; воздух из сосуда откачивался. При пропускании по стержню электрического тока стержень разогревался и начинал светиться. В 1873 - 1874 гг. А. Н. Лодыгин проводил опыты по электрическому освещению кораблей, предприятий, улиц, домов. В 1879 г. американский изобретатель Т. А. Эдисон создал удобную для промышленного изготовления лампу накаливания с угольной нитью. С 1909 г. стали применять лампы накаливания с зигзагообразно расположенной вольфрамовой проволочкой (нить накаливания), а спустя 3–4 года вольфрамовую нить начали изготовлять в виде спирали. Тогда же появились первые лампы накаливания, наполненные инертным газом (аргоном, криптоном), что заметно повысило срок их службы. С начала XX в. электрические лампы накаливания благодаря экономичности и удобству в эксплуатации начинают быстро и повсеместно вытеснять другие источники света, основанные на сжигании горючих веществ. В настоящее время лампы накаливания стали наиболее массовыми источниками света.

Все многочисленные разновидности ламп накаливания (более 2000) состоят из одинаковых частей, различающихся размерами и формой. Устройство типичной лампы накаливания показано на рисунке. Внутри стеклянной колбы, из которой откачан воздух, на стеклянном или керамическом штенгеле при помощи держателей из молибденовой проволоки закреплена спираль из вольфрамовой проволоки (тело накала). Концы спирали прикреплены к вводам. В процессе сборки из колбы лампы через штенгель откачивают воздух, после чего её наполняют инертным газом и штенгель заваривают. Для крепления в патроне и подключения к электрической сети лампу снабжают цоколем, к которому подводят вводы.

Лампы накаливания различают по областям применения (осветительные общего назначения, для фар автомобилей, проекционные, прожекторные и т. д.); по форме тела накала (с плоской спиралью, биспиральные и др.); по размерам колбы (миниатюрные, малогабаритные, нормальные, крупногабаритные). Например, у сверхминиатюрных ламп длина колбы меньше 10 мм и диаметр меньше 6 мм, у крупногабаритных ламп длина колбы достигает 175 мм и более, а диаметр больше 80 мм. Лампы накаливания изготовляют на напряжения от долей до сотен вольт, мощностью до десятков киловатт. Срок службы ламп накаливания от 5 до 1000 ч. Световая отдача зависит от конструкции лампы, напряжения, мощности и продолжительности горения и составляет 10–35 лм/Вт.

В 1876 г. русский инженер П. Н. Яблочков изобрел дуговую угольную лампу переменного тока. Это изобретение положило начало практическому использованию электрического заряда для целей освещения. Созданная П. Н. Яблочковым система электрического освещения на переменном токе с применением дуговых ламп - «русский свет» - демонстрировалась на Всемирной выставке в Париже в 1878 г. и пользовалась исключительным успехом; вскоре во Франции, Великобритании, США были основаны компании по её использованию.

Начиная с 30‑х гг. XX в. получают распространение газоразрядные источники света, в которых используется излучение, возникающее при электрическом разряде в инертных газах или парах различных металлов, особенно ртути и натрия. Первые образцы ртутных ламп в СССР были изготовлены в 1927 г., а натриевых ламп - в 1935 г.

Газоразрядные источники света представляют собой стеклянную, керамическую или металлическую (с прозрачным окном) оболочку цилиндрической, сферической или иной формы, содержащую газ, а иногда и некоторое количество паров металлов или других веществ. В оболочку впаяны электроды, между которыми и возникает электрический разряд.

Наиболее широко для освещения зданий и сооружений применяются люминесцентные лампы, в которых ультрафиолетовое излучение электрического разряда в парах ртути преобразуется при помощи особого вещества - люминофора - в видимое, т. е. в световое, излучение. Световая отдача в срок службы люминесцентных ламп в несколько раз больше, чем ламп накаливания того же назначения. Среди подобных источников света наибольшее распространение получили ртутные люминесцентные лампы. Выполняется такая лампа в виде трубки из стекла (см. рис.) с нанесенным на её внутреннюю поверхность слоем люминофора. С двух концов в трубку впаяны вольфрамовые спиральные электроды для возбуждения электрического разряда. В трубку же вводят каплю ртути и немного инертного газа (аргона, неона и др.), который увеличивает срок службы и улучшает условия возникновения электрического разряда. При подключении лампы к источнику переменного тока между электродами лампы возникает электрический ток, возбуждающий ультрафиолетовое свечение паров ртути, которое в свою очередь вызывает свечение люминофорного слоя лампы. Световая отдача люминесцентных ламп достигает 75–80 лм/Вт. Мощность их колеблется в пределах от 4 до 200 Вт. Срок службы превышает 10 тыс. ч. Длина люминесцентных ламп составляет от 130 до 2440 мм. По форме трубки различают лампы прямые, V‑образные, W‑образные, кольцевые, свечеобразные. Такие лампы широко применяются для освещения помещений, в копировальных аппаратах, в световой рекламе и т. д. Для освещения автострад применяют натриевые лампы со световой отдачей до 140 лм/Вт. Улицы освещаются обычно ртутными лампами со световой отдачей 80–95 лм/Вт. Для газоразрядных источников света кроме высокой световой отдачи характерны простота и надежность в эксплуатации.

Совершенно новый тип источника света представляют собой лазеры, которые дают световые пучки с острой направленностью, исключительно яркие и однородные по цвету. А будущее осветительных приборов лежит за светодиодами.

По принципу преобразования электрической энергии в энергию видимых излучений современные источники света подразделяются на две основные группы: тепловые и разрядные.

Рис. 2.1 . Классификация источников света

Тепловым называют оптическое излучение, возникающее при нагревании тел. К тепловым источникам света относят лампы накаливания. В зависимости от того, какой газ применяется для заполнения колбы лампы при изготовлении они подразделяются на вакуумные, газополные, галогеновые, ксеноновые.

Разрядной лампой называют лампу, в которой оптическое излучение возникает в результате электрического разряда в газах, парах или их смесях.

Разрядные лампы подразделяются на разрядные лампы высокого давления (РЛВД) – ДРЛ, металлогалогенные (МГЛ) – ДРИ, разрядные лампы низкого давления (РЛНД) – ЛЛ, натриевые лампы низкого давления (НЛНД) – ДНаО, натриевые лампы высоко давления (НЛВД) – ДНаТ.

Лампы накаливания

Лампы накаливания являются типичными теплоизлучателями. Важнейшие свойства лампы накаливания – световая отдача и срок службы – определяются температурой спирали. При повышении температуры спирали возрастает яркость, но вместе с тем и сокращается срок службы. Сокращение срока службы является следствием того, что испарение материала (вольфрама), из которого сделана нить, при высоких температурах происходит быстрее, вследствие чего колба темнеет, а нить накала становится все тоньше и тоньше и в определенный момент расплавляется, после чего лампа выходит из строя. Светоотдача ламп накаливания составляет примерно от 9 до 19 лм/Вт. Далеко от идеальной светоотдачи (683 лм/Вт).

Спектр излучения сплошной, что обеспечивает идеальную цветопередачу. Зажигание происходит моментально.

Рис. 2.2. Конструкция лампы накаливания общего назначения:

1 – колба; 2 – спираль; 3 – кручки (держатели); 4 – линза;
5 – штабик; 6 – электроды; 7 – лопатки; 8 – штангель; 9 – цоколь; 10 – изолятор; 11 – нижний контакт. Материалы: а – вольфрам;
б – стекло; в – молибден; г – никель; д – медь; ж – цокольная мастика; з – латунь, сталь; и – свинец, олово

Тело накала изготавливается из вольфрамовой проволоки. Вольфрам имеет большую температуру плавления около 3400°С (3600 К), формоустойчив при высокой рабочей температуре, устойчив к механическим нагрузкам, обладает высокой пластичностью в горячем состоянии, что позволяет получить из него нити весьма малых диаметров путем протяжки проволоки через калиброванное отверстие. Нить накала накаляется до температуры 2500…2800°С.

В зависимости от типа ламп вводы могут быть одно-, двух- и трехзвенными. Вводы и держатели являются частью, так называемой ножки. Это стеклянный конструктивный узел лампы, который кроме вводов и держателей включает в себя стеклянный штабик 5 с линзой 4 . Ножка служит опорой для тела накала лампы и в месте с колбой 1 обеспечивает герметизацию лампы.


Для обеспечения нормальной работы раскаленной вольфрамовой нити накала необходимо изолировать ее от кислорода воздуха. Для этого в колбе создается вакуум (такие лампы называются вакуумные) или заполняется инертным газом (аргон, криптон, ксенон с разным содержанием азота или галогенные с добавкой к наполняющему газу определенной доли галогенов, например йода) - газополные лампы.

Галогенные лампы

По структуре и принципу действия сравнимы с лампами накаливания, но они содержат в газе-наполнителе незначительные добавки галогенов (бром, хлор, фтор, йод) или их соединения. С помощью этих добавок возможно в определенном температурном интервале практически полностью устранить потемнение колбы (вызванное испарением атомов вольфрама нити накала). Поэтому размер колбы в галогенных лампах накаливания может быть сильно уменьшен.

Конструктивно не отличаются от ламп накаливания, но обладают более высоким сроком службы. Между сроком службы и световой отдачей существует прямая зависимость – чем больше светоотдача – тем меньше срок службы. Срок службы увеличен в галогенных лампах за счет иодно-вольфрамового цикла, возвращающего испарившийся вольфрам обратно на спираль.

Принцип действия галогенных ламп заключается в образовании на стенке колбы летучих соединений – галогенидов вольфрама, которые испаряются со стенки, разлагаются на теле накала и возвращают ему, таким образом, испарившиеся атомы вольфрама. В результате увеличивается срок службы ламп. Галогенные лампы по сравнению с

обычными лампами накаливания имеют более стабильный световой поток, значительно меньшие размеры, более высокую термостойкость и механическую прочность благодаря применению кварцевой колбы.

В качестве галогенных добавок применяется йод, бром, хлор, фтор. Работа по подбору новых летучих химических соединений галогенов продолжается.

Технические данные рефлекторных галогенных ламп приведены в таблице 2.1.

Различные типы источников света

Определение 1

Источником света называют тело, излучающее энергию в световом диапазоне.

Классификацию источников света можно проводить в зависимости от различных их характеристик. Так в физике важным является деление источников света на точечные и непрерывные (модели источников света).

Возможно деление на естественные и искусственные источники света . К естественным источникам относят: Солнце, звезды, атмосферные электрические разряды и т.д. Искусственными источниками света считают: пламя, разного рода лампы, светодиоды, лазеры. Искусственные источники света делят в зависимости от вида энергии, которая переходит в излучение.

Источники света подразделяют на:

  • тепловые источники (свет в которых появляется в результате их нагрева до высоких температур);
  • люминесцентные источники (световое излучение в которых, возникает за счет превращения различных видов энергии, отличной от тепловой).

Также искусственные источники света могут делить в зависимости от их конструктивных особенностей.

Характеристики источников света. Сила света

Определение 2

Точечным называют источник света , размерами которого можно пренебречь, в сравнении с расстоянием от источника до места наблюдения. В оптически однородной и изотропной среде волны, которые излучает точечный источник, являются сферическими.

Определение 3

Для того чтобы охарактеризовать точечный источник применяют такое понятие как сила света ($I$) , которую определяют как:

где $dФ$ -- световой поток, который излучается источником в пределах телесного угла $d\Omega $ . Если рассматривать сферическую систему координат, то можно сказать, что в общем случае сила света зависит от полярного ($\vartheta$) и азимутального ($\varphi $) углов ($I=I(\vartheta,\varphi)$).

Определение 4

Источник света носит название изотропного , если его сила света не зависит от направления. Для изотропного источника света можно записать, что:

где Ф -- суммарный световой поток, который излучает источник по всем направлениям. Величину силы источника, которая определяется как (2) еще называют средней сферической силой света источника.

Если источник света нельзя считать точечным (протяженный источник), то используют понятие силы света элемента его поверхности ($dS$). В таком случае в формуле (1) под величиной $dФ$ понимают световой поток, который излучает элемент поверхности источника ($dS$) в пределах телесного угла ($d\Omega $).

Основной единицей измерения силы света в $СИ$ является кандела ($кд$) (старое - свеча ($св$) ). $1 кд$ излучает световой эталон в виде абсолютно черного тела при температуре $T=2046,6 K$ (температура затвердевания чистой платины) и давлении $101325 Па$.

Световой поток

Световой поток, который посылается точечным источником в телесный угол $d\Omega ,$ определяется выражением:

Соответственно, полный световой поток, который исходит от источника, равен интегралу по полному телесному углу $4\pi $:

Основная единица измерения светового потока - люмен ($лм$), который равен световому потоку, который испускает источник в $1 кд$ внутрь телесного угла $1 стерадиан$.

Освещенность

Определение 5

Величина ($E$) равная:

называется освещенностью . В выражении (5) $dФ_{pad}$ -- величина светового потока, который падает на элемент поверхности $dS.$ Освещенность измеряется с СИ в люксах (лк).

при равномерном распределении потока по поверхности.

Освещенность, которую создает точечный источник можно вычислить как:

где r- расстояние от источника до поверхности, $\alpha $ -- угол между нормалью к поверхности и направлением на источник.

Светимость

Протяженный источник света характеризуют светимостью ($R$) его участков. Она характеризует излучение (отражение) света выделенным элементом поверхности по всем направлениям. Определяется она как:

где ${dФ}_{isp}$- поток, который испускает элемент поверхности источника ($dS$) по всем направлениям в пределах $0\le \vartheta \le \frac{\pi }{2}$, где $\vartheta$ -- угол, который образует выделенное направление с внешней нормалью к поверхности.

Светимость способна появляться из-за отражения поверхностью падающего на нее света. В таком случае под ${dФ}_{isp}$ следует понимать в выражении (8) поток, который отражается элементарной поверхностью $dS\ $по всем направлениям.

Светимость измеряется в $люксах$.

Яркость

Яркость ($B$) используют для характеристики излучения (отражения) света в выделенном направлении. Направление при этом задается полярным углом ($\vartheta$), который откладывается от внешней нормали ($\overrightarrow{n}$) к излучающей площадке и азимутальным углом ($\varphi $). Данная физическая величина определяется как:

где $dS$ -- элементарная светящаяся площадка. В общем случае $B=B(\vartheta,\varphi)$.

Определение 6

Источники света, яркость которых не изменяется в зависимости от направления, называют ламбертовскими (или косинусными, подчиняющимися закону Ламберта). Для ламбертовских светильников $dI$ элементарной площадки пропорциональна $cos \vartheta.$

Светимость и яркость связаны соотношением:

Единица яркости $кандела$ на квадратный метр ($\frac{кд}{м^2}$).

Пример 1

Задание: Найдите световой поток, который излучает элементарная поверхность $dS$ внутрь конуса , ось которого перпендикулярна выделенному элементу. Угол конуса равен $\vartheta_0$. Считать, что светящаяся поверхность подчиняется закону Ламберта и ее яркость равна $В$.

Решение:

За основу решения задачи примем определение яркости и из него выразим элемент светового потока:

Элементарный телесный угол в сферических координатах равен:

Подставим выражение для телесного угла в выражение (1.1), получим:

Найдем полный световой поток интегрированием выражения (1.3):

\[Ф=BdS\int\limits^{\vartheta_0}_0{sin\vartheta cos\vartheta d\vartheta }\int\limits^{2\pi }_0{d\varphi =\pi ВdS}sin^2 \vartheta_0.\]

Ответ: $Ф=\pi ВdSsin^2\vartheta_0.$

Пример 2

Задание: Яркость однородного светящегося диска радиуса $r$ изменяется в соответствии с законом $B=B_0cos\vartheta,$ где $B_0=const, \vartheta\ --\ $угол с нормалью к поверхности. Каков световой поток (Ф), который испускает диск?

Решение:

Элемент светового потока, используя уравнение из условий задачи для ярости выразим как

где элементарный телесный угол в сферических координатах равен:

Световой поток найдем как интеграл от выражения (2.1) при использовании (2.2):

\[Ф=B_0dS{\int\limits^{\frac{\pi }{2}}_0{sin\vartheta}cos^2}\vartheta d\vartheta \int\limits^{2\pi }_0{d\varphi =}2\pi B_0dS{\int\limits^{\frac{\pi }{2}}_0{sin\vartheta}cos^2}\vartheta d\vartheta=2\pi B_0dS{\int\limits^{\frac{\pi }{2}}_0{d(-cos\vartheta)}cos^2}\vartheta=\frac{2}{3}\pi B_0dS=\frac{2}{3}B_0{\pi }^2r^2.\]

Ответ: $Ф=\frac{2}{3}B_0{\pi }^2r^2.$

ИСТОЧНИКИ СВЕТА. СВЕТИЛЬНИКИ

Источник света – устройство, в котором происходит превращение какого-либо вида энергии в оптическое излучение. Различают 2 вида оптического излучения: тепловое и люминесцентное.

Тепловое оптическое излучение возникает при нагреве тел. На этом принципе основано действие ламп накаливание (ЛН) и галогенных ламп накаливания (ГЛН) .

Галогенные лампы накаливания кроме тела накала в стеклянной колбе содержат галогены, концентрирующиеся на ее стенках. Например, йод, испаряясь со стенок, покрывает нить накала и препятствует тем самым ее разрушению.

Лампы накаливания имеют элементарно простую схему включения, на их работу практически не влияют условия внешней среды. Но у них очень низок к.п.д. (всего 3%), отличная от естественного света цветность и сравнительно короткий срок службы – до 1000 часов.

Галогенные лампы в сравнении с обычными лампами накаливания имеют более стабильный во времени световой поток и повышенный срок службы. Их рекомендуется применять в случаях, когда потребная мощность лампы 1000 Вт и более, а также в помещениях с повышенными требованиями к цветопередаче при невозможности использования люминесцентных ламп.

Люминесцентное оптическое излучение создается в газоразрядных лампах в результате электрического разряда в газах, парах или их смесях, при этом светится специальное вещество – люминофор, находящийся на внутренних стенках лампы.

Различают люминесцентные лампы низкого давления :

    ЛЛ – люминесцентная лампа;

    ЛБ – лампа белого света;

    ЛД – дневного света;

    ЛДЦ – дневного света с улучшенной цветопередачей;

    ЛЕ – близкая по спектру к солнечному свету;

и лампы высокого давления (дуговые) :

    ДРЛ – дуговая ртутная;

    ДРИ – дуговая ртутная с излучающими добавками;

    ДНаТ – дуговая натриевая трубчатая;

    ДКсТ – дуговая ксеноновая трубчатая;

    ДРИМГЛ – дуговая ртутная с излучающими добавками металлогалогенная и т.д.

Люминесцентные лампы более экономичны, у них больший срок службы (6-14 тыс. часов), они создают равномерное освещение в поле зрения, не сопровождаются тепловыми излучениями, их спектр излучения близок к спектру естественного света.

Недостатками таких ламп являются:

    наличие пускорегулирующих аппаратов;

    стробоскопический эффект;

    высокая чувствительность к температурным условиям: лучшие условия соответствуют 15-40 0 С; при понижении температуры до 0 0 С количество испускаемого света уменьшается в 2 раза и резко ухудшаются условия зажигания ламп низкого давления. Поэтому на строительных площадках люминесцентные лампы низкого давления не применяют.

В ГОСТ 12.1.046-85 (Нормы освещения строительных площадок) даны следующие рекомендации по использованию источников света:

а) для выполнения наружных строительных и монтажных работ должны применяться лампы:

    ЛН при ширине площадки до 20 м;

    ДРЛ, ДНаТ – 20-150 м;

    ДРИ – 150-300 м;

    ДКсТ, ДКсШ при ширине площадки свыше 300 м;

б) для выполнения строительных и монтажных работ внутри помещения должны применяться лампы ЛН.

В административных помещениях необходимо применять только лампы ЛЛ.

Лидером в мировом производстве источников света является канадская фирма Vertek . Одна лампа Vertek в состоянии осветить площадь до 20 га.

Светильники – это световые приборы, перераспределяющие свет источника внутри больших (до 4¶) телесных углов.

В светильниках могут устанавливаться один или несколько источников света.

Правильный выбор светотехнических характеристик светильника гарантирует качество освещения при минимальной потребной мощности осветительной установки.

Важнейшей светотехнической характеристикой светильника является его светораспределение , которое определяется:

а) кривой силы света;

б) коэффициентом светораспределения;

в) коэффициентом формы.

Кривые силы света представляют собой линии равной силы света, изображенные в полярных координатах в меридиональной плоскости. Обычно эти кривые строят для условного источника света со световым потоком в 1000 лм. Типы кривых силы света: концентрированная, широкая, косинусная, синусная и т.д.

Коэффициент светораспределения (К с ) равен отношению светового потока, направляемого в нижнюю полусферу (Ф л. н.), к полному световому потоку лампы (Ф л.):

К с = Ф л.н. /Ф л. .

По коэффициенту светораспределения все светильники делятся на 5 классов:

П (прямого света): К с более 80%;

Н (преимущественно прямого света): К с = 60-80%;

Р (рассеянного света): К с = 40-60%;

В (преимущественно отраженного света): К с = 20-40%

О (отраженного света): К с менее 20%.

Светильник класса П используются в основном для освещения производственных помещений и строительных площадок, класса Н – для освещения административных и лабораторных помещений. Светильники классов Р, В, О применяются при наличии специальных требований к качеству освещения. Светильники отраженного света применяют в производственных и общественных помещениях со светлыми полированными поверхностями стен и потолков, где коэффициент отражения ρ > 0,3.

Коэффициент формы (К ф ) равен отношению максимальной силы света в меридиональной плоскости к условному среднеарифметическому значению силы света:

К ф = I max /I ср.

Установка светильников должна обеспечивать безопасный и удобный доступ к ним для обслуживания.

По степени защи ты от пыли, влаги и взрыва светильники классифицируются следующим образом:

КЛАССИФИКАЦИЯ СВЕТИЛЬНИКОВ

ПО ЗАЩИТЕ ПО ЗАЩИТЕ ПО ЗАЩИТЕ

ОТ ПЫЛИ ОТ ВЗРЫВА ОТ ВЛАГИ

Незащищенные Повышенной Взрывоне- Незащищенные

надежности проницае-

Откры- Перекры- мые Брызгозащищенные

Струезащищенные

Пылезащищенные

Водонепроницае-

Полностью Частично мые

Пыленепроницаемые Герметичные

Полностью Частично

Открытые светильники не имеют какой-либо защиты от запыления.

В перекрытых светильниках попадание пыли внутрь светильника ограничивается неуплотненной светопропускающей оболочкой.

В пылезащищенных светильниках проникновение пыли внутрь затруднено, но не исключено в количествах, не нарушающих удовлетворительную их работу.

В полностью пылезащищенных светильниках предусмотрена защита от пыли как токоведущих частей, так и колбы лампы, а в частично пылезащищенных – лишь токоведущих частей.

В брызгозащищенных светильниках исключается попадание на токоведущие части и колбу лампы капель и брызг, падающих под углом с вертикалью не более 45 0 .

Струезащищенная конструкция обеспечивает защиту при обливании светильника струей воды любого направления.

Водонепроницаемое исполнение должно обеспечивать защиту токоведущих частей и колбы лампы от попадания воды при погружении светильника в воду на ограниченное время, а герметичное – при погружении на неограниченно долгое время.

Взрывонепроницаемое исполнение должно исключать возникновение взрыва при воздействии окружающей среды на корпус светильника. Это достигается ограничением предельно допустимой температуры его поверхности. Одновременно конструкция светильника

препятствует распространению взрыва, возникшего внутри, во внешнюю среду.

Использование светильников повышенной надежности против взрыва не исключает возможности передачи взрыва, возникшего внутри светильника, во внешнюю среду, но сводит такую вероятность до минимума применением специального взрывонепроницаемого патрона.

Выбранный светильник должен удовлетворять следующим требованиям :

    соответствовать условиям окружающей среды;

    обеспечивать необходимое светораспределение и исключать слепящее действие;

    быть экономичным.

Условия окружающей среды определяют конструктивное исполнение светильника.

Характеристика условий среды

Сухие и влажные помещения

Сырые помещения

Особо сырые помещения и помещения с химически активной средой

Пыльные помещения

Пожароопасные помещения

Взрывоопасные помещения

Все типы незащищенных светильников

Допускается применение незащищенных светильников с корпусом патрона из влагостойкого материала

Светильники в пыленепроницаемом, пылезащищенном или брызгозащищенном исполнении. Корпус светильника и патрон выполняются из влагостойких материалов.

Светильники в полностью пылезащищенном или пыленепроницаемом исполнении.

Светильники во взрывонепроницаемом исполнении

Специальным видом светильников являются щелевые световоды, применяемые для освещения взрывопожароопасных производств. Светильники состоят из оптической системы, группы источников света большой мощности (20-40 кВт), располагаемых вне помещения, и канала световода длиной до 100 м при диаметре до 1,5 м.

Широко распространены на строительных площадках прожекторы – световые приборы, перераспределяющие свет внутри малых телесных углов и обеспечивающие угловую концентрацию светового потока.

Для освещения применяются, например, галогенные прожекторы типа ИО-02, ИСУ-01 и прожекторы для ламп накаливания – ПЗМ, НО.

Преимущества прожекторов:

    экономичность,

    благоприятное для объемного видения соотношение вертикальной и горизонтальной освещенности,

    меньшая загруженность территории столбами и воздушной проводкой,

    удобство обслуживания.

Недостатки: необходимость мер по снижению слепящего действия и исключению теней.

РАСЧЕТ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ

Проектирование искусственного освещения начинают при разработке проектов организации строительства и проекта производства работ .

Ориентировочно выявляют разряды зрительных работ на различных участках территории строительства и составляют карту дислокации строительных участков по нормам освещенности (зонирование).

Предварительно устанавливаются исходные данные :

    определяется система освещения;

    выбирается тип источника света (лампы);

    выбирается тип светильников с учетом загрязненности воздушной среды и в соответствии с требованиями взрыво- и пожаробезопасности;

    производится распределение светильников и определяется их количество; светильники могут располагаться рядами, в шахматном порядке, ромбовидно;

    определяются нормы освещенности на рабочем месте.

Расчет освещения проводится следующими методами.

1 метод. Для расчета общего равномерного освещения при горизонтальной рабочей поверхности с учетом светового потока, отраженного от потолка и стен, используется «метод светового потока» .

Световой поток лампы Ф л (лм) при лампах накаливания или световой поток группы ламп светильника при люминесцентных лампах рассчитывают по формуле:

где Е н – нормированная минимальная освещенность, лк;

S – площадь освещаемого помещения, м 2 ;

Z = Е ср /Е min = 1,1…1,5 – коэффициент минимальной освещенности;

К – коэффициент запаса, равный 1,4…1,8;

N – количество светильников (ламп накаливания) в помещении;

Η – коэффициент использования светового потока ламп, зависящий от индекса (показателя) помещения I и коэффициентов отражения потолка ρ п, стен ρ ст и пола ρ р.

Показатель помещения определяется по формуле:

где А и В соответственно длина и ширина помещения, м;

Н р – высота светильников над расчетной поверхностью, м.

По значению светового потока выбирают ближайшую стандартную лампу ЛН или люминесцентные лампы светильника (и их необходимое количество) и определяют электрическую мощность всей осветительной системы.

2 метод. Для расчета общего локализованного и местного освещения, освещения наклонных плоскостей, а также для проверки расчета равномерного общего освещения, когда отраженным световым потоком можно пренебречь, применяют «точечный метод» .

Сущность метода заключается в определении освещенности точки световым потоком, падающим от излучателя света. При этом освещенность поверхности равна:

где I а – сила света в направлении от источника на данную точку

рабочей поверхности, кд;

α – угол, определяющий направление силы света в расчетную

точку (угол между нормалью к рабочей поверхности и на-

правлением на источник света), 0 .

При расчете освещенности, создаваемой в точке несколькими светильниками, подсчитывают освещенность от каждого из них, а затем находят арифметическую сумму освещенностей.

3 метод. Для ориентировочных расчетов используется «метод удельной мощности» . Данный метод позволяет определить мощность каждой лампы для создания в помещении нормируемой освещенности.

Во всех случаях, когда для освещения открытых пространств площадью более 5000 м 2 невозможно разместить обычные светильники над освещаемой поверхностью, применяют прожекторное освещение.

При расчете прожекторного освещения выбирается нормируемая освещенность и коэффициент запаса, учитывающий старение и запыление ламп. Затем подбирается тип прожектора, наименьшая высота его установки из условий минимальной слепимости, проектируются расстановка мачт и углы наклона оптической оси прожекторов в вертикальной и горизонтальной плоскостях.

В соответствии с требованиями ГОСТ 12.1.046-85 для освещения строительных площадок и участков рекомендуется применять следующие типы прожекторов: ПСМ, ПЗР, ПЗС, ПКН, ИСУ, ОУКсН, СКсН.

    СНиП 23-05-95. Естественное и искусственное освещение.

    Справочная книга для проектирования электрического освещения. Под ред. Г.М.Кнорринга. М., 1976.

    Охрана труда в машиностроении. Под ред. Е.Я.Юдина и С.В.Белова. М., 1983.

Для искусственного освещения применяются различные источники света. По роду питающей их энергии различают электрические и неэлектрические источники света, по способу получения излучения — температурные и люминесцентные. Электрические источники света завоевали всеобщее признание. Преимущества электрических источников света перед неэлектрическими заключаются прежде всего в том, что они гораздо гигиеничнее последних, имеют несравненно большую световую отдачу (силу света и яркость), а также надежны в эксплуатации и обеспечивают возможность устройства гигиенически рационального освещения.

Электрические источники света по виду излучения подразделяются на три группы: а) лампы накаливания; б) газоразрядные лампы; в) смешанные источники света, совмещающие различные виды излучения (так, например, лампа солнечного света и др.).

В современных, наиболее совершенных лампах накаливания для повышения их экономичности применяется биспиральная нить накаливания, а колбы наполняют смесью малотеплопроводных газов — криптоном и ксеноном. С целью уменьшения яркости нити накаливания и приближения спектра излучения к дневному в первом случае изготовляют лампы с колбами либо из матового и молочного стекла, либо с колбами из светло-голубого стекла. Такие лампы имеют ряд гигиенических преимуществ по сравнению с лампами, имеющими колбы из прозрачного бесцветного стекла.

В газоразрядных лампах используют излучение газов или паров металла, возникающее под действием проходящего через них электрического тока. Для общего освещения линейный спектр большинства газоразрядных ламп является недостатком, так как при таком освещении происходит искажение цвета предметов. Применение люминофоров в сочетании с газовым разрядом позволило создать источники света, дающие излучение с почти непрерывным спектром любого состава, обладающие при этом высокой световой отдачей. Особенно широкое распространение получили осветительные люминесцентные лампы, дающие свет, близкий к белому, или дневному.

Люминесцентные лампы представляют собой цилиндрические стеклянные трубки, вн утренняя поверхность которых покрыта тонким равномерным слоем люминофора. В оба конца трубки впаяны электроды. В лампу вводят капельку ртути и инертный газ при давлении в несколько миллиметров ртутного столба.

Таким образом, современные люминесцентные лампы представляют собой газоразрядные ртутные лампы низкого давления, в которых ультрафиолетовое излучение, возникающее при прохождении электрического тока через пары ртути, превращается при помощи светосоставов (люминофоров), нанесенных на внутреннюю поверхность колбы, в видимое излучение. Применяя различные люминофоры или их смеси, получают лампы с излучением любого спектрального состава.

В настоящее время выпускают четыре основных типа ламп, отличающихся по цвету излучения:

  1. лампы дневного света (ДС);
  2. лампы холодно-белого света (ХБС);
  3. лампы белого света (БС);
  4. лампы тепло-белого света (ТБС).

На рис. 124 даны спектральные характеристики этих типов ламп.

Рис. 124. Спектральные характеристики люминесцентных ламп типа ДС, ХБС, БС, ТБС.

В люминесцентных лампах в среднем 20% потребляемой энергии превращается в видимое излучение. Это в 2-2,5 раза больше, чем в лампах накаливания. Световая отдача люминесцентных ламп дневного света составляет от 33 до 42,5 лм/вт, а люминесцентных ламп белого света она еще выше — до 52,5 лм/вт, т. е. в 3-3,5 раза выше, чем в лампах накаливания. Характерным для всех упомянутых выше ламп является недостаточное излучение в красной части спектра.

Яркость трубки люминесцентных ламп, дающих свет, близкий к белому или дневному, составляет от 3000 до 9000 нт. Особенностью люминесцентных ламп является возможность получения спектра излучения, близкого к спектру дневного света. Это новое качество важно в гигиеническом отношении. Не меньшее гигиеническое значение имеет еще и то, что яркость трубки в люминесцентных лампах во много раз меньше, чем яркость нити накала электрических ламп накаливания. Кроме того, при освещении люминесцентными лампами получается почти полное отсутствие теней и бликов на освещаемой поверхности, т. е. те качественные преимущества, которые нельзя достичь без применения специальных арматур от ламп накаливания.

Люминесцентные лампы не лишены недостатков. Существенный недостаток люминесцентных ламп, питаемых переменным током, состоит в периодичности колебаний светового потока до 100 раз в секунду.

Смешанные источники излучения совмещают оба вида излучения.

К ним относятся дуговые лампы, лампы солнечного света и др. Все эти источники также содержат ультрафиолетовые лучи. Большого внимания с гигиенической точки зрения заслуживает лампа искусственного солнечного света.

В настоящее время нашей промышленностью разработаны источники света, дающие одновременно видимое и эритемное излучение и не требующие для своего включения пусковых приспособлений — ртутно-вольфрамовые лампы (РВЭ-350).

Светильники

Светильники — приборы, которые состоят из источника света и осветительной арматуры. Для освещения должны применяться светильники, а не источники света — лампы.

В осветительных установках создание заданной величины освещенности и требуемого распределения яркости в поле зрения невозможно без осветительной арматуры, главной задачей которой является перераспределение светового потока и ослабление блеского действия источника света. Она бывает отражающей, преломляющей и рассеивающей. По принятой в СССР светотехнической классификации светильники общего освещения делились на три класса: П — прямого света, О — отраженного света и Р — рассеянного света.

Схематически действие светильников различных классов, применяемых для общего освещения, показано на рис. 125.

Рис. 125. Особенности распределения светового потока при употреблении светильников различных классов.

При освещении помещения светильниками прямого света потолок и верхняя часть стен остаются затененными или в крайнем случае слабо освещенными. Особенностью применения светильников прямого света являются жесткие тени.

Светильники прямого света применяются для освещения высоких цехов, подсобных помещений и санитарных узлов. Освещение светильниками прямого света наименее благоприятно в отношении гигиены зрения. Оно создает большую неравномерность освещения и резкие тени.

Светильники рассеянного света характеризуются тем, что световой поток ими распределяется в верхнюю и нижнюю полусферы так, что в одну из них излучается более 10%, а в другую — менее 90%. Тени в этом случае становятся более мягкими. Такие светильники могут быть рекомендованы для освещения общественных зданий.

Светильники отраженного света характеризуются тем, что весь световой поток направляется ими кверху. Освещение отраженным светом рекомендуется для парадных комнат, конференц-залов, актовых залов и т. п. Отраженное освещение, создавая равномерность освещения, отсутствие теней и слепящих бликов, наиболее благоприятно для зрения.

В светильниках с люминесцентными лампами применяются в качестве затенителя решетки, создающие необходимый защитный угол в плоскости оси лампы. Защитным углом светильника называется угол, образуемый горизонталью, проходящей через тело накала лампы, и линией, соединяющей наиболее удаленную точку тела накала с противолежащей по отношению к ней точкой края отражателя (рис. 126).

Рис. 126. Иллюстрация защитного угла светильника.

Санитарно-гигиеническую оценку светильников производят, исходя из того, насколько они:

  1. обеспечивают требуемую освещенность и равномерность ее на освещаемой поверхности;
  2. защищают глаза от блескости;
  3. дают нужное перераспределение светового потока;
  4. обеспечивают возможность в нужных случаях изменить спектр источника света.

Защита глаз от блескости (ограничение ослепленности) достигается созданием достаточного защитного угла светильника, увеличением высоты подвеса светильника, применением для экранирования источника света рассвивающих свет материалов, а также применением ламп с колбами из матового стекла. Блескость светильника определяется его силой света и яркостью.

Требования, предъявляемые к качественным и количественным характеристикам искусственного освещения, определяются многими условиями; они различны в зависимости от назначения помещений, характера зрительной работы и возраста обитателей этих помещений. Искусственное освещение закрытых помещений осуществляется либо системой одного общего освещения, либо системой комбинированного освещения, общим и местным одновременно.

При высоте комнат 2,7-3 м наивыгоднейшая высота подвеса светильников близка к строительной высоте. Такая же высота подвеса светильников, а именно 2,8 м от пола, регламентируется правилами ограничения ослепленности.

Задача выбора рационального варианта размещения светильников сводится к определению расстояния между светильниками, при котором обеспечивается наибольшая равномерность освещения.;

В настоящее время промышленностью выпускаются специальные типы светильников для промышленных и общественных зданий (лечебных учреждений, школ и т. п.).

Лечебные учреждения

Для лечебных учреждений (больницы, поликлиники и т. п.) рекомендуются в основном светильники двух типов.

1. В палатах больниц для общего освещения желательно применение светильников полностью отраженного света, устанавливаемых в центральной части потолка, и светильников местного освещения, устанавливаемых у изголовья кроватей больных.

Рекомендуемый тип светильников общего освещения — ПФ-ОО. Светильник рассчитан для работы с двумя лампами накаливания 60 вт каждая и имеет рассеиватель из молочного накладного стекла. Отражатель светильника снаружи и изнутри окрашен белой эмалевой краской. Светильники ПФ-00 выпускаются Рижским светотехническим заводом (рис. 127).

Рис. 127. Светильник ПФ-ОО.

2. В кабинетах врачей и других помещениях поликлиник и больниц (лаборатории, помещения для приготовления лекарств, процедурные кабинеты и т. п.) целесообразно применять кольцевые светильники типа СК-300, КСО-1, ПМ-1, С-178 и потолочные кольцевые светильники.

Рис. 128. а — кольцевой светильник типа СК-300; б — кольцевой светильник типа КСО-1.

СК-300 (рис. 128, а) — подвесной кольцевой светильник, преимущественно отраженного светораспределения. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет пять металлических экранирующих колец; нижнее кольцо перекрыто силикатным молочным стеклом, окрашен белой эмалевой краской. Светильник выпускается заводом «Электросвет» имени П. Н. Яблочкова (Москва).

КСО-1 (рис. 128, б) — подвесной кольцевой светильник отраженного света. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет два экранирующих кольца и чашу, закрывающую снизу лампу. Экранирующие кольца и чаша покрыты белой силикатной эмалью. Светильник выпускается Луганским заводом электромонтажных изделий № 6.

Рис. 129. а — подвесной кольцевой светильник рассеянного света типа ПМ-1; б — потолочный кольцевой светильник рассеянного света С-178.

ПМ-1 (рис. 129, а) — подвесной кольцевой светильник рассеянного света. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет четыре экранирующих кольца, скрепленных четырьмя кронштейнами, окрашен белой эмалевой краской. Выпускается Рижским светотехническим заводом.

С-178 (рис. 129, а) — потолочный кольцевой светильник рассеянного света. Светильник рассчитан для работы с лампами накаливания 75 и 100 вт и имеет три экранирующих кольца, скрепленных между собой; окрашен белой эмалевой краской. Светильник выпускается Казанским заводом электромонтажных изделий.

Рис. 130. Потолочный кольцевой светильник.

Потолочный кольцевой светильник (рис. 130) рассчитан для работы с лампой накаливания 150 вт и имеет отражатель и экранирующую решетку из пяти концентрических колец, скрепленных между собой тремя ребрами, которая крепится к отражателю на трех крючках. Внутренняя поверхность отражателя и экранирующая решетка окрашены белой эмалевой краской. Светильник выпускается 5-м Механическим заводом (Москва).

Школьные здания

Для освещения школьных классов лампами накаливания рекомендуются кольцевые светильники типа СК-300 и КСО-1. Из светильников с люминесцентными лампами для освещения школьных классов применяются светильники серии ШОД. Это — подвесные светильники рассеянного света, рассчитанные на две люминесцентные лампы по 40 или 80 вт каждая. Светильник имеет экранирующую решетку, состоящую из одной продольной и ряда поперечных планок. Сбоку вдоль светильника в пазах решетки установлены плоские рассеиватели из опалового стекла. Корпус светильника и экранирующая решетка окрашены белой диффузной краской. Светильники выпускаются Рижским светотехническим заводом, а также начато их производство на заводах Пермского и Мордовского совнархозов (рис. 131).

Рис. 131. Светильник с люминесцентными лампами для освещения школьных классов.

Промышленные предприятия

1. Для помещений с нормальными пыльностью и влажностью применяются светильники типа «Универсаль», рассчитанные для работы с лампами накаливания 150, 200 и 500 вт. Светильники выпускаются заводами Тульского совнархоза, Луганским заводом электромонтажных изделий и артелью «Электротехник» (Ленинград).

Светильники типа «Глубокоизлучатель» рассчитаны для работы с лампами накаливания 1000 и 500 вт. Эти светильники выпускаются Луганским заводом электромонтажных изделий.

В настоящее время все чаще начинают применяться для освещения производственных помещений светильники с люминесцентными лампами.

Рис. 132. Светильник с люминесцентными лампами для промышленных предприятий.

Для помещений с нормальными пыльностью и влажностью рекомендуются светильники серии ОД и ОДЛ; светильники серии ОД (рис. 132) в двух вариантах: со сплошным отражателем (шифр ОД) и с отражателем, в верхней части которого сделаны отверстия (шифр ОДО). Последний 15% светового потока направляет вверх. Светильники выпускаются на две и четыре люминесцентные лампы, 30 или 40 вт каждая. Светильники выпускаются заводами Латвийского, Татарского и Пермского совнархозов (с лампами по 30 вт) и заводами Латвийского, Ростовского и Кемеровского совнархозов (с лампами по 40 вт).

Светильники серии ОДЛ выпускаются заводом ламп дневного света Управления металлообрабатывающей промышленности (Москва). Светильники выпускаются на две или три люминесцентные лампы, 15 и 30 вт каждая. Светильники обеих серий, ОД и ОДЛ, выпускаются как с экранирующей решеткой, так и без нее.

2. Для производственных помещений с повышенными влажностью, содержанием пыли и химически активной средой рекомендуются светильники в пылезащитном исполнении и уплотненные светильники. Это — светильники типа «Универсалы» в пылезащитном исполнении и светильники типа СХ — изделия завода «Электросвет» имени П. Н. Яблочкова (Москва).

Из светильников с люминесцентными лампами рекомендуются светильники серии ТН (в частности, для освещения производственных помещений типографии). Светильники выпускаются на две и три люминесцентные лампы, 30 и 40 вт каждая. Светильники выпускаются Ленинградским литейно-механическим заводом, Металлообрабатывающим заводом Владимирского совнархоза (ст. Денисово) и Механическим заводом в Костроме.