Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Модуль числа a — это расстояние от начала координат до точки А (a ).

Чтобы понять это определение, подставим вместо переменной a любое число, например 3 и попробуем снова прочитать его:

Модуль числа 3 — это расстояние от начала координат до точки А (3 ).

Становится ясно, что модуль это ни что иное, как обычное расстояние. Давайте попробуем увидеть расстояние от начала координат до точки А(3 )

Расстояние от начала координат до точки А(3 ) равно 3 (трём единицам или трём шагам).

Модуль числа обозначает двумя вертикальными линиями, например:

Модуль числа 3 обозначается так: |3|

Модуль числа 4 обозначается так: |4|

Модуль числа 5 обозначается так: |5|

Мы искали модуль числа 3 и выяснили, что он равен 3. Так и записываем:

Читается как: «Модуль числа три равен три»

Теперь попробуем найти модуль числа -3. Опять же возвращаемся к определению и подставляем в него число -3. Только вместо точки A используем новую точку B . Точку A мы уже использовали в первом примере.

Модулем числа —3 называют расстояние от начала координат до точки B (—3 ).

Расстояние от одного пункта до другого не может быть отрицательным. Поэтому и модуль любого отрицательного числа, будучи являясь расстоянием тоже не будет отрицательным. Модуль числа -3 будет число 3. Расстояние от начала координат до точки B(-3) равно также трём единицам:

Читается как: «Модуль числа минус три равен три»

Модуль числа 0 равен 0, та как точка с координатой 0 совпадает с началом координат, т.е. расстояние от начала координат до точки O(0) равно нулю:

«Модуль нуля равен нулю»

Делаем выводы:

  • Модуль числа не может быть отрицательным;
  • Для положительного числа и нуля модуль равен самому числу, а для отрицательного – противоположному числу;
  • Противоположные числа имеют равные модули.

Противоположные числа

Числа, отличающиеся только знаками называют противоположными . Например, числа −2 и 2 являются противоположными. Они отличаются только знаками. У числа −2 знак минуса, а у 2 знак плюса, но мы его не видим, потому что плюс, как мы говорили ранее, по традиции не пишут.

Еще примеры противоположных чисел:

Противоположные числа имеют равные модули. Например, найдём модули для −2 и 2

На рисунке видно, что расстояние от начала координат до точек A(−2) и B(2) одинаково равно двум шагам.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Противоположные числа – это числа, которые отличаются друг от друга только знаком. Выражение –а обозначает, что это число противоположное числу а .

Например, 7 и – 7;
41 и – 41 и т.д.

Число 0 противоположно самому себе!

То есть, для того, чтобы показать противоположность чисел в математике используют знак « – ».

Приписав знак « – » перед положительным числом 5 , мы получим отрицательное число – 5 .

Приписав знак « – » перед отрицательным числом – 5 , мы получим противоположное ему положительное число 5 , то есть – (–5) = 5.

– (–а) = а

На координатной прямой точки, у которых противоположные координаты, расположены на одинаковом расстоянии от начала отсчёта.

AO = OC
BO = OD

Модуль числа

Модуль числа – это расстояние (в единичных отрезках) от начала отсчёта до точки, которая изображает это число на координатной прямой.

Точки А(– 4) и В (4) отдалены от начала отсчёта на 4 единичных отрезков, а числа – 4 и 4 имеют одинаковые модули, равные 4.

Модуль числа а обозначают | а |

Так как модуль – это расстояние, а расстояние не может быть отрицательным, то модуль числа не может быть отрицательным числом !!!

Модулем положительного числа и нуля является тоже самое число, а модулем отрицательного числа – противоположное ему число:
| а | = а, если а ≥ 0 (если а – неотрицательное число)
| а | = – а, если а < 0 (если а – отрицательное число)

Выводы

Свойства модуля числа:

  1. Модуль числа не может быть отрицательным. Модуль числа всегда или положительное число или равен 0.
  1. Противоположные числа имеют равные модули.

| – а | = | а | = а

Пример, | – 12 | = | 12 | = 12

Решение уравнений (примеры)
1. – x = 7
вместо – x и 7 напишем противоположные им числа, используя знак «–»
–(– x) = – 7
воспользуемся правилом, что – (–а) = а получим
x = – 7
2. – x = – 10
–(– x) = –(– 10)
x = 10
3. x = –(– 32)
x = 32
4. | x | = 4
x = 4 или x = – 4
Ответ: 4; – 4
5. | x | = 0
x = 0
Ответ: 0
6. | y | = – 8
модуль не может быть отрицательным числом, а значит данное уравнение не имеет решения
Ответ: нет корней
7. | – x | = 12
вспомним второе свойство модуля, что | – а | = | а | = а, тогда
| x | = 12
x = 12 или x = – 12
Ответ: 12; – 12
8. | y | – 2 = 12
подобные уравнения решаются как простые уравнения, только с учётом модуля
| y | = 12 + 2
| y | = 14
y = 14 или y = – 14
Ответ: 14; – 14
9. 10 – 2| x | = 4
2| x | = 10 – 4
2| x | = 6
| x | = 6: 2
| x | = 3
x = 3 или x = – 3
Ответ: 3; – 3
То есть при решении уравнений, содержащих модуль мы получим три вида ответа :
два корня (если под знаком модуля положительное число) , один корень (если под знаком модуля 0)
нет корней (если под знаком модуля отрицательное число) .
Решение простейших неравенств, содержащих модуль

В 5 классе мы решали примеры с простейшими неравенствами. Линейные неравенства бывают строгие и нестрогие.
Строгие неравенства – это неравенства со знаками больше (>) или меньше (<).
x > a; x < a;
Нестрогие неравенства – это неравенства со знаками больше либо равно (≥) или меньше либо равно (≤).
x ≥ a; x ≤ a.

Примеры

1. Найдите все натуральные значения x, при которых является правильным неравенство x < 9

Решение.
Данное неравенство будет правильным при таких значениях x: 1; 2; 3; 4; 5; 6; 7; 8.
Ответ : х = {1; 2; 3; 4; 5; 6; 7; 8} – натуральные решения данного неравенства.

Примечание:
Число 0 не является решением этого неравества, так как 0 не является натуральным числом;
Число 9 не является решением этого неравества, так как данное неравенство строгое, то есть х строго меньше 9 и не может быть равным 9.

2. а удовлетворяет неравенство а > 12?

Решение.
Поскольку неравенство строгое, то число 13 является наименьшим натуральным значением а, которое удовлетворяет данному неравенству.
Ответ: 13

3. Какое наименьшее натуральное значение а удовлетворяет неравенство а ≥ 12?

Решение.
Поскольку неравенство нестрогое, то число 12 является наименьшим натуральным значением а, которое удовлетворяет данному неравенству.
Ответ: 12.

4. < x < 9

Решение.
Неравенство двойное (читают как «х больше от 2, но меньше от 9»), строгое, поэтому 3; 4; 5; 6; 7; 8 – натуральные решения данного двойного неравенства.
Ответ : х = {3; 4; 5; 6; 7; 8}

5. Найдите все натуральные значения x, при которых является правильным неравенство 2 < x ≤ 9.

Решение.
3; 4; 5; 6; 7; 8; 9 – натуральные решения данного двойного неравенства.
Ответ: х = {3; 4; 5; 6; 7; 8; 9}

6. Найти все целые числа, которые удовлетворяют неравенству| x | < 5.

Решение.
| x | < 5 (читаем как «расстояние от начала отсчёта до точки изображающей х меньше 5»).
Неравенство | x | < 5 эквивалентно (может быть также записано ) –5 < x < 5. Неравенство двойное, строгое, поэтому данное неравенство будет правильным при таких значениях x: –4; –3; –2; –1; 0; 1; 2; 3; 4.
Ответ: х = {–4; –3; –2; –1; 0; 1; 2; 3; 4}

7. Найти все целые числа, которые удовлетворяют неравенству| x | ≤ 5.

Решение.
Неравенство | x | ≤ 5 эквивалентно –5 ≤ x ≤ 5. Неравенство двойное, нестрогое, поэтому числа –5 и 5 войдут в множество чисел, при которых данное неравенство будет правильным. Таким образом, данное неравенство будет правильным при таких значениях x: –5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5.
Ответ : х = {–5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5}

8. Найти все целые числа, которые удовлетворяют неравенству | x | > 2 и обозначте их на координатной прямой.

Решение.
Неравенство | x | > 2 эквивалентно x < – 2 или x > 2. Обозначим на координатной прямой точки, координаты которых удовлетворяют данному неравенству

Поскольку неравенство строгое, то числа – 2 и 2 не входят в множество целых чисел, при которых данное неравенство будет правильным. А на координатной прямой эти точки обозначаем в виде незакрашенной точки.

Ответ : х = {…–5; –4; –3; 3; 4; 5…}

9. Найти все целые числа, которые удовлетворяют неравенству | x | ≥ 2 и обозначте их на координатной прямой.

Решение.
Неравенство | x | ≥ 2 эквивалентно x ≤ – 2 или x ≥ 2. Обозначим на координатной прямой точки, координаты которых удовлетворяют данному неравенству

Поскольку неравенство нестрогое, то числа – 2 и 2 входят в множество целых чисел, при которых данное неравенство будет правильным. А на координатной прямой эти точки обозначаем в виде закрашенной точки.

Ответ : х = {…–5; –4; –3; –2; 2; 3; 4; 5…}

10. Найти все целые числа, которые удовлетворяют неравенству 1 < | x | ≤ 3 и обозначте их на координатной прямой.

Решение.
Рассмотрим сначала левую часть неравенства. Она означает, что расстояние от начала отсчёта до точек меньше 1. Рассмотрим правую часть неравенства: расстояние от начала отсчёта до этих же точек меньше или равно 3.
Построим эти точки на координатной прямой:

1 и – 1 не входят в множество целых чисел, которые удовлетворяют неравенству, потому что неравенство строгое.
3 и – 3 входят в множество целых чисел, которые удовлетворяют неравенству, потому что неравенство нестрогое.

Ответ: х = {–3; –2; 2; 3}

Модуль числа — это расстояние от этого числа до нуля на координатной прямой.

Модуль обозначается с помощью символа: | |.

  • Запись |6| читается как «модуль числа 6», или «модуль шести».
  • Запись |8| читается как «модуль 8-ми».
Модуль положительного числа равен самому числу. Например, |2| = 2. Модуль отрицательного числа равен противоположному числу <=> |-3| = 3. Модуль нуля равен нулю, то есть |0| = 0. Модули противоположных чисел равны, то есть |-a| = |a|.

Для лучшего понимания темы: «модуль числа» предлагаем воспользоваться методом ассоциаций.

Представим, что модуль числа - это баня , а знак «минус» - грязь .

Оказываясь под знаком модуля (то есть в «бане») отрицательное число «моется» , и выходит без знака «минус» - чистым .


В бане могут «мыться» (то есть стоять под знаком модуля) и отрицательные , и положительные числа , и число ноль . Однако будучи «чистым» положительные числа , и ноль свой знак при выходе из «бани» (то есть из под знака модуля) не меняют !


История модуля числа или 6 интересных фактов о модуле числа

1. Слово «модуль» произошел от латинского названия modulus, что в переводе обозначает слово «мера».
2. Ввел в обращение этот термин ученик Исаака Ньютона — английский математик и философ Роджер Котс (1682 – 1716).
3. Великий немецкий физик, изобретатель, математик и философ Готфрид Лейбниц в своих работах и трудах использовал функцию модуля, которую он обозначил mod x .
4. Обозначение модуля было введено в 1841 году немецким математиком
Карлом Вейерштрассом (1815 — 1897).
5. При написании модуль обозначается с помощью символа: | |.
6. Еще одной версии термин «модуль» был введен в 1806 году французским
математиком по имени Жан Робер Аргáн (1768 — 1822). Но это не совсем так.
В начале девятнадцатого века математики Жан Робер Аргáн (1768 — 1822)
и Огюстен Луи Коши (1789 — 1857) ввели понятие «модуль комплексного числа»,
который изучается в курсе высшей математики.

Решение задач на тему «Модуль числа»

Задача №1. Расположи выражения: -|12|, 0, 54, |-(-2)|, -17 в порядке возрастания.

— | 12 | = — 12
| — (— 2) | = 2

17 < -12 < 0 < 2 < 54, что будет равносильно:
-17 < -|12| < 0 < | — (— 2) | < 54.

Ответ: -17 < -|12| < 0 < | — (— 2) | < 54.

Задача№2. Нужно расположить выражения: -|-14|, -|30|, |-16|, -21, | -(-9) |
в порядке убывания.

Для начала раскроем скобки и модули:

— | — 14| = — 14
— |30| = -30
|-16| = 16
| -(-9) | = 9

16 > 9 > -14 > — 21 > — 30 что будет равносильно:
|-16| > | -(-9) | > — | — 14| > — 21 > — |30|.

Ответ: |-16| > | -(-9) | > — | — 14| > — 21 > — |30|

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = - х, х

z1 + z2 = (x1 + x2) + i(y1 + y2);
z1 - z2 = (x1 - x2) + i(y1 - y2);

Легко заметить, что сложение и вычитание комплексных чисел подчиняется тому же правилу, что сложение и .

Произведение двух комплексных чисел равно:

z1*z2 = (x1 + iy1)*(x2 + iy2) = x1*x2 + i*y1*x2 + i*x1*y2 + (i^2)*y1*y2.

Поскольку i^2 = -1, то конечный результат равен:

(x1*x2 - y1*y2) + i(x1*y2 + x2*y1).

Операции возведения в степень и извлечения корня для комплексных чисел определяются так же, как и для действительных. Однако в комплексной области для любого числа существует ровно n таких чисел b, что b^n = a, то есть n корней n-ой степени.

В частности, это значит, что любое алгебраическое уравнение n-ой степени с одной переменной имеет ровно n комплексных корней, некоторые из которых могут быть и .

Видео по теме

Источники:

  • Лекция "Комплексные числа" в 2019

Корнем называют значок, обозначающий математическую операцию нахождения такого числа, возведение которого в указанную перед знаком корня степень должно дать число, указанное под этим самым знаком. Часто для решения задач, в которых присутствуют корни, недостаточно только рассчитать значение. Приходится осуществлять и дополнительные операции, одной из которых является внесение числа, переменной или выражения под знак корня.

Инструкция

Определите показатель степени корня. Показателем называют целое число, указывающее степень, в которую надо возвести результат вычисления корня, чтобы получить подкоренное выражение (то число, из которого извлекается этот корень). Показатель степени корня в виде верхнего индекса перед значком корня. Если этот не указан, это квадратный корень, степень которого равна двойке. Например, показатель корня √3 двум, показатель ³√3 равен трем, показатель корня ⁴√3 равен четырем и т.д.

Возведите число, которое требуется внести под знак корня, в степень, равную показателю этого корня, определенную вами на предыдущем шаге. Например, если нужно внести число 5 под знак корня ⁴√3, то показателем степени корня является четверка и вам надо результат возведения 5 в четвертую степень 5⁴=625. Сделать это можно любым удобным вам способом - в уме, с помощью калькулятора или соответствующих -сервисов, размещенных .

Внесите полученное на предыдущем шаге значение под знак корня в качестве множителя подкоренного выражения. Для использованного в предыдущем шаге примера с внесением под корень ⁴√3 5 (5*⁴√3), это действие можно так: 5*⁴√3=⁴√(625*3).

Упростите полученное подкоренное выражение, если это возможно. Для примера из предыдущих шагов это , что нужно просто перемножить числа, стоящие под знаком корня: 5*⁴√3=⁴√(625*3)=⁴√1875. На этом операция внесения числа под корень будет завершена.

Если в задаче присутствуют неизвестные переменные, то описанные выше шаги можно проделать в общем виде. Например, если требуется внести под корень четвертой степени неизвестную переменную x, а подкоренное выражение равно 5/x³, то вся последовательность действий может быть записана так: x*⁴√(5/x³)=⁴√(x⁴*5/x³)=⁴√(x*5).

Источники:

  • как называется знак корня

Действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел - это x^2+1=0. При его решении получается, что x=±sqrt(-1), а согласно законам элементарной алгебры, извлечь корень четной степени из отрицательного числа нельзя.