Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны.Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». ВеличинаМПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембранаполяризована. Уменьшение величины МПП называютдеполяризацией, увеличение -гиперполяризацией, восстановление исходного значенияМПП -реполяризацией мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К + (в ряде клеток и для СГ), менее проницаема для Na + и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через мембрану.

Возникающая разность потенциалов препятствует выходу К + из клет­ки и при некотором ее значении наступает равновесие между выходом К + по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту. Мембранный потенциал, при ко­тором достигается это равновесие, называетсяравновесным потенци­алом. Его величина может быть рассчитана из уравнения Нернста:

10 В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания. На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление. Стадия покоя. Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ. Фаза деполяризации. В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его. Фаза реполяризации. В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые - открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны. потенциал действия Для более полного понимания факторов, являющихся причиной деполяризации и реполяризации, необходимо изучить особенности двух других типов транспортных каналов в мембране нервного волокна: электроуправляемых натриевых и калиевых каналов. Электроупавляемые натриевые и калиевые каналы. Необходимым участником процессов деполяризации и реполяризации во время развития потенциала действия в мембране нервного волокна является электроуправляемый натриевый канал. Электроуправляемый калиевый канал также играет важную роль в увеличении скорости реполяризации мембраны. Оба типа электроуправляемых каналов существуют дополнительно к Na+/K+ -насосу и каналам К*/Na+-утечки. Электроуправляемый натриевый канал. В верхней части рисунка показан электроуправляемый натриевый канал в трех различных состояниях. Этот канал имеет двое ворот: одни вблизи наружной части канала, которые называют активационными воротами, другие - у внутренней части канала, которые называют инактивационными воротами. В верхней левой части рисунка изображено состояние этих ворот в покое, когда мембранный потенциал покоя равен -90 мВ. В этих условиях активационные ворота закрыты и препятствуют поступлению ионов натрия внутрь волокна. Активация натриевого канала. Когда мембранный потенциал покоя смещается в направлении менее отрицательных значений, поднимаясь от -90 мВ в сторону нуля, на определенном уровне (обычно между -70 и -50 мВ) происходит внезапное конформационное изменение актива-ционных ворот, в результате они переходят в полностью открытое состояние. Это состояние называют активированным состоянием канала, при котором ионы натрия могут свободно входить через него внутрь волокна; при этом натриевая проницаемость мембраны возрастает в диапазоне от 500 до 5000 раз. Инактивация натриевого канала. В верхней правой части рисунке показано третье состояние натриевого канала. Увеличение потенциала, открывающее активационные ворота, закрывает инактивационные ворота. Однако инактивационные ворота закрываются в течение нескольких десятых долей миллисекунды после открытия активационных ворот. Это значит, что конформационное изменение, приводящее к закрытию инактивационных ворот, - процесс более медленный, чем конформационное изменение, открывающее активационные ворота. В результате через несколько десятых долей миллисекунды после открытия натриевого канала инактивационные ворота закрываются, и ионы натрия не могут более проникать внутрь волокна. С этого момента мембранный потенциал начинает возвращаться к уровню покоя, т.е. начинается процесс реполяризации. Существует другая важная характеристикая процесса инактивации натриевого канала: инактивационные ворота не открываются повторно до тех пор, пока мембранный потенциал не вернется к значению, равному или близкому к уровню исходного потенциала покоя. В связи с этим повторное открытие натриевых каналов обычно невозможно без предварительной реполяризации нервного волокна.

13Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые. Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декре-ментное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к«-». В месте выхода кругового тока повышается проницаемость плазматической мемб-раны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона. В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Существует три закона проведения раздражения по нервному волокну. Закон анатомо-физиологической целостности. Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. Закон изолированного проведения возбуждения. Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмя-котных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе. В мякотных нервных волокнах роль изолятора выполняет мие-линовая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки. В безмякотных нервных волокнах возбуждение передается изолированно. Закон двустороннего проведения возбуждения. Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и цен-тробежно.

14 Синапсы – это специализированная структура, которая обеспечивает передачу нервного импульса из нервного волокна на эффекторную клетку – мышечное волокно, нейрон или секреторную клетку.

Синапсы – это места соединения нервного отростка (аксона) одного нейрона с телом или отростком (дендритом, аксоном) другой нервной клетки (прерывистый контакт между нервными клетками).

Все структуры, обеспечивающие передачу сигнала с одной нервной структуры на другую – синапсы .

Значение – передает нервные импульсы с одного нейрона на другой => обеспечивает передачу возбуждения по нервному волокну (распространение сигнала).

Большое количество синапсов обеспечивает большую площадь для передачи информации.

Строение синапса:

1. Пресинаптическая мембрана - принадлежит нейрону, ОТ которого передается сигнал.

2. Синаптическая щель , заполненная жидкостью с высоким содержанием ионов Са.

3. Постсинаптическая мембрана - принадлежит клеткам, НА которые передается сигнал.

Между нейронами всегда существует перерыв, заполненный межтканевой жидкостью.

В зависимости от плотности мембран, выделяют:

- симметричные (с одинаковой плотностью мембран)

- асимметричные (плотность одной из мембран выше)

Пресинаптическая мембрана покрывает расширение аксона передающего нейрона.

Расширение - синаптическая пуговка/синаптическая бляшка .

На бляшке - синаптические пузырьки (везикуль).

С внутренней стороны пресинаптической мембраны – белковая/гексогональная решетка (необходима для высвобождения медиатора), в которой находится белок - нейрин . Заполнена синаптическими пузырьками, которые содержат медиатор – специальное вещество, участвующее в передаче сигналов.

В состав мембраны пузырьков входит - стенин (белок).

Постсинаптическая мембрана покрывает эффекторную клетку. Содержит белковые молекулы, избирательно чувствительные к медиатору данного синапса, что обеспечивает взаимодействие.

Эти молекулы – часть каналов постсинаптической мембраны + ферменты (много), способные разрушать связь медиатора с рецепторами.

Рецепторы постсинаптической мембраны.

Постсинаптическая мембрана содержит рецепторы, обладающие родством с медиатором данного синапса.

Между ними находится снаптическая щель . Она заполнена межклеточной жидкостью, имеющей большое количество кальция. Обладает рядом структурных особенностей – содержит белковые молекулы, чувствительные к медиатору, осуществляющему передачу сигналов.

15 Синаптическая задержка проведения возбуждения

Для того, чтобы возбуждение распространилось по рефлекторной дуге затрачивается определенное время. Это время состоит из следующих периодов:

1. период временно необходимый для возбуждения рецепторов (рецептора) и для проведения импульсов возбуждения по афферентным волокнам до центра;

2. период времени, необходимый для распространения возбуждения через нервные центры;

3. период времени, необходимый на распространение возбуждения по эфферентным волокнам до рабочего органа;

4. латентный период рабочего органа.

16 Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут подходить сотни и тысячи импульсов по разным терминалям. Вместе с тем число дошедших до нейрона импульсов определяется пресинаптическим торможением. Торможение латеральных путей обеспечивает выделение существенных сигналов из фона. Блокада торможения ведет к широкой иррадиации возбуждения и судорогам, например при выключении пресинаптического торможения бикукулином.

В 1786 году профессор анатомии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целенаправленным исследованиям в области биоэлектрических явлений. В первом опыте он подвешивал препарат обнаженных лапок лягушки с помощью медного крючка на железной решетке, и обнаружил, что при каждом касании мышцами решетки, они сокращались. Гальвани предположил, что сокращения мышц вообще – следствие воздействия на них «животного электричества», источником которого являются нервы и мышцы. Однако, по мнению Вольта, причиной сокращения был электрический ток, возникший в области контакта разнородных металлов. Гальвани поставил второй опыт, в котором источником тока, действовавшего на мышцу, точно был нерв: мышца опять сокращалась. Таким образом, было получено точное доказательство существования «животного электричества».

Все клетки имеют свой электрический заряд, который формируется в результате неодинаковой проницаемости мембраны для различных ионов. Клетки возбудимых тканей (нервная, мышечная, железистая) отличаются тем, что они под действием раздражителя меняют проницаемость своей мембраны для ионов, в результате чего ионы очень быстро транспортируются согласно электрохимическому градиенту. Это и есть процесс возбуждения. Его основой является потенциал покоя.

Потенциал покоя

Потенциал покоя – относительно стабильная разность электрических потенциалов между наружной и внутренней сторонами клеточной мембраны. Его величина обычно варьирует в пределах от -30 до -90 мВ. Внутренняя сторона мембраны в покое заряжена отрицательно, а наружная – положительно из-за неодинаковых концентраций катионов и анионов внутри и вне клетки.

Внутри- и внеклеточные концентрации ионов (ммоль/л) в мышечных клетках теплокровных животных

В нервных клетках похожая картина. Таким образом, видно, что основную роль в создании отрицательного заряда внутри клетки играют ионы K + и высокомолекулярные внутриклеточные анионы, главным образом они представлены белковыми молекулами с отрицательно заряженными аминокислотами (глутамат, аспартат) и органическими фосфатами. Эти анионы, как правило, не могут транспортироваться через мембрану, создавая постоянный отрицательный внутриклеточный заряд. Во всех точках клетки отрицательный заряд практически одинаков. Заряд внутри клетки является отрицательным как абсолютно (в цитоплазме анионов больше, чем катионов), так и относительно наружной поверхности клеточной мембраны. Абсолютная разность невелика, однако этого достаточно для создания электрического градиента.

Главным ионом, обеспечивающим формирование потенциала покоя (ПП), является K + . В покоящейся клетке устанавливается динамическое равновесие между числом входящих и выходящих ионовK + . Это равновесие устанавливается тогда, когда электрический градиент уравновесит концентрационный. Согласно концентрационному градиенту, создаваемому ионными насосами, K + стремится выйти из клетки, однако отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому (электрический градиент). В случае равновесия на клеточной мембране устанавливается равновесный калиевый потенциал.

Равновесный потенциал для каждого иона можно рассчитать по формуле Нернста:

E ion =RT/ZF·ln( o / i),

где E ion - потенциал, создаваемый данным ионом;

R – универсальная газовая постоянная;

Т – абсолютная температура (273+37°С);

Z – валентность иона;

F – постоянная Фарадея (9,65·10 4);

O – концентрация иона во внешней среде;

I - концентрация иона внутри клетки.

При температуре 37°С равновесный потенциал для K + равен -97мВ. Однако реальный ПП меньше – около -90 мВ. Это объясняется тем, что в формирование ПП свой вклад вносят и другие ионы. В целом ПП – это алгебраическая сумма равновесных потенциалов всех ионов, находящихся внутри и вне клетки, включающий также значения поверхностных зарядов самой клеточной мембраны.

Вклад Na + и Cl - в создание ПП невелик, но, тем не менее, он имеет место. В покое вход Na + в клетку низкий (намного ниже, чем K +), но он уменьшает мембранный потенциал. Влияние Cl - противоположно, так как это анион. Отрицательный внутриклеточный заряд не позволяет большому количеству Cl - проникнуть в клетку, поэтому Cl - это в основном внеклеточный анион. Как внутри клетки, так и вне ееNa + и Cl - нейтрализуют друг друга, вследствие чего их совместное поступление в клетку не оказывает существенного влияния на величину ПП.

Наружная и внутренняя стороны мембраны несут на себе собственные электрические заряды, преимущественно с отрицательным знаком. Это полярные составляющие мембранных молекул – гликолипидов, фосфолипидов, гликопротеинов. Ca 2+ , как внеклеточный катион, взаимодействует с наружными фиксированными отрицательными зарядами, а также с отрицательными карбоксильными группами интерстиция, нейтрализуя их, что приводит к увеличению и стабилизации ПП.

Для создания и поддержания электрохимических градиентов необходима постоянная работа ионных насосов. Ионный насос – это транспортная система, обеспечивающая перенос иона вопреки электрохимическому градиенту, с непосредственными затратами энергии. Градиенты Na + и K + поддерживаются с помощью Na/K – насоса. Сопряженность транспорта Na + и K + примерно в 2 раза уменьшает энергозатраты. В целом же траты энергии на активный транспорт огромны: лишь Na/K – насос потребляет около 1/3 всей энергии, расходуемой организмом в покое. 1АТФ обеспечивает один цикл работы – перенос 3Na + из клетки, и 2 K + в клетку. Асимметричный перенос ионов способствует заодно формированию и электрического градиента (примерно 5 – 10мВ).

Нормальная величина ПП является необходимым условием возникновения возбуждения клетки, т.е. распространения потенциала действия, инициирующего специфическую деятельность клетки.

Потенциал действия (ПД)

ПД – это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала, вследствие специфического перемещения ионов и способный распространяться без декремента на большие расстояния. Амплитуда ПД колеблется в пределах 80 – 130 мВ, длительность пика ПД в нервном волокне – 0,5 – 1 мс. Амплитуда потенциала действия не зависит от силы раздражителя. ПД либо совсем не возникает, если раздражение подпороговое, либо достигает максимальной величины, если раздражение пороговое или сверхпороговое. Главным в возникновении ПД является быстрый транспорт Na + внутрь клетки, что способствует вначале снижению мембранного потенциала, а затем – изменению отрицательного заряда внутри клетки на положительный.

В составе ПД различают 3 фазы: деполяризацию, инверсию, и реполяризацию.

1. Фаза деполяризации . При действии на клетку деполяризующего раздражителя начальная частичная деполяризация происходит без изменения ее проницаемости для ионов (не происходит движение Na + внутрь клетки, т. к. закрыты быстрые потенциалчувствительные каналы для Na +). Na + - каналы обладают регулируемым воротным механизмом, который расположен на внутренней и внешней сторонах мембраны. Имеются активационные ворота (m – ворота) и инактивационные (h – ворота). В покое m – ворота закрыты, а h – ворота открыты. В мембране также имеются K + - каналы, имеющие только одни ворота (активационные), закрытые в покое.

Когда деполяризация клетки достигает критической величины (Е кр – критический уровень деполяризации, КУД), которая обычно равна 50мВ, проницаемость для Na + резко возрастает – открывается большое количество потенциалзависимых m – ворот Na + - каналов. За 1 мс через 1 открытый Na + - канал в клетку попадает до 6000 ионов. Развивающаяся деполяризация мембраны вызывает дополнительное увеличение ее проницаемости для Na + , открываются все новые и новые m - ворота Na + - каналы, так что ток Na + имеет характер регенеративного процесса (сам себя усиливает). Как только ПП становится равным нулю, фаза деполяризации заканчивается.

2.Фаза инверсии. Вход Na + в клетку продолжается, т. к. m - ворота Na + - каналы еще открыты, поэтому внутри клетки заряд становится положительным, а снаружи – отрицательным. Теперь электрический градиент препятствует входу Na + в клетку, однако, из-за того, что концентрационный градиент сильнее электрического, Na + все же проходит в клетку. В тот момент, когда ПД достигает максимального значения, происходит закрытие h – ворот Na + - каналов (эти ворота чувствительны к величине положительного заряда в клетке) и поступление Na + в клетку прекращается. Одновременно открываются ворота K + - каналов. K + транспортируется из клетки согласно химическому градиенту (на нисходящей фазе инверсии – еще и по электрическому градиенту). Выход положительных зарядов из клетки приводит к уменьшению ее заряда. K + с небольшой скоростью может выходить из клетки также через неуправляемые K + - каналы, которые всегда открыты. Все рассмотренные процессы являются регенеративными. Амплитуда ПД складывается из величины ПП и величины фазы инверсии. Фаза инверсии заканчивается, когда электрический потенциал снова становится равным нулю.

3.Фаза реполяризации. Связана с тем, что проницаемость мембраны для K + еще высока, и он выходит из клетки по градиенту концентрации, несмотря на противодействие электрического градиента (клетка внутри снова имеет отрицательный заряд). Выходом K + обусловлена вся нисходящая часть пика ПД. Нередко в конце ПД наблюдается замедление реполяризации, кто связано с закрытием значительной части ворот K + - каналов, а также – с возрастанием противоположно направленного электрического градиента.

Электрический заряд, подобно массе, является фундаментальным свойством веществ. Существует два типа зарядов, условно обозначенные как положительный и отрицательный.

Каждое вещество имеет электрический заряд, величина которого может быть положительной, отрицательной или быть равной нулю. Например, электроны заряжены отрицательно, а протоны - положительно. Поскольку каждый атом содержит один или более электронов и равное количество протонов, общее число зарядов в макроскопическом объекте - чрезвычайно большое, но в целом такой объект не заряжен или имеет небольшой заряд.

Заряд электрона является по абсолютной величине самым маленьким.

Электрическое поле. Закон Кулона

Каждый заряженный объект образует в окружающем его пространстве электрическое поле. Электрическое поле является видом материи, посредством которой заряженные объекты взаимодействуют друг с другом. Пробный заряд, внесённый в электрическое поле другого заряда "чувствует" присутствие этого поля. Он будет притягиваться к заряду, создающему электрическое поле, или отталкиваться от него.

Закон Кулона определяет электрическую силу F, действующую между двумя точечными зарядами q 1 и q 2 :

k - константа, определяемая выбранными условиями; r - расстояние между зарядами.

Согласно закону Кулона, сила действует в направлении линии, соединяющей два заряда. Величина силы, действующей на заряды, пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними.

Электрическое поле можно представить в виде силовых линий, показывающих направление электрических сил. Эти силы направлены от заряда, когда он положительный, и к заряду, если он отрицательный. Если положительный заряд поместить в электрическое поле, он подвергается действию силы в направлении поля. Отрицательный заряд подвергается силе, направленной противоположно направлению поля.

Характеристики электрического поля

1) Напряжённость электрического поля. Каждый электрический заряд производит вокруг себя электрическое поле. Если другой заряд q внести в это поле, то на него будет действовать сила F, пропорциональная q и напряжённости электрического поля E:

Напряжённость электрического поля E (или просто напряжённость) в любой точке определяется как электрическая сила F, которая действует на положительной заряд q , помещённый в эту точку:

E - векторная величина, то есть имеет как величину, так и направление. Единицей измерения напряжённости является вольт на метр [В/м].

Принцип наложения (суперпозиции) указывает, что если электрическое поле создают множество зарядов, суммарная напряжённость определятся сложением напряжённостей, созданных каждым зарядом, по правилам сложения векторов.

2) Электрический потенциал. Чтобы переместить заряд против действующей на него электрической силы необходимо выполнить работу. Эта работа не зависит от пути перемещения заряда в электрическом поле, но зависит от начального и конечного положения заряда.

Если заряд перемещается из одной точки в другую против электрической силы, его потенциальная электростатическая энергия увеличивается. Электрический потенциал в любой точке равен электростатической потенциальной энергии W p , которую имеет положительный заряд q в этой точке: φ = W p /q (4) .

Можно также сказать, что электрический потенциал в точке равен работе, которую необходимо совершить против электрических сил, чтобы переместить положительный заряд из данной точки на большое расстояние, где потенциал электрического поля равен нулю. Электрический потенциал является скалярной величиной и измеряется в вольтах (В ).

Напряжённость электрического поля является отрицательным градиентом электрического потенциала - показателя изменения потенциала с расстоянием x : E → = - dφ/dx . С помощью приборов можно измерить разность потенциалов, но не напряжённость поля. Последняя может быть вычислена, если использовать зависимость между E → и Δφ : где Δφ = E·l - расстояние между двумя токами электрического поля.

Мембранный потенциал покоя

Каждая клетка превращает часть своей метаболической энергии в электростатическую энергию. Источником электрического поля клетки является плазматическая мембрана. Существует разность потенциалов между внутренней и внешней поверхностями плазматической мембраны. Эта разность потенциалов называется мембранным потенциалом .

Разность потенциалов между внутренней и внешней средами клетки может измеряться непосредственно и довольно точно. Для этого используют микроэлектрод, представляющий собой стеклянную микропипетку с диаметром кончика до 1мкм , заполненную концентрированным раствором KCl. Микроэлектрод подключают к усилителю напряжения регистрирующего устройства. Можно измерять мембранный потенциал мышечных, нервных клеток или клеток других тканей. Другой электрод (референтный) установлен на поверхности ткани.

Когда кончик микроэлектрода находится вне клетки, его потенциал по отношению к референтному электроду равен нулю. Если конец электрода погружают в клетку, прокалывая плазматическую мембрану, разность потенциалов резко становится отрицательной. На шкале измерительного устройства регистрируется разность потенциалов между внутренней и внешней средами клетки. Эта разность потенциалов называется трансмембранной, или мембранным потенциалом.


Если клетка находится в состоянии покоя, её мембранный потенциал имеет отрицательное значение и устойчивую величину. Обычно его называют мембранным потенциалом покоя . Мембранный потенциал покоя клеток различных тканей составляет от - 55 милливольт (мВ ) до - 100 мВ .

При определенных физиологических условиях могут происходить изменения мембранного потенциала. Изменения его в положительном направлении называется деполяризацией плазматической мембраны. Смещение мембранного потенциала в отрицательном направлении называется гиперполяризацией .

Биофизические основы мембранного потенциала покоя

Электрические явления в плазматической мембране определяются распределением ионов между внутренней и внешней сторонами мембраны. Из химического анализа известно, что концентрация ионов внутриклеточной жидкости сильно отличается от концентрации ионов во внеклеточной жидкости. Термин "внеклеточная жидкость" имеет отношение ко всем жидкостям вне клеток (межклеточное вещество, кровь, лимфа и т.п.). В таблице представлены концентрации основных ионов в мышечных клетках млекопитающих и внеклеточной жидкости (миллимоли на литр).

Существуют значительные различия между концентрацией основных ионов внутри и вне клетки. Внеклеточная жидкость имеет высокую концентрацию ионов натрия и хлора. Внутриклеточная жидкость имеет высокую концентрацию калия и различных органических анионов (A -) (заряженные группы белков).

Различие между концентрациями натрия и калия во внеклеточной и внутриклеточной жидкостях обусловлены деятельностью натрий-калиевого насоса, который выкачивает за один цикл 3 иона натрия из клетки и закачивает 2 иона калия в клетку против электрохимического градиента указанных ионов. Основная функция натрия-калия насоса - поддержание различия концентраций ионов натрия и калия по обе стороны плазматической мембраны.

В состоянии покоя проницаемость плазматической мембраны для ионов калия значительно превышает проницаемость мембраны для ионов натрия. В нервных клетках соотношения проницаемости соответствующих ионов составляет 1:0,04.

Этот факт дает возможность объяснять существование мембранного потенциала покоя.

Ионы калия стремятся покинуть клетку из-за их высокой внутренней концентрации. При этом перемещения через мембрану внутриклеточных анионов из-за их больших размеров не происходит. Незначительное поступление ионов натрия внутрь клетки также не компенсирует выход ионов калия наружу, так как проницаемость мембраны в покое для ионов натрия мала.

Следовательно, снаружи клетка приобретает дополнительно положительный заряд и внутри остаётся избыток отрицательного заряда.

Диффузия калия через мембрану - процесс ограниченный. Ионы калия, проникающие через мембрану, создают электрическое поле, которое задерживает диффузию других ионов калия. По мере выхода из клетки калия электрическое поле нарастает и, в конечном итоге, напряжённость достигает такого значения, когда поток калия через мембрану прекращается. Состояние, при котором поток ионов по их концентрационному градиенту уравновешивается мембранным потенциалом, называется состоянием электрохимического равновесия ионов. Величина такого мембранного потенциала равновесия определяется уравнением Нернста (при этом считают, что мембрана проницаема только для одного вида ионов) :

R - универсальная газовая постоянная, T - термодинамическая температура, z - электрический заряд иона, F - постоянная Фарадея, i и o - внутриклеточная и внеклеточная концентрации ионов калия соответственно.

Вычисления, основанные на уравнении Нернста, указывают, что внутренняя и внешняя концентрация иона хлора также соответствует состоянию электрохимического равновесия, но концентрация натрия далека от равновесия с мембранным потенциалом мембраны.

Уравнение Нернста показывает, что концентрационный градиент ионов калия определяет величину мембранного потенциала покоя только в первом приближении. Рассчитанные величины мембранного потенциала совпадают с экспериментально полученными только при высокой концентрации калия вне клетки.

Более точная величина мембранного потенциала покоя может быть вычислена из уравнения Гольдмана-Ходжкина, в котором учитываются концентрации и проницаемость мембраны для трёх основных ионов внутри- и внеклеточной жидкостей:

Также в поддержании мембранного потенциала покоя участвует непосредственно натрий-калий насос, выкачивая три иона натрия из клетки и закачивая лишь два иона калия. В результате мембранный потенциал покоя становится более отрицательным, чем был бы, если бы создавался только пассивным перемещением ионов через мембрану.

Потенциал действия

Если через мембрану нервной или мышечной клетки проходит кратковременный электрический ток, то мембранный потенциал подвергается последовательным изменениям, которые специфичны и уникальны для возбудимых клеток. Возбудимые ткани можно стимулировать также механическими или химическими средствами, но в экспериментальной работе, как правило, используются электрические стимулы.

Рис. 1. Потенциал действия нервной клетки.

Потенциал действия - быстрое колебание величины мембранного потенциала, вызванное действием на возбудимую клетку электрического или другого раздражителей.

На рис. 1 показан потенциал действия нервной клетки, записанный с помощью микроэлектрода. Если к клетке прикладывают кратковременный электрический стимул, мембранный потенциал уменьшается быстро до нуля. Это отклонение характеризуют как фазу деполяризаци и. В течение короткого времени внутренняя среда клетки становится электроположительна по отношению к наружней (фаза реверсии мембранного потенциала, или овершут ). Затем мембранный потенциал возвращается к уровню мембранного потенциала покоя (этап реполяризации ) (рис.2.).

Рис. 2. Фазы потенциала действия

Длительность потенциала действия составляет от 0,5 до 1 миллисекунды в больших нервных клетках и несколько миллисекунд в клетках скелетных мышц. Общая амплитуда - почти 100 - 120мВ , отклонение от нулевой линии - около 30-50мВ .

Потенциал действия играет ведущую роль в обработке информации в нервной системе. Он имеет постоянную амплитуду, которая не является вероятностной величиной. Это имеет большое значение в обработке информации нервной системой. Кодирование интенсивности раздражения осуществляется числом потенциалов действия и частотой, с которой потенциалы действия следуют друг за другом.

Биофизические основы потенциала действия

Потенциал действия возникает из-за специфических изменений ионной проницаемости в плазматической мембране. Английский физиолог Ходжкин показал, что основной механизм потенциала действия состоит в кратковременном и очень специфическом изменении проницаемости мембраны для ионов натрия. Ионы натрия при этом поступают в клетку до момента, пока мембранный потенциал не достигнет потенциала электрохимического равновесия ионов натрия.

Рис. 3. Изменение проницаемости мембраны для ионов натрия и калия во время потенциала действия

Проницаемость мембраны для натрия при действии на клетку электрического стимула возрастает приблизительно в 500 раз и становится значительно больше, чем проницаемость мембраны для ионов калия. В клетке резко повышается концентрация ионов натрия. В результате мембранный потенциал принимает положительное значение, и поток ионов натрия в клетку замедляется.

Во время возникновения потенциала действия происходит деполяризация плазматической мембраны. Быстрая деполяризация мембраны под действием электрического стимула вызывает увеличение её проницаемости для ионов натрия. Возросшее поступление ионов натрия в клетку усиливает деполяризацию мембраны, что, в свою очередь, вызывает дальнейшее увеличение проницаемости мембраны для натрия и т.д.

Но величина мембранного потенциала при деполяризации не достигает уровня потенциала электрохимического равновесия ионов натрия. Причиной этому является снижение проницаемости мембраны для ионов натрия из-за инактивации натриевого трансмембранного переноса. Этот процесс резко уменьшает проницаемость мембраны для ионов натрия и останавливает наплыв натрия в клетку.

В этот момент происходит увеличение проницаемости мембраны для ионов калия, что приводит к быстрому снижению величины мембранного потенциала к уровню потенциала покоя. Проницаемость мембраны для ионов калия также снижается до своего нормального значения. Таким образом, инактивация входящего натриевого тока и повышение проницаемости мембраны для ионов калия (выходящий ток) ограничивают длительность потенциала действия и приводят к реполяризации мембраны.

Таким образом, в течение потенциала действия некоторое количество ионов натрия поступают в клетку. Но это количество достаточно небольшое. Изменение концентрации ионов в больших нервных клетках составляет лишь около 1/300000 начальной величины.

Основной механизм изменений проницаемости мембраны обусловлен событиями в натриевых и калиевых каналах мембраны. Состояние их ворот управляется величиной мембранного потенциала. Натриевые каналы имеют два типа ворот. Один из них, называемые активационными воротами закрыты в состоянии покоя и открываются при деполяризации мембраны. Поступление ионов натрия в клетку вызывает открытие всё большего числа активационных ворот. Второй тип ворот натриевых каналов - инактивационные при усиливающейся деполяризации мембраны постепенно закрываются, что останавливает приток натрия в клетку. Деполяризация мембраны также служит причиной открытия дополнительного числа калиевых каналов, в результате чего увеличивается проницаемость мембраны для ионов калия и происходит реполяризация мембраны.

Рис. 4. Изменение состояния натриевых и калиевых каналов мембраны в зависимости от величины мембранного потенциала

Распространение потенциала действия

Потенциал действия распространяется вдоль мембраны нервной и мышечной клеток без уменьшения амплитуды с расстоянием. Этот процесс обусловлен кабельными свойствами плазматической мембраны, т.е. способностью проводить электрический ток на небольшие расстояния. Локальный электрический ток течет в клетку в активной области (где возникает потенциал действия) и из клетки - в смежной неактивной зоне. Эти ионные токи вызывают некоторые изменения мембранного потенциала в зоне, прилегающей к месту возникновения потенциала действия.

Циклический локальный ток снижает заряд мембраны в неактивной зоне и деполяризует её. Если деполяризация достигает порогового уровня, то возрастает проницаемость мембраны для ионов натрия и возникает потенциал действия. Таким образом потенциал действия распространяется вдоль нервных и мышечных волокон с постоянной скоростью.

Рис. 5. Распространение потенциала действия вдоль мембраны нервного волокна

Скорость распространения потенциала действия в нервных волокнах зависит от их диаметра. Она максимальна в наиболее толстых волокнах, достигая около 100 метров в секунду.

А. Характеристика ПД. ПД - электрический процесс, выражаю­щийся в быстром колебании мембранного потенциала вследствие пе­ремещения ионов в клетку и т клетки и способный распространять­ся без затухания (без декремента). Он обеспечивает передачу сигна­лов между нервными клетками, между нервными центрами и рабочими органами, в мышцах - процесс электромеханического сопряжения (рис. 3.3, а).

Величина ПД нейрона колеблется в пределах 80-110 мВ, дли­тельность пика ПД нервного волокна составляет 0,5-1 мс. Ампли­туда ПД не зависит от силы раздражения, она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений -закону силы. ПД либо совсем не возникает на раздражение клетки, если оно мало, либо он максимальной величины, если раздражение является пороговым или сверхпороговым. Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчиняется закону силы: с увеличением силы стимула величина его возрастает (подробнее см. раздел 3.6). В составе ПД различают три фазы: 1 фаза - деполяризация, т.е. исчезновение заряда клетки - уменьшение мембранного потен­циала до нуля; 2 фаза - инверсия, изменение заряда клетки на об­ратный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя - отрицательно (от лат. туегзю - перево­рачивание); 3 фаза - реполяризация, восстановление исходного за­ряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная - положительно.

Б. Механизм возникновения ПД. Если действие раздражителя на клеточную мембрану приводит к возникновению ПД, далее сам процесс развития ПД вызывают фазовые изменения прони­цаемости клеточной мембраны, что обеспечивает быстрое движе­ние иона Ка + в клетку, а иона К + - из клетки. Величина мембранного потенциала при этом сначала уменьшается, а затем снова восстанавливается до исходного уровня. На экране осциллографа отмеченные изменения мембранного потенциала предстают в ви­де пикового потенциала - ПД. Он возникает вследствие накоп­ленных и поддерживаемых ионными насосами градиентов кон­центраций ионов внутри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов разных ионов. Ес­ли заблокировать процесс выработки энергии, то ПД некоторый период времени будут возникать, но после исчезновения градиен­тов концентраций ионов (устранение потенциальной энергии) клетка генерировать ПД не будет. Рассмотрим фазы ПД.



Рис. 3.3. Схема, отражающая процесс возбуждения. а - потенциал действия, его фазы: 1 - деполяризация, 2 - инверсия (овершут), 3 - реполяризация, 4 - следовая гиперполяризация; б - натриевые ворота; (Ь-1 - в состоянии покоя клетки); в - калиевые ворота (1 - в состоянии покоя клетки). Знаки плюс (+) и минус (-) - знаки заряда внутри и вне клетки в различные фазы ПД. (См. пояснения в тексте.) Существует много различных названий фаз ПД (единого мнения не сложилось): 1) ме­стное возбуждение - пик ПД - следовые потенциалы; 2) фаза нарастания - фаза спада -следовые потенциалы; 3) деполяризация - овершут (перехлест, превышение, перелет), причем эта фаза в свою очередь делится на две част: восходящая (инверсия, ОТ лат. шуегяю - переворачивание) н нисходящая (реверсия, от лат. геуегзю - возврат) - реполя-рнзапия. Имеются и другие названия.

Отметим одно противоречие: термины «реполяризация» и «реверсия» но смыслу одинаковы - возврат к предыдущему состоя­нию, но эти состояния различны: в одном случае заряд исчезает (реверсия), в другом -восстанавливается (реполяршация). Наиболее корректны тс названия фаз ПД, в которых заложена общая идея, например изменение заряда клетки. В этой связи обоснованно ис­пользовать следующие названия фаз ПД: !) фаза деполяризации - процесс исчезновения заряда клетки до нуля; 2) фаза инверсии - изменение заряда клетки на противоположный. т. е. весь период ПД, когда внутри клетки заряд положительный, а снаружи - отрицатель­ный; 3) фаза реполярпзацин - восстановление заряда клетки до исходной величины (возврат к потенциалу покоя).

1. Фаза деполяризации (см. рис. 3.3, а, 1). При действии депо­ляризующего раздражителя на клетку (медиатор, электрический ток) вначале уменьшение мембранного потенциала (частичная деполяризация) происходит без изменения проницаемости мем­браны для ионов. Когда деполяризация достигает примерно 50% пороговой величины (порогового потенциала), возрастает проницаемость ее мембраны для иона Ка + , причем в первый мо­мент сравнительно медленно. Естественно, что скорость входа ионов Ка* в клетку при этом невелика. В этот период, как и во время всей фазы деполяризации, движущей силой, обеспечи­вающей вход иона Na + в клетку, являются концентрационный и электрический градиенты. Напомним, что клетка внутри заря­жена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация ионов Na+ вне клетки в 10-12 раз боль­ше, чем внутри клетки. При возбуждении нейрона повышается проницаемость его мембраны и для ионов Са+, но его ток в клетку значительно меньше, чем ионов Nа + . Условием, обеспе­чивающим вход иона Nа + в клетку и последующий выход иона К* из клетки, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного меха­низма ионных Nа- и К-каналов. Длительность пребывания электроуправляемого канала в открытом состоянии носит вероятно­стный характер и зависит от величины мембранного потенциа­ла. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Воротный механизм ^-каналов расположен на внешней стороне клеточной мембра­ны (Na+ движется внутрь клетки), воротный механизм К-каналов -на внутренней (К + движется из клетки наружу).

Активация Nа- и К-каналов (открытие ворот) обеспечивается уменьшением мембранного потенциала, Когда деполяризация клетки достигает критической величины (E kp , критический уро­вень деполяризации - КУД), которая обычно составляет -50 мВ (возможны и другие величины), проницаемость мембраны для ионов Nа + резко возрастает - открывается большое число по-тенциалзависимых ворот Nа-каналов и ионы Nа + лавиной уст­ремляются в клетку. В результате интенсивного тока ионов Nа + внутрь клетки далее процесс деполяризации проходит очень бы­стро. Развивающаяся деполяризация клеточной мембраны вы­зывает дополнительное увеличение ее проницаемости и, естест­венно, проводимости ионов Na+ - открываются все новые и но­вые активационные т-ворота Nа-каналов, что придает току ионов Na* в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2. Фаза инверсии. После исчезновения ПП вход Nа+ в клетку про­должается (m - ворота Na-каналов еще открыты - h-2), поэтому число положительных ионов в клетке превосходит число отрицательных, заряд внутри клетки становится положительным, сна­ружи - отрицательным. Процесс перезарядки мембраны представ­ляет собой 2-ю фазу ПД - фазу инверсии (см. рис. 3.3, в, 2). Теперь электрический градиент препятствует входу Na+ внутрь клетки (положительные заряды отталкиваются друг от друга), прово­димость Na* снижается. Тем не менее некоторый период (доли миллисекунды) ионы Na + продолжают входить в клетку, об этом свидетельствует продолжающееся нарастание ПД. Это означает, что концентрационный градиент, обеспечивающий движение ионов Ка + в клетку, сильнее электрического, препят­ствующего входу ионов Nа* в клетку. Во время деполяризации мембраны увеличивается проницаемость ее и для ионов Са 2+ , они также идут в клетку, но в нервных клетках роль ионов Са 2+ в развитии ПД мала. Таким образом, вся восходящая часть пика ПД обеспечивается в основном входом ионов Nа* в клетку.

Примерно через 0,5-1 мс после начала деполяризации рост ПД прекращается вследствие закрытия ворот Ка-каналов (Ь-3) и открытия ворот К-каналов (в, 2), т.е. увеличения проницаемости для ионов К + . Поскольку ионы К + находятся преимущественно внутри клетки, они, согласно концентрационному градиенту, быстро выходят из клетки, вследствие чего в клетке уменьшается число положительно заряженных ионов. Заряд клетки начинает возвращаться к исходному уровню. В фазу инверсии выходу ио­нов К* из клетки способствует также электрический градиент. Ионы К* выталкиваются положительным зарядом из клетки ипритягиваются отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки - до конца фазы инверсии (см. рис. 3.3, а - пунк­тирная линия), когда начинается следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляе­мым каналам, ворота которых открыты, но и по неуправляемым каналам утечки.

Амплитуда ПД складывается из величины ПП (мембранный потенциал покоящейся клетки) и величины фазы инверсии - око­ло 20 мв. Если мембранный потенциал в состоянии покоя клетки мал, то амплитуда ПД этой клетки будет небольшой.

3. Фаза реполяризации. В этой фазе проницаемость клеточной мембраны для ионов К + все еще высока, ионы К + продолжают быстро выходить из клетки согласно концентрационному гради­енту. Клетка снова внутри имеет отрицательный заряд, а снару­жи - положительный (см. рис. 3.3, а, 3), поэтому электрический градиент препятствует выходу К* из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено зна­чительно сильнее действия электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом иона К + из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для ионов К + и замедлением выхода их из клетки вследствие закрытия ворот К-каналов. Другая причина замедления тока ионов К + связана с возрастанием положитель­ного потенциала наружной поверхности клетки и формировани­ем противоположно направленного электрического градиента.

Главную роль в возникновении ПД играет ион Na*, входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене иона Nа + в среде на другой ион, например холин, или в случае блокировки Na-каналов тетродотоксином, ПД в нервной клетке не возникает. Однако проницаемость мембраны для иона К + то­же играет важную роль. Если повышение проницаемости для иона К + предотвратить тетраэтиламмонием, то мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналы утечки ионов), через которые К + будет выходить из клетки.

Роль ионов Са 2+ в возникновении ПД в нервных клетках не­значительна, в некоторых нейронах она существенна, например в дендритах клеток Пуркинье мозжечка.

В. Следовые явления в процессе возбуждения клетки. Эти явле­ния выражаются в гиперполяризации или частичной деполяризации клетки после возвращения мембранного потенциала к исход­ной величине (рис. 3.4).

Следовая гиперполяризация клеточной мембраны обычно яв­ляется следствием еще сохраняющейся повышенной проницае­мости клеточной мембраны для К + . Ворота К-каналов еще не полностью закрыты, поэтому К + продолжает выходить из клет­ки согласно концентрационному градиенту, что и ведет к гипер­поляризации клеточной мембраны. Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и ка­лиевые ворота возвращаются в исходное состояние), а мембран­ный потенциал становится таким же, каким он был до возбуж­дения клетки. Ионные помпы непосредственно за фазы потенциа­ла действия не отвечают, ионы перемещаются с огромной скоростью согласно концентрационному и частично электриче­скому градиентам.

Следовая деполяризация также характерна для нейронов. Ме­ханизм ее изучен недостаточно. Возможно, она обусловлена крат­ковременным повышением проницаемости клеточной мембраны для Ка* и входом его в клетку согласно концентрационному и электрическому градиентам.

Наиболее растпространенный метод изучения функций ионных каналов - метод фиксации напряжения (voltage-clamp). Мем­бранный потенциал с помощью подачи электрического напря­жения изменяют и фиксируют на определенном уровне, затем клеточную мембрану градуально деполяризуют, что ведет к от­крытию ионных каналов и возникновению ионного тока, кото­рый мог бы деполяризовать клетку. При этом пропускают элек­трический ток, равный по величине, но противоположный по знаку ионному току, поэтому трансмембранная разность потен­циалов не изменяется. Это позволяет изучить величину ионного тока через мембрану. Применение различных блокаторов ион­ных каналов дает дополнительную возможность более глубоко изучить свойства каналов.

Количественное соотношение между ионными токами по отдельным каналам в покоящейся клетке и во время ПД и их кинетику можно выяснить с помощью метода локальной фик­сации потенциала (patch-clamp). К мембране подводят микро­электрод - присоску (внутри его создается разрежение) и, если на этом участке оказывается канал, исследуют ионный ток че­рез него. В остальном методика подобна предыдущей. И в этом случае применяют специфические блокаторы каналов. В част­ности, при подаче на мембрану фиксированного деполяри­зующего потенциала было установлено, что через Ка-каналы может проходить и ион К + , но его ток в 10-12 раз меньше, а через К-каналы может проходить ион Ма + , его ток в 100 раз меньше, чем ток ионов К + .

Запас ионов в клетке, обеспечивающий возникновение возбу­ждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменя­ются. Клетка может возбуждаться до 5 * 10 5 раз без подзарядки, т.е. без работы Ма/К-насоса. Число импульсов, которое генери­рует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем боль­ше запас ионов, тем больше импульсов оно может генерировать (от нескольких сотен до миллиона) без участия Nа/К-насоса. Однако в тонких волокнах на возникновение одного ПД расходуется около 1% концентрационных градиентов ионов Nа + и К*. Если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться. В реальной действительности Nа/К-насос постоянно переносит ионы Nа + из клетки, а ионы К + воз­вращает в клетку, в результате чего поддерживается концентра­ционный градиент Nа + и К + за счет непосредственного расхода энергии, источником которой является АТФ. Имеются данные, что увеличение внутриклеточной концентрации Nа + сопровож­дается повышением интенсивности работы Nа/К-насоса. Это может быть связано исключительно с тем, что для переносчика становится доступно большее количество внутриклеточных ио­нов Na + .

»: Потенциал покоя - это важное явление в жизни всех клеток организма, и важно знать, как он формируется. Однако это сложный динамический процесс, трудный для восприятия целиком, особенно для студентов младших курсов (биологических, медицинских и психологических специальностей) и неподготовленных читателей. Впрочем, при рассмотрении по пунктам, вполне возможно понять его основные детали и этапы. В работе вводится понятие потенциала покоя и выделяются основные этапы его формирования с использованием образных метафор, помогающих понять и запомнить молекулярные механизмы формирования потенциала покоя.

Мембранные транспортные структуры - натрий-калиевые насосы - создают предпосылки для возникновения потенциала покоя. Предпосылки эти - разность в концентрации ионов на внутренней и наружной сторонах клеточной мембраны. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка ионов калия (K +) выровнять свою концентрацию по обе стороны мембраны приводит к его утечке из клетки и потере вместе с ними положительных электрических зарядов, за счёт чего значительно усиливается общий отрицательный заряд внутренней поверхности клетки. Эта «калиевая» отрицательность составляет бóльшую часть потенциала покоя (−60 мВ в среднем), а меньшую его часть (−10 мВ) составляет «обменная» отрицательность, вызванная электрогенностью самого ионного насоса-обменника.

Давайте разбираться подробнее.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?

На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка - нейрон. Главное, что лежит в основе работы нейрона - это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя .

Определение понятия «потенциал покоя»

В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал - мембранный потенциал покоя .

Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.

В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.

Ноздрачёв А.Д. и др. Начала физиологии .

Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e ), полный электрический заряд любого тела можно представить как q = ±N×e , где N - целое число.

Потенциал покоя - это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.

Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде - это ионные токи .

Итак, изнутри клетка в покое заряжена отрицательно, а снаружи - положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K +), а внутри - отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K +).

Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они - отрицательные.

Термин «отрицательность», который мы будем применять для характеристики электрического потенциала внутри клетки, пригодится нам для простоты объяснения изменений уровня потенциала покоя. В этом термине ценно то, что интуитивно понятно следующее: чем больше отрицательность внутри клетки - тем ниже в отрицательную сторону от нуля смещён потенциал, а чем меньше отрицательность - тем ближе отрицательный потенциал к нулю. Это намного проще понять, чем каждый раз разбираться в том, что же именно означает выражение «потенциал возрастает» - возрастание по абсолютному значению (или «по модулю») будет означать смещение потенциала покоя вниз от нуля, а просто «возрастание» - смещение потенциала вверх к нулю. Термин «отрицательность» не создаёт подобных проблем неоднозначности понимания.

Сущность формирования потенциала покоя

Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.

Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!

Так куда же деваются из клетки положительно заряженные частицы? Напомню, что это покинувшие клетку и скопившиеся снаружи ионы натрия - Na + - и калия - K + .

Главный секрет появления отрицательности внутри клетки

Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:

  1. вначале она обменивает «свой» натрий на «чужой» калий (да-да, одни положительные ионы на другие, такие же положительные);
  2. потом из неё происходит утечка этих «наменянных» положительных ионов калия, вместе с которыми из клетки утекают положительные заряды.

Эти два процесса нам и надо объяснить.

Первый этап создания внутренней отрицательности: обмен Na + на K +

В мембране нервной клетки постоянно работают белковые насосы-обменники (аденозинтрифосфатазы, или Na + /K + -АТФазы), встроенные в мембрану. Они меняют «собственный» натрий клетки на наружный «чужой» калий.

Но ведь при обмене одного положительного заряда (Na +) на другой такой же положительный заряд (K +) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 - горький, 0,05–0,1 - горько-солёный, а начиная с 0,2 и выше - сложный вкус, состоящий из солёного, горького и кислого .

Важно здесь то, что обмен натрия на калий - неравный . За каждые отданные клеткой три иона натрия она получает всего два иона калия . Это приводит к потере одного положительного заряда при каждом акте ионного обмена. Так что уже на этом этапе за счёт неравноценного обмена клетка теряет больше «плюсов», чем получает взамен. В электрическом выражении это составляет примерно −10 мВ отрицательности внутри клетки. (Но помните, что нам надо ещё найти объяснение для оставшихся −60 мВ!)

Чтобы легче было запомнить работу насосов-обменников, образно можно выразиться так: «Клетка любит калий!» Поэтому клетка и затаскивает калий к себе, несмотря на то, что его и так в ней полно. И поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. И поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. (Вот что делает любовь, пусть она даже и не настоящая!)

Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной - поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток .

Образно говоря, можно выразиться так: Создавая потенциал покоя, клетка «заряжается любовью». Это любовь к двум вещам:

  1. любовь клетки к калию (поэтому клетка насильно затаскивает его к себе);
  2. любовь калия к свободе (поэтому калий покидает захватившую его клетку).

Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:

  1. Дефицит натрия (Na +) в клетке.
  2. Избыток калия (K +) в клетке.
  3. Появление на мембране слабого электрического потенциала (−10 мВ).

Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Второй этап создания отрицательности: утечка ионов K + из клетки

Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?

Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь : растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).

В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой - потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки . И это у него получается!

Ионы калия K + покидают клетку под действием химического градиента их концентрации по разные стороны мембраны (мембрана значительно более проницаема для K + , чем для Na +) и уносят с собой положительные заряды. Из-за этого внутри клетки нарастает отрицательность.

Тут ещё важно понять то, что ионы натрия и калия как бы «не замечают» друг друга, они реагируют только «на самих себя». Т.е. натрий реагирует на концентрацию натрия же, но «не обращает внимания» на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и «не замечает» натрий. Получается, что для понимания поведения ионов надо по отдельности рассматривать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию по калию внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это, бывает, делается в учебниках.

По закону выравнивания химических концентраций, который действует в растворах, натрий «хочет» снаружи войти в клетку; туда же его влечёт и электрическая сила (как мы помним, цитоплазма заряжена отрицательно). Хотеть-то он хочет, но не может, так как мембрана в обычном состоянии плохо его пропускает. Натриевые ионные каналы, имеющиеся в мембране, в норме закрыты. Если все же его заходит немножко, то клетка сразу же обменивает его на наружный калий с помощью своих натрий-калиевых насосов-обменников. Получается, что ионы натрия проходят через клетку как бы транзитом и не задерживаются в ней. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Он выходит наружу через особые каналы в мембране - «калиевые каналы утечки», которые в норме открыты и выпускают калий .

К + -каналы утечки постоянно открыты при нормальных значениях мембранного потенциала покоя и проявляют взрывы активности при сдвигах мембранного потенциала, которые длятся несколько минут и наблюдаются при всех значениях потенциала. Усиление К + -токов утечки ведёт к гиперполяризации мембраны, тогда как их подавление - к деполяризации. ...Однако, существование канального механизма, ответственного за токи утечки, долгое время оставалось под вопросом. Только сейчас стало ясно, что калиевая утечка - это ток через специальные калиевые каналы.

Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) .

От химического - к электрическому

А теперь - ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов .

Калий (K +) положительно заряжен, и поэтому он, когда выходит из клетки, выносит из неё не только самого себя, но и положительный заряд. За ним изнутри клетки к мембране тянутся «минусы» - отрицательные заряды. Но они не могут просочиться через мембрану - в отличие от ионов калия - т.к. для них нет подходящих ионных каналов, и мембрана их не пропускает. Помните про оставшиеся необъяснёнными нами −60 мВ отрицательности? Это и есть та самая часть мембранного потенциала покоя, которую создаёт утечка ионов калия из клетки! И это - большая часть потенциала покоя.

Для этой составной части потенциала покоя есть даже специальное название - концентрационный потенциал . Концентрационный потенциал - это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия .

Ну, а теперь немного физики, химии и математики для любителей точности.

Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста , по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал E K:

где Е к - равновесный потенциал, R - газовая постоянная, Т - абсолютная температура, F - постоянная Фарадея, К + внеш и K + внутр - концентрации ионов К + снаружи и внутри клетки, соответственно. По формуле видно, что для расчёта потенциала между собой сравниваются концентрации ионов одного вида - K + .

Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей Р K: PNa :P Cl = 1: 0,04: 0,45 .

Заключение

Итак, поте нциал покоя состоит из двух частей:

  1. −10 мВ , которые получаются от «несимметричной» работы мембранного насоса-обменника (ведь он больше выкачивает из клетки положительных зарядов (Na +), чем закачивает обратно с калием).
  2. Вторая часть - это всё время утекающий из клетки калий, уносящий положительные заряды. Его вклад - основной: −60 мВ . В сумме это и дает искомые −70 мВ.

Что интересно, калий перестанет выходить из клетки (точнее, его вход и выход уравниваются) только при уровне отрицательности клетки −90 мВ. В этом случае сравняются химические и электрические силы, проталкивающие калий через мембрану, но направляющие его в противоположные стороны. Но этому мешает постоянно подтекающий в клетку натрий, который несёт с собой положительные заряды и уменьшает отрицательность, за которую «борется» калий. И в итоге в клетке поддерживается равновесное состояние на уровне −70 мВ.

Вот теперь мембранный потенциал покоя окончательно сформирован.

Схема работы Na + /K + -АТФазы наглядно иллюстрирует «несимметричный» обмен Na + на K + : выкачивание избыточного «плюса» в каждом цикле работы фермента приводит к отрицательному заряжению внутренней поверхности мембраны. Чего в этом ролике не сказано, так это того, что АТФаза ответственна за менее чем 20% потенциала покоя (−10 мВ): оставшаяся «отрицательность» (−60 мВ) появляется за счет выхода из клетки через «калиевые каналы утечки» ионов K + , стремящихся выровнять свою концентрацию внутри клетки и вне нее.

Литература

  1. Jacqueline Fischer-Lougheed, Jian-Hui Liu, Estelle Espinos, David Mordasini, Charles R. Bader, et. al.. (2001). Human Myoblast Fusion Requires Expression of Functional Inward Rectifier Kir2.1 Channels . J Cell Biol . 153 , 677-686;
  2. Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. (1998). Role of an inward rectifier K + current and of hyperpolarization in human myoblast fusion . J. Physiol. 510 , 467–476;
  3. Sarah Sundelacruz, Michael Levin, David L. Kaplan. (2008). Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells . PLoS ONE . 3 , e3737;
  4. Павловская М.В. и Мамыкин А.И. Электростатика. Диэлектрики и проводники в электрическом поле. Постоянный ток / Электронное пособие по общему курсу физики. СПб: Санкт-Петербургский государственный электротехнический университет;
  5. Ноздрачёв А.Д., Баженов Ю.И., Баранникова И.А., Батуев А.С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А.Д. Ноздрачёва. СПб: Лань, 2001. - 1088 с.;
  6. Макаров А.М. и Лунева Л.А. Основы электромагнетизма / Физика в техническом университете. Т. 3;
  7. Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология). Казань: Арт-кафе, 2010. - 271 с.;
  8. Родина Т.Г. Сенсорный анализ продовольственных товаров. Учебник для студентов вузов. М.: Академия, 2004. - 208 с.;
  9. Кольман Я. и Рем К.-Г. Наглядная биохимия. М.: Мир, 2004. - 469 с.;
  10. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000. - 277 с..