«Белка и Стрелка» - Белка и Стрелка дожили до глубокой старости и умерли своей смертью. Через некоторое время у Стрелки появились щенки. Одними из наиболее приспособившихся собак-претендентов были Белка и Стрелка. 19 августа 1960 года был совершён успешный запуск космического корабля-спутника на орбиту. Все шесть щенков были здоровы.

«Белки урок» - Качественные реакции. Общие свойства белков. Четвертичная структура белковой молекулы. Биуретовая Ксантопротеиновая HNO3 NaOH CuSO4. Содержание белков в организме (в процентах к сухой массе). Структура белковой молекулы. Белки. Функции белков. Содержание белков в пище. Что такое жизнь?

«Биосинтез белка» - Незаменимые аминокислоты выделены жирным шрифтом. Участники биосинтеза молекул белка. Неправильный ответ. Содержание. Проверь себя. Схема растительной и животной клеток. Введение. Правильный ответ. Биосинтез белков в живой клетке. Процесс биосинтеза белков в живой клетке. Поставщики энергии для биосинтеза белков.

«Белки химия» - В состав слизи и синовиальной жидкости входят мукопротеиды. Определение. Строение полипептидной цепи. Содержание. Такую реакцию дают все соединения, содержащие пептидную связь. Последовательное соединение аминокислот при образовании белковой молекулы. Первичная структура белка при денатурации сохраняется.

«Белки и их функции» - Функции белков чрезвычайно многообразны. Строительный материал. Сократительные белки вызывают всякое движение. Химические свойства белков. Выработка белковых тел и антител для обезвреживания чужеродных веществ. Функции белка. Из белков построены кровеносные сосуды, сухожилия, волосы. Вторичная структура Третичная структура Четвертичная структура.

«Аминокислоты и белки» - Реакции?-аминокислот. Биуретовая реакция (с гидроксидом меди (II) Cu(OH)2) Нингидринная реакция. РАЗЛИЧНЫЕ ВАРИАНТЫ ИЗОБРАЖЕНИЯ СТРУКТУРЫ БЕЛКА КРАМБИНА. Отходы с оптически активным изомером a-аминокислоты. ОБРАЗОВАНИЕ ВНУТРИМОЛЕКУЛЯРНЫХ ВОДОРОДНЫХ СВЯЗЕЙ (изображены пунктирными линиями) в молекуле полипептида.

ченном наследственном заболевании фенилкетонурии организм испытывает дефицит в фенилаланингидроксилазе (КФ 1.14.3.1). Вследствие этого катаболизм фенилаланина не идет до конечных продуктов через тирозин, а вступает на побочный путь дезаминирования с образованием фенилпировиноградной кислоты. Накопление последней совместно с фенилаланином приводит у детей к тяжелому заболеванию, сопровождающемуся слабоумием. При альбинизме имеет место дефект дифенолоксидазы(КФ 1.10.3.1.), при алкаптонурии – гомогентизинатоксидазы (КФ 17.1.5.), при ксантонурии – ксантиноксидазы (КФ

1.2.3.2.) и т.д.

1.5. Денатурация белка

Присущие белкам свойства, связанные с особенностями конформации их молекул, существенно изменяются при нарушении этой конформации в процессе денатурации белка.

Под денатурацией понимают превращение биологически активного, так называемого, нативного3 белка в форму, в которой его естественные свойства такие, как растворимость, электрофоретическая активность, ферментативная активность и т.д. теряются.

Денатурация является характерным признаком белков и не наблюдается у аминокислот и низкомолекулярных пептидов. Денатурация, как правило, связана с нарушением третичной и частично, вторичной структуры белковой молекулы и не сопровождается какими либо изменениями первичной структуры. Естественно поэтому, что при денатурации белка разрушаются, главным образом, водородные связи и дисульфидные мостики в белковой молекуле.

Денатурирующие агенты делятся на физические и химические. К физическим факторам принадлежит нагревание (свыше 50-60° С), повышенное давление, ультразвук и т.д., к химическим – ионы Н+ и ОН– (обычно при рН ниже 4 и выше 10 – денатурация), органические растворители (ацетон, спирт), мочевина, соли тяжелых металлов и др. Белки денатурируются и под влиянием детергентов (от лат. Detergeo – раздроблю, разобью, чищу), обладающих мылоподобным действием, хотя при этом в большинстве случаев денатурированный белок остается в растворимом виде. Обезвоживание, высушивание белков при комнатной температуре влечет за собой, как правило, полную денатурацию. Все это говорит о большом разнообразии денатурирующих агентов и механизма их действия.

3 Нативной конформацией белка называют характерную трехмерную структуру белка, в которой он стабилен и проявляет биологическую активность при определенных физических условиях (температура, рН и др.).

1. Как называется процесс нарушения природной структуры белка, при котором сохраняется его первичная структура? Действие каких факторов может приводить к нарушению структуры белковых молекул?

Процесс нарушения природной структуры белков под влиянием каких-либо факторов без разрушения первичной структуры называется денатурацией. Денатурация белков может быть вызвана действием различных факторов, например, высокой температуры, концентрированных кислот и щелочей, тяжёлых металлов.

2. Чем фибриллярные белки отличаются от глобулярных? Приведите примеры фибриллярных и глобулярных белков.

Молекулы фибриллярных белков имеют вытянутую, нитевидную форму. Глобулярные белки характеризуются компактной округлой формой молекул. К фибриллярным белкам относятся, например, кератин, коллаген, миозин. Глобулярными белками являются глобулины и альбумины крови, фибриноген, гемоглобин и др.

3. Назовите основные биологические функции белков, приведите соответствующие примеры.

● Структурная функция. Белки входят в состав всех клеток и межклеточного вещества, являются компонентами различных структур живых организмов. Например, у животных белок коллаген входит в состав хрящей и сухожилий, эластин – в состав связок и стенок кровеносных сосудов, кератин является важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт.

● Ферментативная (каталитическая) функция. Белки-ферменты являются биологическими катализаторами, ускоряя протекание химических реакций в живых организмах. Например, пищеварительные ферменты амилаза и мальтаза расщепляют сложные углеводы до простых, пепсин – белки до пептидов, под действием липаз происходит расщепление жиров до глицерина и карбоновых кислот.

● Транспортная функция. Многие белки способны присоединять и переносить различные вещества. Например, гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют высшие карбоновые кислоты, а глобулины – ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из неё.

● Сократительная (двигательная) функция. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Например, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения, тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.

● Регуляторная функция. Некоторые белки и пептиды участвуют в регуляции различных физиологических процессов. Например, гормоны белково-пептидной природы инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) – процессы роста и физического развития.

● Сигнальная функция заключается в том, что некоторые белки, входящие в состав цитоплазматической мембраны клеток, в ответ на действие внешних факторов изменяют свою пространственную конфигурацию, тем самым обеспечивая приём сигналов из внешней среды и передачу информации в клетку. Например, белок опсин, входящий в состав пигмента родопсина, воспринимает свет и обеспечивает возникновение зрительного возбуждения рецепторов (палочек) сетчатки глаза.

● Защитная функция. Белки предохраняют организм от вторжения чужеродных объектов и от повреждений. Например, иммуноглобулины (антитела) участвуют в иммунном ответе, интерферон защищает организм от вирусной инфекции. Фибриноген, тромбопластин и тромбин обеспечивают свёртывание крови, предотвращая кровопотерю.

● Токсическая функция. Многие живые организмы выделяют белки-токсины, которые являются ядами для других организмов.

● Энергетическая функция. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии.

● Запасающая функция. Например, в семенах растений запасаются особые белки, которые используются при прорастании зародышем, а затем и проростком в качестве источника азота.

4. Что такое ферменты? Почему без их участия протекание большинства биохимических процессов в клетке было бы невозможным?

Ферменты – белки, которые выполняют функцию биологических катализаторов, т. е. ускоряют протекание химических реакций в живых организмах. Они катализируют реакции синтеза и расщепления различных веществ. Без участия ферментов эти процессы протекали бы слишком медленно или не протекали бы вовсе. Практически все процессы жизнедеятельности организмов обусловлены ферментативными реакциями.

5. В чем заключается специфичность ферментов? Какова её причина? Почему ферменты активно функционируют лишь в определённом диапазоне температуры, рН и других факторов?

Специфичность ферментов заключается в том, что каждый фермент ускоряет только одну реакцию либо действует только на определённый тип связи. Эта особенность объясняется соответствием пространственной конфигурации активного центра фермента тому или иному субстрату (субстратам).

Ферменты являются белками. Изменение рН, температуры и других факторов может вызвать денатурацию ферментов, в результате чего они теряют способность связываться со своими субстратами.

6. Почему белки, как правило, используются в качестве источников энергии лишь в крайних случаях, когда в клетках исчерпаны запасы углеводов и жиров?

Белки – основа жизни. Они выполняют чрезвычайно важные биологические функции, многие из которых (ферментативную, транспортную, двигательную и др.) не способны выполнять ни углеводы, ни жиры. Белки, использованные в качестве энергетического субстрата, дают столько же энергии, сколько и углеводы (1 г – 17,6 кДж) и в 2,2 раза меньше, чем жиры (1 г – около 39 кДж). Кроме того, при полном расщеплении белков (в отличие от углеводов и жиров) образуются не только СО 2 и Н 2 О, но также соединения азота и серы, причём некоторые из них токсичны для организма (например, NH 3). Поэтому энергетическую функцию у живых организмов выполняют прежде всего углеводы и жиры.

7*. У многих бактерий в процессах синтеза веществ, необходимых для нормального роста и размножения, участвует парааминобензойная кислота (ПАБК). В то же время в медицине для лечения ряда бактериальных инфекций используются сульфаниламиды - вещества, по структуре сходные с ПАБК. Как вы думаете, на чём основано лечебное действие сульфаниламидов?

С помощью фермента (дигидроптероатсинтетазы) бактерии осуществляют превращение ПАБК в продукт (дигидроптероевую кислоту), который далее используется для синтеза необходимых ростовых факторов. Из-за структурного сходства с ПАБК, сульфаниламиды также способны связываться с активным центром этого фермента, блокируя его работу (т.е. наблюдается конкурентное ингибирование). Это ведёт к нарушению синтеза ростовых факторов и нуклеиновых кислот у бактерий.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Определœенные представления о пространственном строении и форме белковых молекул были получены в исследованиях с использованием электронного микроскопа. У многих белков форма молекул компактна и представляет шарообразные или вытянутые в виде эллипсоида частицы диаметром 10-30 нм. Другие белковые молекулы вытянуты в виде нитей диаметром 5-15 нм и длиной несколько сотен нм, третьи образуют палоч-ковидные структуры диаметром 10-20 нм и длиной 100-300 нм.

Наиболее точные сведения о пространственном строении белков были получены методом рентгеноструктурного анализа, с помощью которого изучают структуру белковых молекул в кристаллическом состоянии.

Как было выяснено, в белковых кристаллах полностью сохраняется нативная конформация молекулы, которая стабилизируется большим количеством криталлизационной воды.

Длинные нитевидные формы белковых молекул принято называть фибриллярными белками.

Молекулы со сферической формой называют глобулярными белками. Их полипептидные цепи свернуты в глобулы, имеющие форму эллипсоида вращения разной степени вытянутости.

К глобулярным белкам относятся ферменты, регуляторные и транспортные белки, запасные растительные белки.

Между глобулярными и фибриллярными конформациями белковых молекул имеется много переходных форм, характерных для многих белков.

В связи с большими различиями формы белковых молекул и высокой степенью их полимерности существенные трудности возникают при определœении молекулярных масс белков, в связи с этим для этих целœей разра-ботаны специальные методы исследований.

Для хорошо растворимых и очищенных от примесей белков молекулярные массы бывают опреде-лены с довольно высокой точностью по изменению осмотического давления белкового раствора. Между молекулярной массой белков и величиной осмотического давления их растворов наблюдается обратная заисимость.

Для кристаллических форм хорошо очищенных белков молекулярные массы с высокой степенью точности определяют методом рент-геноструктурного анализа.

При определœении молекулярных масс белков очень часто исполь-зуется метод седиментационного анализа, основанный на измерении ско-рости седиментации (осаждения) молекул белков под действием большой центробежной силы, возникающей при высокоскоростном центри-фугировании белкового раствора.

Первая установка для высокоскоростного центрифугирования (ультрацентрифуга) была сконструирована Т. Сведбергом и Д.Б.Никольсом в 1923 ᴦ. В современных ультрацентрифугах можно создавать центробежное ускорение более 500000 g. Под действием центробежной силы молекулы белка, равномерно распределœенные в растворе, начинают перемещаться с определœенной скоростью в направлении действия центробежной силы, образуя удаляющуюся от центра вращения границу раздела между осаждающимися белками и чистым растворителœем.

Положение границы раздела через определённые промежутки времени регистрируется с помощью оптической системы и на базе этих результатов определяется коэффициент седиментации , который и выражает скорость седиментации белков.

По мере возрастания молекулярной массы белка коэффициент се-диментации увеличивается, однако строго прямой зависимости между этими показателями не наблюдается, так как скорость седиментации зави-сит также от формы молекул.

Значение коэффициента седиментации принято выражать в специальных единицах — сведбергах , которые обозначают символом S.

Один сведберг (1S) численно равен 1×10-13 секунды. Для большинства расти-тельных белков коэффициенты седиментации находятся в пределах 1-20S.

На базе коэффициентов седиментации и диффузии белковых мо-лекул рассчитаны молекулярные массы многих белков, выделœенных из различных объектов:

рибонуклеаза 12640 α-амилаза 97600

гемоглобин 64500 каталаза 247500

глиадин пшеницы 27500 эдестин конопли 300000

альбумин яйца 44000 уреаза сои 483000

зеин кукурузы 50000 пепсин 35500

Для определœения молекулярных масс полипептидов, входящих в состав олигомерных белков, находит широкое применение метод электро-фореза заряженных частиц в полиакриламидном гелœе, который позволяет проводить очень точное разделœение полипептидов под воздействием электрического поля.

Под влиянием электрического поля заряженные молекулы полипеп-тидов движутся к аноду или катоду через пористый носитель, которым является полиакриламидный гель, образующийся при совместной полиме-ризации акриламида и бисакриламида в определœенной буферной среде.

Этот гель сильно гидратирован и имеет поры определœенных размеров исходя из соотношения акриламида и бисакриламида. Скорость дви-жения заряженных частиц в пористом носителœе зависит от величины заряда, молекулярной массы и пространственной конфигурации молекул, в связи с этим в результате электрофореза разделяемые частицы, различающиеся по электрическому заряду и пространственным параметрам, распреде-ляются в полиакриламидном гелœе в виде узких зон, которые окрашиваются специальным красителœем.

Размеры окрашенных зон точно указывают концентрацию выделœенных при электрофорезе полипептидов, а их общее число — наличие в изучаемой смеси разных полипептидов (рис .

Читайте также

  • — РАЗМЕРЫ И ФОРМЫ БЕЛКОВЫХ МОЛЕКУЛ

    Определенные представления о пространственном строении и форме белковых молекул были получены в исследованиях с использованием электронного микроскопа. У многих белков форма молекул компактна и представляет шарообразные или вытянутые в виде эллипсоида частицы… [читать подробнее].

  • Строение белковой молекулы.

    Молекула белков имеет вид длинных цепей, которые состоят из 50-1500 аминокислот, соединенных прочной ковалентной азот-углеродной связью, называемой пептидной связью (– СО – NH –), а образовавшееся соединение называется пептидом.

    N---C---C---N---C---C

    / ׀ ׀׀ ׀ ׀ \

    свободная пептидная свободная

    аминогруппа связь карбоксильная группа

    Из 2х аминокислот образуется дипептид (димер ); из 3х аминокислот – трипептид(триммер); из многих – полипептид (полимер).

    Кроме пептидной связи известна еще дисульфидная связь , которая формируется при взаимодействии двух остатков аминокислоты цистеина.

    (– S – S –)

    Поскольку в аминокислотах одновременно присутствуют и (основная группа) и COOH (кислая группа), они относятся к амфотерным соединениям.

    Выделяют 4 уровня пространственной организации молекулы белков.

    Первичная структура белка – полипептидная цепочка с определенной последовательностью аминокислот («линейная цепочка»)

    Первичная структура белка уникальна и определяет его пространственную организацию, свойства и функции в клетке.

    Нарушение природной структуры белка

    Пример: белок рибонуклеаза, выполняющий ферментативную функцию.

    Вторичная структура белка определяется укладкой цепочки аминокислот в определенные структуры, называемые α- спиралью и β- слоем (гармошка).

    Вторичная структура формируется за счет: ионных и электростатических связей между положительными и отрицательными ионами; и водородных связей , которые образуются между двумя сильно отрицательными атомами – С и О.

    Пример: кератин – входит в состав ногтей и волос, коллаген также фермент в формуле закрученной спирали.

    Третичная структура образуется при сворачивании полипептидной цепи с элементами вторичной структуры в клубок (глобулу) и поддерживается за счет ионных, гидрофильных и ковалентных (дисульфидных) связей между различными остатками аминокислот.

    Гидрофильные связи – это связи образующиеся за счет дисперсионных взаимодействий полярных боковых цепей.

    Гидрофобные связи – слабые связи между неполярными боковыми цепями, возникающие в результате взаимного отталкивания молекулярного растворителя.

    Биологическую активность белок проявляет только в виде третичной структуры, поэтому замена даже одной аминокислоты в цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологический активности.

    Четвертичная структура белка – объединение 2х, 3х, 4х и более молекул с третичной организацией в один комплекс.

    Пример: гемоглобин состоит из 4х субъед.

    и небелковой части – гема (железа).

    Замена одной из 300 аминокислот, находящихся в молекуле гемоглобина – глутаминовой кислоты – валином, изменяет свойства гемоглобина. Люди с такими изменениями страдают наследственными заболеваниями – серповидноклеточной анемией.

    Все цепи в четвертичной структуре удерживаются слабыми связями типа водородных и дисульфидных мостиков.

    Денатурация – утрата белковой молекулой своей структурной организации.

    Денатурация может происходить в результате различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, повышение температуры, облучение, высокое Д и т.д.)

    Денатурация может быть:

    ü обратимой –нарушается четвертичная, третичная и вторичная структура белка, но первичная НЕ нарушается, и при возвращении нормальных условий вожможна ренатурация – восстановление нормальной конфигурации белковой молекулы.

    ü необратимой – при нарушении первичной структуры.

    Состав и строение белков

    В основе жизнедеятельности клетки лежат биохимические процессы, протекающие на молекулярном уровне и служащие предметом изучения биохимии. Соответственно и явления наследственности и изменчивости тоже связаны с молекулами органических веществ, и в первую очередь с нуклеиновыми кислотами и белками.

    Состав белков

    Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев — аминокислот.

    Такие вещества, состоящие из повторяющихся элементарных звеньев - мономеров, называются полимерами.

    Дашков Максим Леонидович, репетитор по биологии в Минске

    Соответственно белки можно назвать полимерами, мономерами которых служат аминокислоты.

    Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своем составе аминной группы NHy, обладающей основными свойствами, и карбоксильной группы СООН, имеющей кислотные свойства. Все аминокислоты имеют одинаковую группу NH2-СН-СООН и отличаются друг от друга химической группой, называемой радикалом — R.

    Соединение аминокислот в полимерную цепь происходит благодаря образованию пептидной связи (СО — NH) между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты. При этом выделяется молекула воды. Если образовавшаяся полимерная цепь короткая, она называется олигопептидной, если длинная — полипептидной.

    Строение белков

    При рассмотрении строения белков выделяют первичную, вторичную, третичную структуры.

    Первичная структура определяется порядком чередования аминокислот в цепи.

    Изменение в расположении даже одной аминокислоты ведет к образованию совершенно новой молекулы белка. Число белковых молекул, которое образуется при сочетании 20 разных аминокислот, достигает астрономической цифры.

    Если бы большие молекулы (макромолекулы) белка располагались в клетке в вытянутом состоянии, они занимали бы в ней слишком много места, что затруднило бы жизнедеятельность клетки. В связи с этим молекулы белка скручиваются, изгибаются, свертываются в самые различные конфигурации.

    Так на основе первичной структуры возникает вторичная структура - белковая цепь укладывается в спираль, состоящую из равномерных витков.

    Соседние витки соединены между собой слабыми водородными связями, которые при многократном повторении придают устойчивость молекулам белков с этой структурой.

    Спираль вторичной структуры укладывается в клубок, образуя третичную структуру. Форма клубка у каждого вида белков строго специфична и полностью зависит от первичной структуры, т.

    е. от порядка расположения аминокислот в цепи. Третичная структура удерживается благодаря множеству слабых электростатических связей: положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, гидрофобные (водоотталкивающие) группы.

    Некоторые белки, например гемоглобин, состоят из нескольких цепей, различающихся по первичной структуре.

    Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой (рис. 2).

    В структурах белковых молекул наблюдается следующая закономерность: чем выше структурный уровень, тем слабее поддерживающие их химические связи. Связи, образующие четвертичную, третичную, вторичную структуру, крайне чувствительны к физико-химическим условиям среды, температуре, радиации и т.

    д. Под их воздействием структуры молекул белков разрушаются до первичной - исходной структуры. Такое нарушение природной структуры белковых молекул называется денатурацией.

    При удалении денатурирующего агента многие белки способны самопроизвольно восстанавливать исходную структуру. Если же природный белок подвергается действию вьюокой температуры или интенсивному действию других факторов, то он необратимо денатурируется. Именно фактом наличия необратимой денатурации белков клеток объясняется невозможность жизни в условиях очень высокой температуры.

    Первичная структура белков.

    Вторичная структура белков.

    Третичная структура белков.

    Четвертичная структура белков.

    Биологическая роль белков в клетке

    Белки, называемые также протеинами (греч.

    протос - первый}, в клетках животных и растений выполняют многообразные и очень важные функции, к которым можно отнести следующие.

    Каталитическая. Природные катализаторы - ферменты представляют собой полностью или почти полностью белки. Благодаря ферментам химические процессы в живых тканях ускоряются в сотни тысяч или в миллионы раз.

    Под их действием все процессы идут мгновенно в «мягких» условиях: при нормальной температуре тела, в нейтральной для живой ткани среде. Быстродействие, точность и избирательность ферментов несопоставимы ни с одним из искусственных катализаторов. Например, одна молекула фермента за одну минуту осуществляет реакцию распада 5 млн.

    молекул пероксида водорода (Н202). Ферментам характерна избирательность. Так, жиры расщепляются специальным ферментом, который не действует на белки и полисахариды (крахмал, гликоген). В свою очередь, фермент, расщепляющий только крахмал или гликоген, не действует на жиры.

    Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций.

    Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет биохимический конвейер.

    Считают, что каталитическая функция белков зависит от их третичной структуры, при ее разрушении каталитическая активность фермента исчезает.

    Защитная. Некоторые виды белков защищают клетку и в целом организм от попадания в них болезнетворных микроорганизмов и чужеродных тел.

    Такие белки носят название антител. Антитела связываются с чужеродными для организма белками бактерий и вирусов, что подавляет их размножение. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела. Такой механизм сопротивления возбудителям заболеваний называется иммунитетом.

    Чтобы предупредить заболевание, людям и животным вводят ослабленные или убитые возбудители (вакцины), которые не вызывают болезнь, но заставляют специальные клетки организма производить антитела против этих возбудителей.

    Если через некоторое время болезнетворные вирусы и бактерии попадают в такой организм, они встречают прочный защитный барьер из антител.

    Гормональная. Многие гормоны также представляют собой белки. Наряду с нервной системой гормоны управляют работой разных органов (и всего организма) через систему химических реакций.

    Отражательная. Белки клетки осуществляют прием сигналов, идущих извне. При этом различные факторы среды (температурный, химический, механический и др.) вызывают изменения в структуре белков - обратимую денатурацию, которая, в свою очередь, способствует возникновению химических реакций, обеспечивающих ответ клетки на внешнее раздражение.

    Эта способность белков лежит в основе работы нервной системы, мозга.

    Двигательная. Все виды движений клетки и организма: мерцание ресничек у простейших, сокращение мышц у высших животных и другие двигательные процессы - производятся особым видом белков.

    Энергетическая. Белки могут служить источником энергии для клетки.

    При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.

    Транспортная. Белок гемоглобин крови способен связывать кислород воздуха и транспортировать его по всему телу.

    Эта важнейшая функция свойственна и некоторым другим белкам.

    Пластическая. Белки - основной строительный материал клеток (их мембран) и организмов (их кровеносных сосудов, нервов, пищеварительного тракта и др.). При этом белки обладают индивидуальной специфичностью, т. е. в организмах отдельных людей содержатся некоторые, характерные лишь для него, белки-

    Таким образом, белки - эти важнейший компонент клетки, без которого невозможно проявление свойств жизни.

    Однако воспроизведение живого, явление наследственности, как мы увидим позже, связано с молекулярными структурами нуклеиновых кислот. Это открытие - результат новейших достижений биологии. Теперь известно, что живая клетка обязательно обладает двумя видами полимеров-белками и нуклеиновыми кислотами. В их взаимодействии заключены самые глубокие стороны явления жизни.

    1. Как называется процесс нарушения природной структуры белка, при котором сохраняется его первичная структура? Действие каких факторов может приводить к нарушению структуры белковых молекул?

    Процесс нарушения природной структуры белков под влиянием каких-либо факторов без разрушения первичной структуры называется денатурацией.

    Денатурация белков может быть вызвана действием различных факторов, например, высокой температуры, концентрированных кислот и щелочей, тяжёлых металлов.

    2. Чем фибриллярные белки отличаются от глобулярных? Приведите примеры фибриллярных и глобулярных белков.

    Молекулы фибриллярных белков имеют вытянутую, нитевидную форму. Глобулярные белки характеризуются компактной округлой формой молекул. К фибриллярным белкам относятся, например, кератин, коллаген, миозин.

    Глобулярными белками являются глобулины и альбумины крови, фибриноген, гемоглобин и др.

    3. Назовите основные биологические функции белков, приведите соответствующие примеры.

    ● Структурная функция. Белки входят в состав всех клеток и межклеточного вещества, являются компонентами различных структур живых организмов. Например, у животных белок коллаген входит в состав хрящей и сухожилий, эластин – в состав связок и стенок кровеносных сосудов, кератин является важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт.

    ● Ферментативная (каталитическая) функция.

    Белки-ферменты являются биологическими катализаторами, ускоряя протекание химических реакций в живых организмах. Например, пищеварительные ферменты амилаза и мальтаза расщепляют сложные углеводы до простых, пепсин – белки до пептидов, под действием липаз происходит расщепление жиров до глицерина и карбоновых кислот.

    ● Транспортная функция.

    Многие белки способны присоединять и переносить различные вещества. Например, гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют высшие карбоновые кислоты, а глобулины – ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из неё.

    ● Сократительная (двигательная) функция. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться.

    Например, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения, тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.

    ● Регуляторная функция.

    Некоторые белки и пептиды участвуют в регуляции различных физиологических процессов. Например, гормоны белково-пептидной природы инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) – процессы роста и физического развития.

    ● Сигнальная функция заключается в том, что некоторые белки, входящие в состав цитоплазматической мембраны клеток, в ответ на действие внешних факторов изменяют свою пространственную конфигурацию, тем самым обеспечивая приём сигналов из внешней среды и передачу информации в клетку.

    Например, белок опсин, входящий в состав пигмента родопсина, воспринимает свет и обеспечивает возникновение зрительного возбуждения рецепторов (палочек) сетчатки глаза.

    ● Защитная функция. Белки предохраняют организм от вторжения чужеродных объектов и от повреждений. Например, иммуноглобулины (антитела) участвуют в иммунном ответе, интерферон защищает организм от вирусной инфекции.

    Фибриноген, тромбопластин и тромбин обеспечивают свёртывание крови, предотвращая кровопотерю.

    ● Токсическая функция.

    Многие живые организмы выделяют белки-токсины, которые являются ядами для других организмов.

    ● Энергетическая функция. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии.

    ● Запасающая функция. Например, в семенах растений запасаются особые белки, которые используются при прорастании зародышем, а затем и проростком в качестве источника азота.

    Что такое ферменты? Почему без их участия протекание большинства биохимических процессов в клетке было бы невозможным?

    Ферменты – белки, которые выполняют функцию биологических катализаторов, т.

    е. ускоряют протекание химических реакций в живых организмах. Они катализируют реакции синтеза и расщепления различных веществ. Без участия ферментов эти процессы протекали бы слишком медленно или не протекали бы вовсе. Практически все процессы жизнедеятельности организмов обусловлены ферментативными реакциями.

    5. В чем заключается специфичность ферментов? Какова её причина? Почему ферменты активно функционируют лишь в определённом диапазоне температуры, рН и других факторов?

    Специфичность ферментов заключается в том, что каждый фермент ускоряет только одну реакцию либо действует только на определённый тип связи.

    Эта особенность объясняется соответствием пространственной конфигурации активного центра фермента тому или иному субстрату (субстратам).

    Ферменты являются белками. Изменение рН, температуры и других факторов может вызвать денатурацию ферментов, в результате чего они теряют способность связываться со своими субстратами.

    6. Почему белки, как правило, используются в качестве источников энергии лишь в крайних случаях, когда в клетках исчерпаны запасы углеводов и жиров?

    Белки – основа жизни.

    Они выполняют чрезвычайно важные биологические функции, многие из которых (ферментативную, транспортную, двигательную и др.) не способны выполнять ни углеводы, ни жиры. Белки, использованные в качестве энергетического субстрата, дают столько же энергии, сколько и углеводы (1 г – 17,6 кДж) и в 2,2 раза меньше, чем жиры (1 г – около 39 кДж).

    Кроме того, при полном расщеплении белков (в отличие от углеводов и жиров) образуются не только СО2 и Н2О, но также соединения азота и серы, причём некоторые из них токсичны для организма (например, NH3).

    Поэтому энергетическую функцию у живых организмов выполняют прежде всего углеводы и жиры.

    7*. У многих бактерий в процессах синтеза веществ, необходимых для нормального роста и размножения, участвует парааминобензойная кислота (ПАБК). В то же время в медицине для лечения ряда бактериальных инфекций используются сульфаниламиды - вещества, по структуре сходные с ПАБК. Как вы думаете, на чём основано лечебное действие сульфаниламидов?

    С помощью фермента (дигидроптероатсинтетазы) бактерии осуществляют превращение ПАБК в продукт (дигидроптероевую кислоту), который далее используется для синтеза необходимых ростовых факторов.

    Из-за структурного сходства с ПАБК, сульфаниламиды также способны связываться с активным центром этого фермента, блокируя его работу (т.е. наблюдается конкурентное ингибирование). Это ведёт к нарушению синтеза ростовых факторов и нуклеиновых кислот у бактерий.

    * Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез.

    Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

    Дашков М.Л.

    Сайт: dashkov.by

    Это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота.

    В составе большинства исследованных белков всех живых организмов было выявлено 20 аминокислот, участвующих в их построении.

    При синтезе белковой молекулы разные аминокислоты присоединяются последовательно друг к другу, образуя цепочку, или полипептид (впоследствии она может сворачиваться в спираль или глобулу).

    Разнообразие белков определяется тем, какие аминокислоты, в каком количестве и в каком порядке входят в полипептидную цепь. Две молекулы, одинаковые по числу и составу аминокислот, но отличающиеся по порядку их расположения, представляют два разных белка. Не только виды, но и особи одного вида отличаются по целому ряду белков (с чем, например, связан феномен несовместимости при пересадке тканей и органов от одного животного другому).

    Понятия «белок» и «пептид» близки между собой, однако между ними имеются и различия.

    Пептидами обычно называют олигопептиды, т. е. те, чья цепь содержит наибольшее число аминокислотных остатков (10-15),а белками называют пептиды, со-держащие большое число аминокислотных остатков (до нескольких тысяч) иимеющие определенную компактную пространственную структуру, так как длинная полипептидная цепь является энергетически невыгодным состоянием.

    Выделяются четыре уровня пространственной организации (структуры) бел-ков. Все структуры формируются в каналах эндоплазматической сети.

    Процесс нарушения природной структуры белка называется:

    При воздействии неблагоприятных факторов среды (облучение, повышенная температура, химические вещества) структуры белка могут разрушаться - происходит денатурация. Если этот процесс не затрагивает первичной структуры, он обратим, и по окончании воздействия молекула самопроизвольно восстанавливается.

    Первичная же структура невосстановима, так как формируется только на рибосомах при участии сложнейшего механизма биосинтеза белков. В зависи-мости от пространственной структуры белки бывают фибрил-лярные (в виде волокон) - строительные белки и глобулярные (в виде шара) - ферменты, антитела, некоторые гормоны и др.

    Огромное разнообразие белков обеспечивает и множество функций, ими выполняемых, и многоообразие организмов.

    Функции белков:

    1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

    2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);

    3) двигательная (миозин участвует в сокращении мышц);

    4) запасная (альбумины яйца);

    5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

    6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

    7) регуляторная (регуляторные белки определяют активность генов);

    8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);

    9) белки-ферменты катализируют все химические реакции в организме;

    10) энергетическая (при распаде белка выделяется 17 кдж энергии).

    Краснодембский Е.

    Г.»Общая биология: Пособие для старшеклассников и поступающих в вузы»

    Н. С. Курбатова, Е. А. Козлова «Конспект лекций по общей биологии»

    Т.Л. Богданова «Пособие для поступающих в вузы»

    Белки и их функции.

    Изучим основные вещества составляющие наши с вами организмы. Одни из них самых важных это белки.

    Белки (протеины, полипептиды) – углеродные вещества, состоящие из соединенных в цепочку аминокислот . Являются обязательной составной частью всех клеток.

    Аминокислоты - углеродные соединения, в молекулах которых одновременно содержатся карбоксильные (-COOH) и аминные (NH2) группы.

    Соединение, состоящее из большого числа аминокислот, называется - полипептидом . Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

    Свойства белков, определяет их аминокислотный состав, в строго зафиксированной последовательности, а аминокислотный состав в свою очередь определяется генетическим кодом. При создании белков используется 20 стандартных аминокислот.

    Структура белков.

    Выделяют несколько уровней:

    - Первичная структура - определяется порядком чередования аминокислот в полипептидной цепи.

    Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300-500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

    Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

    - Вторичная структура – белковые молекулы в виде спирали, с одинаковыми расстояниями между витками.

    Между группами N-Н и С=О, расположенными на соседних витках, возникают водородные связи. Они повторенные многократно, скрепляют регулярные витки спирали.

    - Третичная структура – образование спиралиевого клубка.

    Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы.

    Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.
    - Четвертичная структура – сборный белок, состоящий из нескольких цепей, отличающихся по первичной структуре.
    Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой.

    Денатурация белка.

    Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений рН (концентрация йонов водорода), а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи (с объединением электронов) не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т.е. ренатурировать.

    Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости - важнейшего свойства всех живых существ.

    Функции белков.

    Каталитическая.

    В каждой живой клетке происходят непрерывно сотни биохимических реакций. В ходе этих реакций идут расщепление и окисление поступающих извне питательных веществ. Полученную вследствие окисления энергию питательных веществ и продукты их расщепления клетка использует для синтеза необходимых ей разнообразных органических соединений. Быстрое протекание таких реакций обеспечивают биологические катализаторы, или ускорители реакций, - ферменты. Известно более тысячи разных ферментов. Все они белки.
    Белки-ферменты – ускоряют протекающие реакции в организме. Ферменты учавствуют в расщеплении сложных молекул (катаболизм) и их синтезе (анаболизм) а также создания и ремонте ДНК и матричного синтеза РНК.

    Структурная.

    Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

    Защитная.

    1. Физическая защита. (пример: коллаген - белок, образующий основу межклеточного вещества соединительных тканей)
    1. Химическая защита. Связывание токсинов белковыми молекулами обеспечивает их детоксикацию. (пример: ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма)
    1. Иммунная защита. На попадание бактерий или вирусов в кровь животных и человека организм реагирует выработкой специальных защитных белков - антител. Эти белки связываются с чужеродными для организма белками возбудителей заболеваний, чем подавляется их жизнедеятельность. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела.
    Регуляторная.

    Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин , который регулирует концентрацию глюкозы в крови.

    Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

    Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и программируемую клеточную смерть, обеспечивают согласованность действий иммунной, эндокринной и нервной систем.

    Транспортная.

    Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (транспорт кислорода), трансферрин (транспорт железа) или через мембраны- Na+,К+-АТФаза (противоположный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки).

    Рецепторная.

    Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы.

    Строительная.

    Животные в процессе эволюции утратили способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми. Они получают их в готовом виде с растительной и животной пищей. Такие аминокислоты содержатся в белках молочных продуктов (молоко, сыр, творог), в яйцах, рыбе, мясе, а также в сое, бобах и некоторых других растениях. В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются в кровь и попадают в клетки. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма. Белки являются обязательным компонентом всех клеточных структур и в этом состоит их важная строительная роль.

    Энергетическая.

    Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма. При длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

    Моторная (двигательная).

    Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе движение миозиновых мостиков в мышце, перемещение клеток внутри организма (например, амебоидное движение лейкоцитов).

    На самом деле это очень краткое описание функций белков, которое только наглядно может продемонстрировать их функции и значимость в организме.

    Немного видео для понимания о белках: