Недостаток подвижности кораллы компенсируют долголетием. Это показали последние исследования, обнаружившие, что некоторые колонии этих существ возникли еще на заре человеческой цивилизации - более 4000 лет назад.

Коралловые полипы – настоящий феномен развития жизни на Земле. Их видимая часть образована преимущественно скелетом, общим для целой колонии биогерм, то есть известковых холмов на дне морей и озёр, образованных прикреплёнными организмами. Сами полипы прячутся в его складках, выставляя наружу только крохотные щупальца, которыми захватывают проплывающий планктон.

Несмотря на ошибочность термина, именно скелет колонии принято называть «кораллом», а по нему и скопление из сотен и тысяч симбиотов прозвали «коралловым рифом». Именно рост рифов лег в основу исследований ученых Техасского университета.

Для изучения были взяты два вида кораллов: золотистая Джерардия и черный (королевский) Леопатис. Сделав анализ их структуры, океанологи установили, что именно медленный рост является залогом долголетия коралловых образований. Чтобы измерить точный возраст Джерардии и Леопатиса, ученые применили радиоактивный анализ.

Для строительства своего убежища биогермы используют карбонат кальция. Его они умеют вырабатывать самостоятельно. После начала испытаний атомного оружия в 1950-ых годах, когда в мире появился «атомный углерод» - радиоактивный изотоп, проникший во все без исключения объекты в мире, строительный материал кораллов тоже приобрел толику радиации. Исследователи определили наличие подобного вещества в кораллах и установили, что изотопы присутствуют только в самом верхнем слое, имеющем толщину около 10 микрон.

Получается, что за прошедшие десятилетия коралловые полипы выросли только на такую высоту. Рассчитав среднегодовую скорость роста, ученые узнали и возраст каждого из образцов. Оказалось, что Джерардия живет уже более 2700 лет, а Леопатис еще больше – он разменял пятое тысячелетие. Это, конечно же, не срок жизни отдельно взятого полипа, а возраст кораллового остова.

Полученные результаты дали возможность узнать немного больше не только о процессе формирования коралловых рифов. Бренден Роарк, один из участников исследования считает, что, иследовав состав кораллов, можно получить более интересную информацию. Усовершенствовав системы анализа, ученые рассчитывают найти данные о крупных климатических изменениях на Земле, ведь они могли найти отражение в структуре образующего кораллы карбоната кальция.

Теперь, когда стал известен период, за который кораллы достигают размеров, подобных современным (высота Джерардии более пяти метров), техасские ученые обратились к мировому сообществу с просьбой объявить мораторий на добычу натуральных кораллов. «За время жизни одного поколения добыча кораллов многократно превосходит естественное восполнение, - говорит Роарк. - Мы ничего не знаем о том, как формируются колонии полипов, какими способностями к регенерации они обладают. Мы неоднократно находили очень молодые и маленькие коралловые колонии, так что долговременные мораторий может дать им шанс на выживание».

Содержание статьи

КОРАЛЛЫ, морские колониальные кишечнополостные, главным образом из класса коралловых полипов, частично из класса гидроидных (гидрокораллы), отличающиеся способностью к образованию мощного – обычно известкового (из карбоната кальция), реже рогового – скелета, который сохраняется после смерти животного и способствует формированию рифов, атоллов и островов. Наиболее известны и важны с экологической точки зрения т.н. мадрепоровые (каменистые) кораллы, поскольку именно их рост приводит к образованию коралловых рифов и островов. Встречаются они почти исключительно в тропических и субтропических водах с температурой не ниже 21° С и на глубине не более 27 м. Основные места их распространения – Карибское море (Флорида, Багамские острова, Вест-Индия) и Индо-Тихоокеанская область, особенно зона к северо-востоку от Австралии (Коралловое море).



Полипы.

Кораллами обычно называют только скелет колонии, оставшийся после гибели множества мелких полипов. Как правило, они занимают чашевидные углубления, заметные на его поверхности. Форма этих полипов столбчатая, в большинстве случаев с диском на вершине, от которого отходят венчики щупалец. Полипы неподвижно закреплены на общем для всей колонии скелете и связаны между собой покрывающей его живой мембраной, а иногда и пронизывающими известняк трубками. Скелет секретируется наружным эпителием полипов, причем главным образом их основанием (подошвой), поэтому живые особи остаются на поверхности кораллового сооружения, а все оно непрерывно растет. Число участвующих в его образовании полипов также постоянно увеличивается путем их бесполого размножения (почкования). Кораллы размножаются и половым путем, образуя крошечные свободноплавающие личинки, которые в конечном итоге оседают на дно и дают начало новым колониям. Обычно днем полипы сжимаются, а ночью вытягиваются и расправляют щупальца, с помощью которых ловят различных мелких животных.

Кроме мадрепоровых кораллов, относящихся к подклассу шестилучевых коралловых полипов, заслуживают внимания и некоторые другие их группы. Т.н. жгучий коралл из класса гидроидных образует густые сплетения известковых ветвей, пронизанных миниатюрными порами. Красный, или благородный, коралл (Corallium ), коралл-органчик (Tubipora ) и ярко-голубой солнечный коралл (Heliopora ) относятся к подклассу восьмилучевых кораллов и отличаются от мадрепоровых присутствием у полипа восьми перистых щупалец, а не кратного шести их числа.





1.Наука, изучающая закономерности наследования признаков 2.Наука, изучающая химическую организацию живого 3.Наука, изучающая взаимоотношения живых

организмов между собой и с неживой окружающей природой 4.Наука, изучающая строение и функции целых клеток и их отдельных компонентов 5.Особый способ существования белковых тел 6.Самый низкий уровень организации живой материи 7.Высший уровень организации живой материи 8.Уровень организации живой материи, на котором существуют бактерии,амебы,инфузории и другие простейшие 9.Уровень организации живой материи, объединяющий популяции разных видов живых организмов (например,зеленые растения,зайцы и лисицы) 10.Уровень организации, изучаемый в курсе анатомии человека 11.Уровень организации, включающий в себя особей только одного вида)например,прайды львов) 12.Способность поддерживать постоянство внутренней среды, независимой то изменения природных факторов 13.Общее свойство живых систем, объединяющее процессы пищеварения,дыхания и выделения у человека и животных 14.Общее свойство живых систем,обеспечивающее непрерывность жизни 15.Общее свойство живых систем,выражающееся в изменении формы,строения и размеров тела

1.Наука, изучающая закономерности

наследования признаков

2.Наука, изучающая химическую
организацию живого

3.Самый низкий уровень организации живой материи

4.Способность
поддерживать постоянство внутренней среды, независимо

От
изменения природных факторов

5.Общее свойство живых систем, объединяющее процессы
пищеварения, дыхания и выделения у человека и животных

У кого из животных есть мантия?

1) у ракообразных2) у моллюсков3) у паукообразных4) у червей.
У каких животных личинка проходит стадию ку¬колки?
1) у ракообразных2) у паукообразных3) у бабочек4) у червей
Для кого характерно и бесполое, и половое размно¬жение?
1) для инфузории-туфельки2) для дождевого червя3) для речного рака4) для черного таракана.
У ланцетника и других бесчерепных животных скелет1)отсутствует2)наружный3)внутренний хрящевой или костный4)в течение всей жизни представлен хордой.
С помощью боковой линии рыба воспринимает1)запах предметов 2)окраску предметов3)звуковые сигналы 4)направление и силу течения воды.

Членистоногих, у которых к грудному отделу тела прикрепляются три пары ног, относят к классу1)ракообразных 2)паукообразных3)насекомых 4)сосальщиков.
Кровеносная система в процессе исторического развития впервые появляется у 1)моллюсков 2)плоских червей3)кольчатых червей 4)кишечнополостных.
У каких животных в процессе эволюции появляется второй круг кровообращения?1)хрящевых рыб 2)костных рыб 3)земноводных 4)пресмыкающихся.
Как называется наука, изучающая жи¬вотных?1) этология 3) зоология2) морфология 4) генетика

Кандидат геолого-минералогических наук Н. КЕЛЛЕР, старший научный сотрудник Института океанологии РАН.

Аппарат для подводных исследований "Мир-1".

Океанское судно "Витязь".

Научно-исследовательское судно "Академик Мстислав Келдыш".

Трал "Сигсби" готовят к спуску.

На камнях, принесенных тралом с подводной горы Ормонд (на выходе из Гибралтарского пролива), обитают очень интересные животные. Биологи за работой.

Подводный аппарат "Мир-2" сделал этот снимок на глубине 800 метров.

Так выглядит дно океана на глубине 1500 метров. Снимок сделан подводным аппаратом "Пайсис".

Морской еж. Обитает на глубине около 3000 метров.

В 1982 году я взошла на борт океанского судна. Это был "Витязь-2", только что построенный корабль нового поколения, на котором все было оборудовано для научно-исследовательских работ. Специалистам по обитателям дна из лаборатории бентоса Института океанологии АН СССР предстояло собрать донных животных, обитающих на Срединно-Атлантическом подводном хребте. Выходили мы в плавание из Новороссийска, порта приписки "Витязя".

Направление исследований рейса было биологическое, однако с нами шли и геологи. Всеобщее внимание привлекали включенные в состав экспедиции два геолога-немца. Один из них, Гюнтер Бублитц, был заместителем директора Института мореведения в Ростоке. Другой, Петер, работал в Геологическом институте во Фрайбурге. В рейсе участвовали также два физика из Физического института Академии наук.

Начальником нашего отряда был огромный, необыкновенно колоритный и артистичный Лев Москалев. Он преданно любил биологию, дотошно систематизируя самые разнообразные ее аспекты, был прирожденным систематиком и в науке и в жизни. Команда души в нем не чаяла, покатываясь от хохота от его шуток и отдавая должное его морскому опыту.

Все мы были кандидатами наук, все, кроме меня, уже не раз бывали в рейсах. Устроившись в каютах, мы пошли осматривать корабль. Внутри все было удобно для работы. Просторные светлые лабораторные помещения с огромными окнами, новые бинокулярные лупы, сита и "бочка Федикова" для отмывки проб, банки для образцов - все было на месте. На палубах стояли лебедки с промасленными, намотанными на огромные барабаны тросами. Лежало несколько дночерпателей, стоял салазочный трал. На баке (на носу корабля) находилась малая лебедка для работ с геологическими трубками. Очень заинтересовал нас подводный обитаемый аппарат "Пайсис" ("Pisces"), стоявший в особом помещении.

Обнаружилось, что после морской болезни, от которой я стала страдать в первые же часы плавания, самое неприятное в морском путешествии - адинамия. Провести три месяца, почти не двигаясь, тяжело. Начинаешь на собственной шкуре ощущать, что должен испытывать арестант, сидя месяцами в тесной камере.

Работа в океане не обманула моих ожиданий. Нигде еще мне не было так захватывающе интересно. Особенно сложны и волнующи, как приключение, были траления. Мы заранее готовились к этому событию. Во время "холостого хода" к месту работы мы учились искусству вязать морские узлы, сшивали и чинили траловую сеть. Это было не так-то просто: несколько огромных сачков с ячеями разного диаметра, ловко вставляемых один в другой, занимали всю ширину палубы. Мужчины проверяли надежность тросов, крепко сплетали сомнительные, ослабленные участки.

Но вот судно приходит на запланированный полигон. Начинается долгожданный рабочий момент. Корма нашего корабля оканчивается слипом - широким скатом в море, как на больших рыболовецких судах. Рядом стоит большая траловая лебедка. Снимают ограждение над слипом. Начинают спускать специальный бентосный трал "Сигсби". Траление - это искусство, особенно на подводных горах, где острые скалы могут порвать сети. Тралящие постоянно бегают на эхолот, следят за изменениями рельефа дна. Большим опытом и умением должен обладать и капитан судна, непрестанно корректирующий ход корабля, подруливающий так, чтобы трал мог сесть на мягкий грунт. Вытравлено три километра троса. Нужны большое самообладание и внимание тралящего, способного уловить момент касания тралом дна на трехкилометровой глубине. Иначе трал может прийти пустым, и будут напрасно потрачены часы драгоценного времени. Если троса вытравишь слишком много, он может запутаться или зацепиться за скалы. Пришла пора поднимать трал наверх. Всем, кроме тралящего, приказано уйти с палубы и спрятаться. Если тяжелый трал оборвется, что случалось не раз, стальной, внезапно освободившийся от колоссального груза трос может поранить человека. Наконец трал поднят. Его содержимое вытряхнуто на палубу. К нему позволено подходить только нам, биологам, иначе матросы да и сотрудники могут растащить попавшую в трал красивую фауну на сувениры. На палубе целые кучи грунта, ракушняка, камней и гальки: копошатся еще живые обитатели глубин, так бесцеремонно поднятые на поверхность. Ползают крупные морские ежи разных видов - черные, с длинными иглами и более мелкие, цветные, с красивыми пластинками панциря. В кавернах на камнях притаились офиуры с тонкими извивающимися змеевидными лучами. Шевелят "ножками" морские звезды. Плотно захлопнули свои створки разнообразные двустворчатые моллюски. Медленно шевелятся на солнце брюхоногие и голожаберные моллюски. Стараются спрятаться в щели черви разных видов. И - о радость! Масса мелких белых известковых рожков с полипом внутри. Это - предмет моих изысканий, одиночные глубоководные кораллы. Видимо, трал захватил целый "лужок" этих сидящих на склоне подводной горы животных, которые в состоянии "охоты", с выпущенными из чашечек щупальцами, похожи на причудливые цветы.

Ихтиологи запускают свой, "промысловый" трал. Для лова глубоководных рыб в экспедицию приглашен специалист - тралмейстер.

Геологи опускают геологические трубки и дночерпатели. Поверхность добытого ими осадка также отдается нам, биологам, на осмотр: вдруг и там попались какие-то звери? Так что работы у нас много, сидим, разбираем фауну, не разгибаясь. И это прекрасно, так как убийственнее всего на корабле - тягучие дни безделья.

Так, спуская то тралы, то черпаки, мы отработали огромную подводную гору Грейт Метеор на Срединно-Атлантическом хребте, от ее подножия, находящегося на глубине трех километров, до подводной вершины. Нам удалось выяснить сравнительные особенности фауны, живущей на разных подводных горах и на разных глубинах в центральной части океана. С помощью подводного обитаемого аппарата "Пайсис", опускающегося на глубины до двух километров, наши коллеги могли воочию наблюдать за образом жизни и поведением многих донных животных, снимая все это на фотопленку, затем мы ее просматривали, находя интересующие каждого объекты. Все были увлечены и работали не покладая рук.

Актинии, как и кораллы, относятся к кишечнополостным животным. Отличает их в основном отсутствие скелета. Когда актинии сидят неподвижно на скалах в позе "охоты", расправив вокруг рта свои многочисленные щупальца, они очень похожи на подводные цветы, каковыми их и считали некоторые ученые начала XVIII века. Во время отлива щупальца сжимаются, и актинии превращаются в маленькие слизистые комочки, в почти неразличимые наросты на скалах. Но все это только видимость. Актинии обладают способностью на большом для них расстоянии чувствовать приближение врага, например некоторых видов поедающих их голожаберных моллюсков. Тогда они принимают злобные оборонительные позы, угрожающе поднимая вертикально вверх извивающиеся истончившиеся щупальца. Они больно стрекаются и хищно заглатывают любую подвернувшуюся им добычу. Могут оторваться от субстрата, и тогда волна отнесет их на безопасное расстояние. А могут медленно передвигаться по твердому грунту. Они сражаются при помощи щупалец и агрессивно отстаивают свое место от актиний других видов. Эти животные способны регенерировать, восстанавливая все свое тело, возникая, как птица Феникс из пепла, если оставить неповрежденной всего 1/6 ее часть. Все это оказалось для меня, бывшего палеонтолога, неожиданным и необыкновенно увлекательным. Изучение поведения и образа жизни актиний помогло мне живо представить особенности поведения и жизни глубоководных одиночных кораллов, которые мы не можем непосредственно наблюдать в лабораторных условиях.

Капитаном нового "Витязя" был Николай Апехтин, один из самых образованных и симпатичных капитанов, плававших на наших научно-исследовательских судах. Николай владел двумя европейскими языками, был начитан и любознателен; держался с большим достоинством, заботясь о людях, а главное - его отличал высочайший профессионализм, и работать с ним было одно удовольствие.

Второй мой рейс состоялся только через три года. Я отправилась под начальством гидролога Виталия Ивановича Войтова на том же "Витязе-2" и с тем же капитаном Колей Апехтиным, но уже возглавляла свою маленькую группу.

Мне вменили в обязанность на каждой станции брать пробы фитопланктона и затем фильтровать его. Помимо того я добилась обещания, что в конце рейса специально для меня у берегов Африки будут сделаны несколько остановок для взятия образцов со дна.

Плавание с Виталием Ивановичем Войтовым запомнилось как одно из самых приятных и спокойных. Войтов, большой, благожелательный и неторопливый человек, не нервничал в экспедиции и никого не торопил. Однако работа под его начальством шла споро, своим чередом.

Примерно через месяц после отплытия из Новороссийска пересекли Атлантический океан. Временны" е пояса менялись так быстро, что мы едва успевали переставлять свои часы. Океан был непривычно тих, и мы мирно и спокойно прибыли в район работ. Он находился почти в пределах печально знаменитого Бермудского треугольника, близ того его угла, где расположено Саргассово море. Бермудский треугольник - действительно место совершенно особое. Здесь зарождаются бури и ураганы. Поэтому любого, а в особенности чувствительного к атмосферным колебаниям человека, не оставляет тревожное гнетущее чувство, подобное тому, которое испытываешь перед грозой. Но, к счастью, и в этом малоприятном районе море было абсолютно спокойное, хотя вид раскаленного темного Солнца, светившего сквозь сизую прозрачную дымку, казался зловещим.

На одном из научных коллоквиумов гидрофизики сообщили о существовании в Саргассовом море рингов - небольших кольцевых водоворотов, возникающих в результате подъема наверх фонтанчиков холодных придонных вод, несущих в верхние слои водных масс нитраты, фосфаты и всякие другие полезные для жизни фитопланктона и водорослей органические вещества. Решили проверить, не влияет ли существование в рингах беспозвоночных животных на их количество и размер. Моя коллега - Наташа Лучина, изучавшая водоросли, вылавливала сачком для гербария разные виды саргассов. А я, внимательно рассматривая поверхности их стеблей, обнаружила на них массу червей полихет, сидящих в прозрачных слизистых чехликах-домиках, крохотных брюхоногих, двустворок и юрких голожаберных моллюсков с их разноцветными папиллами. Беспозвоночные "зверики", как маленькие Кон-Тики, плавали на своих лодочках-сар гассах, и течения разносили их по всему океану. Оказалось, что немецкие ученые еще в конце XIX века ставили опыты, бросая в Саргассово море запечатанные бутылки, и наглядно показали, как раскручивались там течения, разнося бутылки неожиданно далеко - до берегов Европы и Южной Америки. Такие опыты будят воображение. Я принялась взвешивать животных, собранных в пределах рингов и вне их, сравнивать количество, размер и состав, чертить графики. Получились любопытные результаты. Действительно, в пределах рингов жизнь цвела пышнее. Зверей было больше, они были крупнее и разнообразнее. Вывод оказался моим маленьким открытием.

Рейс подходил к концу. Мы миновали Канарские острова и приблизились к берегам Африки. Наконец настала неделя, выделенная мне для дночерпательных работ в районе Канарского апвеллинга.

Что же такое апвеллинг? Как эффект вращения Земли возникают силы Кориолиса. Под их воздействием на поверхности океана в тропической зоне образуются разнонаправленные круговороты поверхностных водных масс. При этом у восточных берегов всех океанов наблюдается подъем глубинных вод в верхние слои гидросферы. Это и есть апвеллинги. Ими с океанических глубин выносятся, как и в рингах, только в гораздо больших масштабах, питательные вещества, на основе которых бурно развивается фитопланктон, служащий в свою очередь пищей зоопланктону, а последний обильно питает обитателей дна. При этом пищи может быть так много, что всю ее невозможно съесть, и в результате получаются местные заморы, зоны загнивания донной фауны, мигрирующие в зависимости от усиления или ослабления апвеллинга. Кораллы не питаются фитопланктоном. Они не переносят его обилия, так как он мешает им дышать. Эти животные поглощают кислород всей поверхностью тела, и их реснички не успевают очищать верхнюю околоротовую площадочку с щупальцами от большого количества посторонней взвеси в воде. В тех районах океана, где действуют мощные апвеллинги - Перуанский, Бенгельский, - кораллы вообще не обнаружены.

Мне помогли наладить черпак. Нашелся и человек из команды, умеющий ловко обращаться с этим орудием лова. Работать решили ночью. Светила огромная тропическая луна. Я в возбуждении работала как автомат, едва успевая отбирать пробы и сортировать непрестанно приходивший грунт, - работали мы на малых глубинах.

В следующий рейс я отправилась в 1987 году на том же "Витязе-2". Задачи рейса на этот раз были технические. Предстояло впервые опробовать знаменитые обитаемые подводные аппараты "Мир", сделанные в Финляндии по проектам, разработанным в нашем институте, и способные работать на глубинах до шести километров. В экспедиции нужен был и биолог, чтобы определять фауну, захваченную черпаками и драгами во время геологических работ, а также манипуляторами и сетками, которыми были оснащены "Миры". Начальником рейса назначен заведующий техническим сектором нашего института Вячеслав Ястребов.

На борту судна я узнала, что отряд магнитометрии возглавляет поэт Александр Городницкий, песни которого мы с упоением пели когда-то у костра в пустыне Бет-Пак-Дала. Шли с нами и геологи, изучавшие осадки в океане, - В. Шимкус и талантливый Ивор Оскарович Мурдмаа.

Выходили мы на "Витязе" на этот раз из Калининграда. Тишь и гладь стояли в проливах, по которым наш "Витязь" шел к океану. Мы прошли у самого берега мимо Киля и более мелких немецких городков и поселков, восхищаясь чистотой и ухоженностью домов, набережных, мимо садиков со стоящими в них трогательными гномиками, уточками и зайчиками. Но вот каналы пройдены. Впереди Северное море, на котором бушевал такой шторм, что лоцман отказался вести нас дальше. Однако в Лиссабоне, в гостинице, в номерах, оплаченных институтом, ждут две англичанки и немецкий ученый, приглашенные в наш рейс. И капитан Апехтин, которому и без лоцмана здесь знаком каждый подводный камень, решает сам вести корабль по расходившемуся морю. По небу стремительно несутся черные тучи с рваными светлыми краями. Темно, жутко и мрачно кругом. Ветер с визгливым свистом и воем проносится над нашим кораблем.

Но всему на свете приходит конец. В "узкостях"-проливах между Англией и французским берегом, вопреки опасениям капитана, становится намного тише. Еще более спокойной, почти штилевой оказалась погода в грозном Бискайском заливе. Как по озеру, дошли мы по нему до Лиссабона и после четырехдневной стоянки начали работы на подводных горах Тирренского моря, вблизи Корсики.

Геологи отработали черпаками три подводных поднятия: хребет Барони, горы Марсили и Маньяги, от подножия до вершин. Все три горы вулканического происхождения, имели крутые скалистые склоны и острые вершины. Надо было исхитриться и попасть черпаком точно в небольшие выемки, в которых накапливался осадок. Здесь настоящим волшебником, мастером высокого класса показал себя профессор М. В. Емельянов из Калининградского отделения нашего института. Он так ловко направлял черпаки, что почти все они приходили полными. Такая работа с черпаками, с моей точки зрения, намного превосходит возможности тралов для отлова донной фауны. Конечно, она требует большого умения и терпения. Во-первых, черпаки дают точную глубинную привязку. Во-вторых, надо признать, что трал безжалостно нарушает окружающую среду, вырывая на большом расстоянии все живое со дна, а черпак берет пробу прицельно из определенного участка. Однако черпаки не могут поймать крупных животных, и картина донного населения получается не совсем полной.

В результате выбора фауны из черпаков я получила картину распределения донных животных и, конечно, одиночных кораллов на подводных горах. Много интересного для понимания закономерностей распределения фауны в океане дало сравнение полученного материала с фауной, выловленной нами ранее на Срединно-Атлантическом хребте, в центре океана, где условия ее обитания сильно отличаются от жизни в прибрежной зоне. Таким образом, рейс оказался в научном отношении весьма интересным, а материалов набралось столько, словно работал целый биологический отряд.

Моя четвертая, и последняя, экспедиция проходила в следующем, 1988 году на судне "Академик Мстислав Келдыш", самом большом и комфортабельном из всего научно-исследовательского флота.

Начальником рейса был Ястребов. С нами опять шел Городницкий.

На этот раз мы отрабатывали уже знакомые подводные горы Тирренского моря, а также горы Ормонд и Геттисберг в Атлантическом океане, на выходе из Гибралтарского пролива. Но все внимание уделялось работам с помощью подводных аппаратов "Мир", спуск которых собирал на палубе все население корабля и становился поистине волнующим зрелищем. В глубины океана опускались три человека: командир подводного обитаемого аппарата, пилот и наблюдатель из "науки" с киноаппаратом. Помещение внутри очень тесное, люди размещались почти вплотную друг к другу. Задраивали вход. Затем с помощью большой траловой лебедки осторожно опускали на воду сферический аппарат, который тут же начинал раскачиваться даже при небольшой волне. Немедленно от борта судна к нему подходила надувная моторная лодка. С нее, изловчившись, длинным прыжком, как гимнаст, на верхнюю площадочку качающегося шара перескакивал человек в гидрокостюме для того, чтобы отцепить "Мир" от троса лебедки. Это были опасные манипуляции. Но в нашем рейсе все обошлось благополучно.

Под водой "Мир" мог проводить до 25 часов. Весь состав судна, и команда и "наука", с нетерпением ждал его возвращения, поминутно вглядываясь вдаль, в водную гладь. Наконец раздавался писк - позывные субмарины, и она всплывала на поверхность моря, иногда очень далеко от корабля, различимая ночью по светящемуся красному огоньку, своему опознавательному знаку. Корабль трогался в путь, чтобы как можно скорее поднять на палубу людей, которых сильно качало и вертело при болтании шара на поверхности. И вот дверь аппарата раздраивают, и на палубу вылезают, пошатываясь, усталые "подводники". А мы получаем долгожданные материалы - образцы пород, взятые манипулятором, животных, сидящих на них, осадок из сачка и зверей из осадка.

Благодаря "Мирам" нашим геологам впервые удалось взять в Тирренском море со склонов подводных гор послойно, снизу вверх по разрезу, образцы коренных пород с сидящими на них колониями современных и ископаемых кораллов. Манипуляторы "Миров" выколотили образцы и опустили их в специальную сетку таким образом, как это обычно делает геолог-стратиграф, работая на поверхности земли, и как на морских глубинах еще никому не удавалось. Последующее определение абсолютного возраста и видов этих кораллов позволило уже в Москве сделать интересные выводы о скорости поднятия Гибралтарского порога в течение геологического времени, об экологической обстановке, царившей в Средиземном море в далеком прошлом.

Много нового узнали мы и об образе жизни донных беспозвоночных, об их расположении по отношению к глубинным потокам, размещении на различных грунтах и на разных формах рельефа. Изучение морского дна с помощью "Миров" вскоре положило начало совершенно новой науке - подводному ландшафтоведению. Несколько лет спустя с помощью "Миров" начались поиски и изучение подводных гидротермальных источников и их специфического населения. Таким образом, работа с "Мирами" открыла совершенно новые перспективы и горизонты в науке. И я рада, что была свидетелем самых первых, самых захватывающих шагов в этом направлении.

Введение

Кораллы - это не красные или черные бусы и не снежнобелые колючие безделушки. Это морские животные, представители типа кишечнополостных, а бусы и украшения изготавливают из их скелетов. Кораллы являются одной из древнейших групп многоклеточных организмов - они существуют на Земле не менее 550 млн. лет. На протяжении всей своей истории кораллы принимали не-посредственное участие в формировании известковых органогенных построек, прежде всего всем известных рифов.

О том, каково значение рифов, а следовательно, и кораллов, можно соста-вить представление из их даже самой общей характеристики.

Площадь, занятая в наше время коралловыми рифами, очень велика - по подсчетам разных исследователей она колеблется в пределах от 150 тысяч до первых миллионов квадратных километров. Это самая продуктивная зона Ми-рового океана - ежегодно в ней вылавливают во всем мире до 7 млн. т. рыбы, а также различных съедобных ракообразных (креветки, крабы, омары и др.), моллюсков (тридакны, устрицы и др.) и т.д. Бурение на рифовом шельфе Индо-Пацифики (Австралия, Индонезия, Полинезия) показало, что с рифами очень часто связаны промышленные залежи горючих полезных ископаемых - нефти и природного газа. Что же касается древних, ископаемых коралловых рифов, то с ними связано примерно 15 % всех нефтяных и газовых месторождений мира. Продуктивные рифовые массивы обнаружены и в нашей стране (Предуралье).

1. КОРАЛЛОВЫЕ РИФЫ

Риф - особая форма подводного рельефа, карбонатная конструкция на шельфовом мелководье, образованная выделяющими известь рифостроящими (иначе - герматипными) организмами, что в совокупности с комплексом физико-географических параметров и определяет специфичность рифовой экосистемы.

Различают две основные группы рифов - барьерные и атоллы.

Барьерные - это прослеживающиеся вдоль берегов на многие сотни и даже тысячи километров (например, Большой Барьерный риф вдоль северо-восточного побережья Австралии) рифовые гряды, которые отделяют прибрежную лагуну различной глубины от открытого моря.

Атолл - подводная гора увенчанная рифовой постройкой, имеющая в поперечнике округлую или эллиптическую форму. У берегов морей в зоне тропиков часто встречаются и мелкие одиночные рифы, не образующие барьеров.

Биоценоз кораллового рифа в систематическом отношении исключительно разнообразен и представлен многими сотнями видов растений и животных как продуцентами, так и консументами, образующими единую пищевую (трофическую) цепь. Это единая, самая активная и одновременно сложнейшая на Земле экосистема. В то же время она древнейшая из всех известных экосистем и самая устойчивая.

Кораллово-рифовая экосистема строго приурочена и приспособлена (адаптирована) к окружающей среде, к зоне тропиков, в которой не происходит существенных сезонных изменений. Например, разница между среднемесячными летней и зимней температурами здесь не должна превышать 3?. Вода должна быть чистая, что обусловливает необходимое для фотосинтеза количество света, нормально соленая (36‰), сильно подвижная, богатая кислородом. Отсюда ясно, что наиболее благоприятные области для существования герматипных кораллов, а следовательно, и рифообразования ограничены сравнительно небольшими глубинами - примерно до 50 м, но зона их процветания, как правило, не глубже 20-25 м.

Главными рифостроителями, формирующими основной карбонатный каркас рифа, являются разнообразные известковые водоросли - красные (родофиты) и зеленые (хлорофиты), которые иногда дают до 70 % всего карбонатного вещества. Выделение кальция и магния функционально связано с фотосинтезом, а следовательно, герматипность организмов не растительного происхождения определяется прежде всего их способностью к симбиозу с растениями, с водорослями, которые поселяются во внутреннем слое стенки кораллового полипа и употребляют в пищу азотистые остатки его продуктов питания. Посредством свойственного всем растениям фотосинтеза зооксантеллы выделяют кислород, усваиваемый кораллом, и содействуют образованию кальциевых солей, из которых коралловый полип строит свой скелет. Поэтому среди всех животных кораллам принадлежит главная роль в образовании рифов (до 30 % карбонатного вещества). В значительно меньшей степени герматипные моллюски (например, тридакны), фораминиферы, мшанки, губки, полихеты, иглокожие, у которых способность к симбиозу с водорослями выражена слабее.

2. КОРАЛЛЫ. ОСОБЕННОСТИ СТРОЕНИЯ И РАЗВИТИЯ

Все кишечнополостные (тип Coelenterata, иначе Cnidaria) - почти исключительно морские животные с лучистой симметрией тела, с одной внутренней полостью, которая открывается также одним отверстием. Стенка их тела состоит из наружного слоя (эктодермы) и внутреннего (энтодермы), между которыми находится слой бесструктурной так называемой мезоглеи. В эктодерме расположены стрекательные клетки (книдобласты), которые при необходимости защиты от хищников или, наоборот, при нападении на мельчайших рачков, инфузорий и др., служащих им пищей, сокращаются и выбрасывают нить с ядовитой жидкостью (отсюда происходит и второе название этого типа Cnidaria, т.е. стрекающие).

В составе кишечнополостных выделяются следующие три класса:

1. Гидроидные полипы (Hydrozoa; к ним относится наша пресноводная гидра). Одиночные и колониальные животные, отдельные особи которых могут иметь форму как полипа, так и медузы, обладающие псевдохитиновым или известковым скелетом. Известны с кембрия, а возможно, и из докембрия, существуют и ныне.

2. Сцифоидные (Scyphozoa). Это медузы с толстым студенистым слоем, отпечатки которых в горных породах встречаются также начиная с кембрия, а возможно, и с позднего докембрия.

3. Коралловые полипы, или просто кораллы (Anthozoa), большинство которых характеризуется наличием скелета, сложенного фибрами арагонита или кальцита. Их достоверные древнейшие представители известны с ордовика, но возможно, они появились и раньше.

Палеонтология располагает не самими организмами, а их остатками, которые могут сохраняться в ископаемом состоянии - окаменевшими скелетами, отпечатками, слепками, ядрами. В этом отношении кораллы представляют собой очень ценный объект для палеонтологических исследований, поскольку большинство из них всегда формировало прочный скелет.

Собственно кораллы - исключительно морские животные. Они могут быть одиночными и колониальными. Тело каждого полипа (зооида) имеет вид мешочка со щелевидным отверстием - ртом, который окружен щупальцами. От рта во внутреннюю полость идет короткая сплющенная глотка. Сама внутрен-няя полость разделена вертикальными перегородками (мезентериями), не соединяющимися в центре полости между собой. Стенка, как и у всех других кишечнополостных, трехслойная.

В ископаемом состоянии отпечатки мягких частей тела кораллов встречаются крайне редко. В этом отношении уникальна находка, сделанная канадским палеонтологом П. Коппером (Copper, 1985). В силурийских отложениях, возраст которых около 430 млн. лет, он обнаружил окаменевшие, замещенные породой полипы кораллов - фавозитиды с прекрасно сохранившимися щупальцами - от 11 до 13, однако у большинства экземпляров их 12. Как могло случиться, что так хорошо сохранились столь нежные мелкие полипы? П. Коппер предположил, что возможно, эти кораллы приспособились к жизни в условиях сверхжесткой воды, т.е., по сути дела, еще в процессе жизни просто как бы наполнились минеральным веществом, которое и сохранилось, передав нам и форму, и общие черты строения полипов. Однако это мало вероятно, поскольку, как показали многочисленные анализы, в такой более чем пересыщенной минеральными солями (прежде всего известью) воде не может существовать вообще ни один организм. Более очевидно, что такие кораллы жили в обычных благоприятных для них условиях, но внезапный привнос в этот участок морского бассейна огромного количества минеральных веществ (возможно, даже с берега) уничтожил все живое; погибших полипов попросту никто не смог съесть, и они заместились карбонатом кальция уже после смерти. Однако по-добные случаи встречаются крайне редко.

В эктодерме кораллов находятся книдобласты. В энтодерме у них развиты реснички, содействующие процессу пищеварения, а также обитают симбиотические водоросли-зооксантеллы. Клетки, формирующие скелет (каликобласты), располагаются на нижней (базальной) поверхности эктодермы. Отметим, что у всех главнейших в истории Земли кораллов-рифообразователей, т.е. у всех современных нам склерактиний, как и у палеозойских ругоз и табулят, скелет наружный, эктодермальный.

У кораллов известно и половое и бесполое (вегетативное) размножение, можно даже сказать, что для них характерно чередование полового и бесполого поколений. Из оплодотворенного яйца развивается личинка (планула). Ее тело покрыто ресничками, что помогает свободно плавать. Поплавав несколько дней, планула выбирает удобное место и прикрепляется к субстрату - какой-нибудь раковине, обломку коралла, камню, просто ко дну - и дает начало новой коралловой постройке - одиночной, колониальной или псевдоколониальной.

Одиночные кораллы размножаются только половым путем. Если же коралл колониальный или псевдоколониальный, то вскоре после прикрепления планулы он начинает почковаться или делиться. Почкование и деление - разные типы вегетативного размножения: в первом случае материнский полип образует одну или несколько дочерних почек, сохраняя при этом свою целостность, а во втором тело материнского полипа делится пополам или на большее количество частей, из которых образуются новые полипы. Этот процесс может протекать многократно и в результате формируются иногда сложные агрегатные постройки, состоящие из очень многих зооидов, скелет каждого из которых называется кораллитом. Между отдельными зооидами в колонии может развиваться особая промежуточная ткань (ценосарк), также выделяющая скелет (цененхиму). У некоторых форм дочерние полипы возникают в этой ткани - так называемое ценосаркальное почкование.

Колония кораллов, как и других организмов, - это единое сложное генетическое образование, дифференцированное на разные участки, которые не только отличаются друг от друга морфологически, но и выполняют различные физиологические функции. Колонии широко известны у современных кораллов, но также встречаются и у ископаемых, примером чего служат палеозойские гелиолитоидеи.

Для кораллов очень характерны так называемые псевдоколонии - в этом отношении особенно типичны палеозойские ругозы и некоторые табуляты. Псевдоколониальная постройка возникает тогда, когда последовательное многократное почкование приводит к образованию сложных агрегатов, состоящих из плотно или неплотно соприкасающихся кораллов совершенно аналогичного строения, причем всегда лишенных ценосарка, т.е. в которых все особи одинаковы и морфологически, и функционально. Иногда стенки кораллитов бывают пронизаны порами, соединены трубочками, т.е. между собой. Это явление называется коммуникатностью, и можно утверждать, что коммуникатность свойственна всем кораллам.

Образованные кораллами сложные скелетные постройки в общем случае называются полипняками. В просторечии их часто просто называют колония-ми, хотя, как мы видели, это далеко не всегда верно. Форма полипняка во многом зависит от целого ряда причин, в том числе от субстрата, на котором поселилась планула, но все же можно выделить несколько наиболее распространенных их типов по форме (округлые, пластинчатые, стелющиеся, рамозные) или по характеру соотношения между кораллитами (ветвистые, массивные и некоторые другие).

На внешнюю форму полипняка очень сильно влияет степень подвижности воды. Еще в начале прошлого века работами английского зоолога Ф. Вуд Джонса и русского палеонтолога Н.Н. Яковлева, а также более поздними исследованиями американцев Т. Воона и Дж. Уэллса было доказано, что один и тот же вид кораллов в более спокойной среде строит шаровидный полипняк, в менее спокойной - рамозный, а в бурной - плоский, стелющийся по дну. Однако как бы ни менялся внешний вид коралловой постройки, детали структуры скелета всегда остаются постоянными, т.е. все представители одного вида имеют одну и ту же микроструктуру скелета.

Многие колонии (например, Acropora) могут восстанавливаться (такое явление носит название регенерации) и используют эту способность для расселения. Так, если в результате шторма какая-либо колония будет разломана, а ее обломки разбросаны в пределах той же прибрежной зоны, то в дальнейшем эти кусочки могут дать начало новым колониальным постройкам такого же типа, как и первоначальная. Эти кораллы обычно имеют широко расставленные ветви, как бы специально приспособленные для такого способа расселения.

Различные кораллы могут друг от друга сильно отличаться по размерам. Современные одиночные округлые грибообразные или лепешковидные склерактинии Fungia достигают в диаметре 40 см и даже более, тогда как отдельный полип в колонии зачастую имеет поперечник от долей миллиметра до нескольких миллиметров, а полип в псевдоколонии - до 1-2 см. Аналогичную картину мы видим и у древних кораллов - наиболее крупные одиночные формы при высоте до 1 м имели диаметр 20-25 см (это безусловно исключительные случаи).

Цвет живого коралла полностью зависит от пигментации - обычно они бурые, грязновато-зеленовато-бурые, реже малиновые, концы ветвей колонии часто голубые. Иногда они могут быть и желтыми - это значит, что цвет корал-ла целиком обусловлен симбионтами-зооксантеллами.

В принципе кораллы - хищники, для чего отчасти им и служат стрекательные клетки, и питаются микроорганизмами (мельчайшим планктоном, инфузориями, даже бактериями), парализуя своих жертв и отправляя их через ротовое отверстие для переваривания внутреннюю полость. Кроме того, они мо-гут использовать в качестве пищи также растворенные или взвешенные в морской воде органические вещества. Большую роль для герматипных кораллов играет также фотосинтез зооксантелл.

Именно благодаря зооксантеллам, способствующим выделению карбоната кальция, кораллы лучше и быстрее растут на свету. Изучению этого явления посвятили работы многие зоологи, в том числе наш биофизик Н.А. Иванов. В итоге удалось установить, что разным видам герматипных кораллов для нормальной жизнедеятельности необходимо разное количество света, что рост всего полипняка или отдельных участков колонии коррелятивно связаны с количе-ством получаемой солнечной энергии, что кораллы, живущие в различных световых условиях, реагируют на одинаковые световые условия по-разному. Зная физиологическую характеристику кораллов и световой режим, можно в любой точке рифа даже предсказывать возникновение тех или иных типов полипняков (так называемые жизненные формы) колониальных кораллов. Более того, в составе одного рода кораллов скорость роста скелета в одних и тех же условиях для разных типов полипняков различна - ветвистые колонии растут быстрее, чем плоские. Если света достаточно, то за два-три года может вырасти колония диаметром 10-20 см, причем вертикальный рост кораллитов в таком случае достигает 10 мм и более в год. Обнаружены полипняки возрастом 150 и даже 400 лет.

Исследование Pocillopora damicornis - основного коралла-рифостроителя Гавайских островов показало, что максимальный рост этих полипняков протекает при 26 С, а минимальный - при 21-22 С; на мелководье колонии были бугровидные и росли быстрее, а в глубине рифовой зоны - столбчатые и росли медленнее.

Кораллы живут во всех морях, даже на глубинах свыше 1000 м и при температуре +4 °С. Однако в океанических впадинах и в других глубоководных участках морей и океанов нет света, температура предельно низкая, водоросли там не живут, и кораллы не могут строить рифов. Сообщества глубоководных, не строящих рифов (агерматипных) кораллов образуют заросли, банки, луга. Так, на глубинах несколько сот метров и у берегов Исландии и на юге Тихого океана растут банки кораллов Lophelia многометровой мощности.

Для кораллов губительны опреснение (например, тропические ливни во время отлива), осушение, ураганы - после таких катастроф риф может восстановиться лет за тридцать, а то и более. Кораллами питаются некоторые рыбы, крабы и другие организмы.

У современных склерактиний, как и у древних кораллов, мягкое тело находится на поверхности, каждый полип сидит в небольшом углублении (чашечке) ; его рост вверх происходит путем последовательного формирования ба-зальных опорных элементов скелета (днищ и других структур того же происхождения), и в результате весь полипняк растет вверх. Таким образом, скелет всех этих кораллов - наружный. У другой их группы - у восьмилучевых кораллов (октокораллов или альционарий) - скелет сложен специфическими элементами - спикулами, образующимися в мезоглее, поэтому он и называется внутренним или мезоглеальным. Срастаясь между собой, спикулы составляют общий осевой скелетный каркас.

Все кораллы с наружным скелетом строят его по одному плану. Каликобласты базального эпителия полипа выделяют наименьшую, элементарную карбонатную частицу - как и большинство кораллистов мы будем называть ее тафтом (существуют и другие названия). Тафты группируются между собой, образуя фибры, а фибры в свою очередь образуют пучки с единым центром кристаллизации - склеродермиты. Структурный элемент следующего, более высокого порядка - трабекула; из трабекул состоят септы ругоз и склерактиний. Таким образом, скелетная ткань (склеренхима) всех кораллов построена по одному плану, и это подчеркивает их родство.

Внешняя стенка коралла многослойная, обычно ее наружный слой (голотека) покрыт тонкой поперечной морщинистостью, как бы знаками нарастания (ругами) ; отсюда и название целой группы древних кораллов ругозы. Иногда голотека может быть общей для всего полипняка, покрывая его снаружи снизу и с боков. Следующий слой - эпитека, покрыт продольными ребрами, которые соответствуют либо септам, либо промежуткам между ними.

Коралл растет вверх. Применение современных методов исследования, в том числе рентгенографии, позволило доказать, что существует сезонность роста кораллов, подчеркивая тем, что в полипняках отчетливо наблюдается зональность - слои разной плотности, различимые как темные, так и светлые по-лосы. Наибольший линейный рост происходит с мая по октябрь, наименьший - с октября по май-июнь. В эти периоды меняется и облик кораллитов. Оказалось, что можно установить даже суточный прирост коралла, который чаще всего равен 0,01-0,02 мм.

3. РАЗНООБРАЗИЕ КОРАЛЛОВ

До сих пор еще не разработана единая общепризнанная система кораллов, отражающая все их разнообразие и родственные взаимоотношения. Поэтому будем говорить не о конкретных таксонах (отряд, подотряд), а об их естественных группах.

В составе типа Coelenterata, класса Anthozoa выделяются три подкласса:

I. Ceriantipatharia. Почти все цериантипатарии - современные бесскелетные или с роговым скелетом организмы, колониальные и одиночные. Сюда относится драгоценный «черный коралл».

II. Octocorallia или Alcyonaria (восьмилучевые кораллы), для которых в подавляющем большинстве случаев характерны восемь мезентерий, восемь перистых щупалец и внутренний спикульный скелет. Несомненные представители известны с силура.

Включает следующие отряды:

1. Stolonifera. У этих кораллов молодые полипы отходят от расположенных между кораллитами особых перемычек - столонов или горизонтальных платформ. Типичным представителем столонифер является всем известная красная Tubipora, часто называемая «органчиком». Тубипоры широко распространены на всех современных мелководных рифах Индо-Пацифики, особенно в Красном и Южно-Китайском морях. Столониферы известны с мелового периода.

2. Alcyonida. «Мягкие кораллы». Длинные кораллиты обычно соединены известковой спикульной цененхимой. Вторичные полипы могут зарождаться в ценосарке. Известны с силура.

3. Gorgonida. Скелет горгонид состоит из известковых спикул. Характерна развитая во всех ветвях колонии известковая или рогоподобная осевая структура. Сюда относится знаменитый Corallium rubrum - благородный красный коралл, из скелета которого изготавливают ювелирные изделия и именно благодаря которому кораллы вообще получили свое название, ставшее привычным для нас. Первые представители горгонид появились в меловом периоде.

4. Pennatulida - пеннатулиды, или просто «морские перья». Это свободно живущие внедряющиеся в грунт и даже способные медленно передвигаться колонии, у которых вторичные полипы имеют вид боковых отростков крупного основного ствола, напоминая «ершик» для мытья лабораторных пробирок. Ствол этот носит название оозооида, а его верхняя часть, где растут полипы, - рахиса. Скелет известковый или роговой. Известны с палеозоя, хотя иногда считается, что пеннатулиды более древние.

5. Coenothecaliida, иначе гелиопориды, или «солнечные кораллы». В системе восьмилучевых кораллов они стоят совершенно особняком, поскольку имеют не внутренний спикульный, а наружный скелет, аналогичный по структуре некоторым палеозойским кораллам (гелиолитоидеям). Типичный представитель - современный рифообразующий «синий коралл» - Heliopora.

III. Третий подкласс - Zoantharia (зоантарии). Это одиночные или колониальные кораллы, большинство которых имеет наружный карбонатный скелет (известны бесскелетные формы). Известны, вероятно, с кембрия. Среди зоантарий можно выделить следующие группы.

1. Tabulata. Табуляты. Табуляты образуют полипняки, скелет которых в своем развитии еще не достиг трабекулярной стадии. Септальный аппарат выражен слабо - это обычно шипики, а также чешуйки или струйки на стенке. Кораллиты однообразные (мономорфные), цененхима не развита. Очень характерна коммуникатность - в одном полипняке кораллиты могут соединяться порами, трубочками-солениями, столонами. Появились, вероятно, в кембрии, существовали до конца палеозоя.

Среди табулят отчетливо выделяются несколько групп (отрядов или подотрядов) : например, сотоподобные фавозитиды, цепочечные хализитиды, сирингопориды с очень характерными соединительными трубками, сарцинулиды, полипняки которых очень похожи на уже упоминавшихся современных тубипор и некоторые другие.

2. Heliolithoidea. Гелиолитоидеи. Это древнейшие истинно колониальные кораллы с прекрасно развитой цененхимой, исключительно похожие на современных гелиопор. Поэтому в прошлом многие исследователи и считали, что палеозойские гелиолитоидеи - предки наших гелиопорид, несмотря на то, что исторически первых и вторых разделяют чуть ли не 200 млн. лет. Известны от середины ордовика до конца среднего девона.

3. Rugosa. Ругозы или четырехлучевые кораллы. Одиночные или псевдо-колониальные кораллы с наружным карбонатным (по всей вероятности, первично кальцитовым) скелетом и шестью первичными мезентериями, которым соответственно отвечают шесть первичных септ (протосепт). Септы в подавляющем большинстве случаев сложены трабекулами, появляются они в четы-рех секторах из шести, образуемых протосептами. Развиты днища, часто диссепименты, иногда сложные осевые колонны. Двусторонне симметричные. Средний ордовик - пермь.

Среди ругоз выделяют несколько групп (большинство исследователей считают их подотрядами) - стрептелазматины (одиночные, изредка псевдоколониальные кораллы с пластинчатыми септами и отчетливыми днищами), колюмнариины (всегда псевдоколониальные с пластинчатыми септами и отчетли-выми днищами) и цистифиллины (ругозы с шиповидными септами и пузыристыми горизонтальными элементами скелета). Отличие стрептелазматин от колюмнариин на первый взгляд может показаться не очень ясным. Дело тут в том, что стрептелазматины иногда образовывали псевдоколонии, у их одиночных представителей известны как бы «колониальные разновидности», тогда как колюмнариины никогда не переходили к одиночной форме существования.

4. Scleractinia. Склерактинии, часто неверно называемые «шестилучевыми кораллами». Всеми основными особенностями строения скелета склерактинии очень близки ругозам, однако у большинства этих кораллов септы развиваются во всех шести секторах, составляя иногда много последовательных (в зависимости от времени появления и размера) порядков и циклов. Кроме того, у многих склерактиний встречаются колонии. Скелет наружный, арагонитовый. Известны с мезозоя (с середины триаса), процветают и сейчас.

Среди склерактиний также можно выделить несколько групп (подотрядов), главнейшие из которых астроценины (обычно колониальные кораллы, кораллиты мелкие, септы состоят из небольшого числа трабекул), фунгиины (одиночные и колониальные, кораллиты крупные, трабекулы многочисленные). Септы, как правило, перфорированы (пористые). Характерны синаптикулы - скелетные элементы, образованные срастанием выростов трабекул из боковых поверхностей смежных септ, фавиины (одиночные и колониальные полипняки, состоящие из крупных кораллитов; трабекулы многочисленные; синаптикулы развиты как исключение).

ЗАКЛЮЧЕНИЕ

Итак, кораллы - прекрасные индикаторы климатической и биогеографической зональности. Изучение закономерностей их распространения в древние эпохи должно содействовать разрешению многих проблем палеогеографии, а это неразрывно связано с выявлением закономерностей образования и размещения целого ряда важнейших осадочных полезных ископаемых. Кроме того, многие группы кораллов имеют значение и как так называемые руководящие органические остатки - по ним можно определять относительный возраст вмещающих горных пород. В связи с этим в последние годы во многих странах мира, в то числе и в нашей стране, началось систематическое сравнительное изучение древних и современных рифов, многие палеонтологи посетили рифы в тропических морях. Для решения приведенных, а также многих других задач функционирует Международная группа по изучению рифов.

Список литературы

1. Внутривидовая изменчивость кораллов и спонгиоморфад/ Отв. ред. Б.С. Соколов, А.Б. Ивановский. - М.: Наука, 1992. - 90 с.

2. Ивановский А.Б. Кораллы: прошлое, настоящее и будущее/ Отв. ред. Б.С. Соколов. - М.: Наука, 1989. - 58 с.

3. Кусто Жак-Ив. Жизнь и смерть кораллов. - Л.: Гидрометеоиздат, 1975. - 176 с.

4. Наумов Д.В. и др. Мир кораллов. - Л.: Гидрометеоиздат, 1985. - 359 с.

5. Сребродольский Б.И. Коралл. - М.: Наука, 1986. - 132 с.

6. Шеппард Чарльз. Жизнь кораллового рифа. - Л.: Гидрометеоиздат, 1987. - 183 с.