Проекция точки на плоскость является частным случаем общей задачи нахождения проекции точки на поверхность. В силу простоты вычисления проекции точки на касательную к поверхности плоскость используется в качестве нулевого приближения при решении общей задачи.

Рассмотрим задачу проецирования точки на плоскость, заданную радиус-вектором

Будем считать, что векторы не коллинеарные. Допустим, что в общем случае векторы не ортогональны и имеют не единичную длину. Плоскость проходит через точку в которой параметры равны нулю, а векторы определяют параметрические направления. Заданная точка имеет единственную проекцию на плоскость (4.6.1). Построим единичную нормаль к плоскости

Рис. 4.6.1. Проекция точки на плоскость s(u, v)

Вычислим радиус-вектор проекции точки на плоскость как разность радиус-вектора проецируемой точки и составляющей вектора параллельной нормали к плоскости,

(4.6.4)

На рис. 4.6.1 показаны векторы плоскости ее начальная точка и проекция заданной точки.

Параметры и длины проекций связаны уравнениями

где косинус угла между векторами определяется по формуле (1.7.13).

Из системы этих уравнений найдем параметры проекции точки на плоскость

(4.6.6)

где - коэффициенты первой основной квадратичной формы плоскости (1.7.8), они же ковариантные компоненты метрического тензора поверхности, - контравариантные компоненты метрического тензора поверхности. Если векторы ортогональные, то формулы (4.6.6) и (4.6.7) примут вид

Расстояние от точки до ее проекции на плоскость в общем случае вычисляется как длина вектора . Расстояние от точки до ее проекции на плоскость можно определить, не вычисляя проекцию точки, а вычислив проекцию вектора на нормаль к плоскости

(4.6.8)

Частные случаи.

Проекции точки на некоторые аналитические поверхности могут быть найдены без привлечения численных методов. Например, чтобы найти проекции точки на поверхность кругового цилиндра, конуса, сферы или тора, нужно перевести проецируемую точку в местную систему координат поверхности, где легко найти параметры проекций. Аналогично могут быть найдены проекции на поверхности выдавливания и вращения. В некоторых частных случаях положения проецируемой точки ее проекции могут быть легко найдены и на другие поверхности.

Общий случай.

Рассмотрим задачу проецирования точки на поверхность в общем случае. Пусть требуется найти все проекции точки на поверхность . Каждая искомая точка поверхности удовлетворяет системе двух уравнений

Система уравнений (4.6.9) содержит две неизвестные величины - параметры u и v. Эта задача решается так же, как и задача нахождения проекций заданной точки на кривую.

На первом этапе определим нулевые приближения параметров поверхности для проекций точки, а на втором этапе найдем точные значения параметров, определяющие проекции заданной точки на поверхность

Пройдем по поверхности с шагами вычисляемыми по формулам (4.2.4) и (4.2.5), описанным выше способом движения по параметрической области. Обозначим параметры точек, через которые мы пройдем, через . В каждой точке будем вычислять скалярные произведения векторов

(4.6.10)

Если искомое решение лежит вблизи точки с параметрами , то будут иметь разные знаки, а также и будут иметь разные знаки. Смена знаков скалярных произведений говорит о том, что рядом находится искомое решение. За нулевое приближение параметров примем значения Начиная с нулевого приближения параметров, одним из методов решения нелинейных уравнений найдем решение задачи с заданной точностью. Например, в методе Ньютона на итерации приращения параметров проекции найдутся из системы линейных уравнений

где частные производные радиус-вектора по параметрам. Следующее приближение параметров проекции точки равны . Процесс уточнения параметров закончим, когда на очередной итерации выполнятся неравенства , где - заданная погрешность. Таким же образом найдем все остальные корни системы уравнений (4.6.9).

Если требуется найти только ближайшую проекцию заданной точки на поверхность, то можно пройти по тем же точкам геометрического объекта и выбрать из них ближайшую к заданной точке. Параметры ближайшей точки и следует выбрать в качестве нулевого приближения решения задачи.

Проекция точки на поверхность в заданном направлении.

В определенных случаях возникает задача определения проекции точки на поверхность не по нормали к ней, а вдоль заданного направления. Пусть направление проецирования задано вектором единичной длины q. Построим прямую линию

(4.6.12)

проходящую через заданную точку и имеющую направление заданного вектора. Проекции точки на поверхность в заданном направлении определим как точки пересечения поверхности с прямой (4.6.12), проходящей через заданную точку в заданном направлении.

Глава 6. ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ

§ 32. Комплексный чертеж точки

Чтобы построить изображение предмета, сначала изображают отдельные его элементы в виде простейших элементов пространства. Так, изображая геометрическое тело, следует построить его вершины, представленные точками; ребра, представленные прямыми и кривыми линиями; грани, представленные плоскостями и т.д

Правила построения изображений на чертежах в инженерной графике основываются на методе проекций. Одно изображение (проекция) геометрического тела не позволяет судить о его геометрической форме или форме простейших геометрических образов, составляющих это изображение. Таким образом, нельзя судить о положении точки в пространстве по одной ее проекции; положение ее в пространстве определяется двумя проекциями.

Рассмотрим пример построения проекции точки А, расположенной в пространстве двугранного угла (рис. 60). Одну из плоскостей проекции расположим горизонтально, назовем ее горизонтальной плоскостью проекций и обозначим буквой П 1 . Проекции элементов


пространства на ней будем обозначать с индексом 1: А 1 , а 1 , S 1 ... и называть горизонтальными проекциями (точки, прямой, плоскости).

Вторую плоскость расположим вертикально перед наблюдателем, перпендикулярно первой, назовем ее вертикальной плоскостью проекций и обозначим П 2 . Проекции элементов пространства на ней будем обозначать с индексом 2: А 2 , 2 и называть фронтальными проекциями (точки, прямой, плоскости). Линию пересечения плоскостей проекций назовем осью проекций.

Спроецируем точку А ортогонально на обе плоскости проекций:

АА 1 _|_ П 1 ;AА 1 ^П 1 =A 1 ;

АА 2 _|_ П 2 ;AА 2 ^П 2 =A 2 ;

Проецирующие лучи АА 1 и АА 2 взаимно перпендикулярны и создают в пространстве проецирующую плоскость АА 1 АА 2 , перпендикулярную обеим сторонам проекций. Эта плоскость пересекает плоскости проекций по линиям, проходящим через проекции точки А.

Чтобы получить плоский чертеж, совместим горизонтальную плоскость проекций П 1 с фронтальной плоскостью П 2 вращением вокруг оси П 2 /П 1 (рис. 61, а). Тогда обе проекции точки окажутся на одной линии, перпендикулярной оси П 2 /П 1 . Прямая А 1 А 2 , соединяющая горизонтальную А 1 и фронтальную А 2 проекции точки, называется вертикальной линией связи.

Полученный плоский чертеж называется комплексным чертежом. Он представляет собой изображение предмета на нескольких совмещенных плоскостях. Комплексный чертеж, состоящий из двух ортогональных проекций, связанных между собой, называется двухпроекционным. На этом чертеже горизонтальная и фронтальная проекции точки всегда лежат на одной вертикальной линии связи.

Две связанные между собой ортогональные проекции точки однозначно определяют ее положение относительно плоскостей проекций. Если определить положение точки а относительно этих плоскостей (рис. 61, б) ее высотой h (АА 1 =h) и глубиной f(AA 2 =f), то эти величины на комплексном чертеже существуют как отрезки вертикальной линии связи. Это обстоятельство позволяет легко реконструировать чертеж, т. е. определить по чертежу положение точки относительно плоскостей проекций. Для этого достаточно в точке А 2 чертежа восстановить перпендикуляр к плоскости чертежа (считая ее фронтальной) длиной, равной глубине f . Конец этого перпендикуляра определит положение точки А относительно плоскости чертежа.

60.gif

Изображение:

61.gif

Изображение:

7. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

4. Как называется расстояние, определяющее положение точки относительно плоскости проекций П 1 , П 2 ?

7. Как построить дополнительную проекцию точки на плоскости П 4 _|_ П 2 , П 4 _|_ П 1 , П 5 _|_ П 4 ?

9. Как можно построить комплексный чертеж точки по ее координатам?

33. Элементы трехпроекционного комплексного чертежа точки

§ 33. Элементы трехпроекционного комплексного чертежа точки

Для определения положения геометрического тела в пространстве и получения дополнительных сведений на их изображениях может возникнуть необходимость в построении третьей проекции. Тогда третью плоскость проекций располагают справа от наблюдателя перпендикулярно одновременно горизонтальной плоскости проекций П 1 и фронтальной плоскости проекций П 2 (рис. 62, а). В результате пересечения фронтальной П 2 и профильной П 3 плоскостей проекций получаем новую ось П 2 /П 3 , которая располагается на комплексном чертеже параллельно вертикальной линии связи A 1 A 2 (рис. 62, б). Третья проекция точки А - профильная - оказывается связанной с фронтальной проекцией А 2 новой линией связи, которую называют горизонталь-

Рис. 62

ной. Фронтальная и профильная проекции точки всегда лежат на одной горизонтальной линии связи. Причем A 1 A 2 _|_ А 2 А 1 и А 2 А 3 , _| _ П 2 /П 3 .

Положение точки в пространстве в этом случае характеризуется ее широтой - расстоянием от нее до профильной плоскости проекций П 3 , которое обозначим буквой р.

Полученный комплексный чертеж точки называется трехпроек-ционным.

В трехпроекционном чертеже глубина точки АА 2 проецируется без искажений на плоскости П 1 и П 2 (рис. 62, а). Это обстоятельство позволяет построить третью - фронтальную проекцию точки А по ее горизонтальной А 1 и фронтальной А 2 проекциям (рис. 62, в). Для этого через фронтальную проекцию точки нужно провести горизонтальную линию связи A 2 A 3 _|_A 2 A 1 . Затем в любом месте на чертеже провести ось проекций П 2 /П 3 _|_ А 2 А 3 , измерить глубину f точки на горизонтальном поле проекции и отложить ее по горизонтальной линии связи от оси проекций П 2 /П 3 . Получим профильную проекцию А 3 точки А.

Таким образом, на комплексном чертеже, состоящем из трех ортогональных проекций точки, две проекции находятся на одной линии связи; линии связи перпендикулярны соответствующим осям проекций; две проекции точки вполне определяют положение ее третьей проекции.

Необходимо отметить, что на комплексных чертежах, как правило, не ограничивают плоскости проекций и положение их задают осями (рис. 62, в). В тех случаях, когда условиями задачи этого не требу-

ется, проекции точек могут быть даны без изображения осей (рис. 63, а, б). Такая система называется безосновой. Линии связи могут также проводиться с разрывом (рис. 63, б).

62.gif

Изображение:

63.gif

Изображение:

34. Положение точки в пространстве трехмерного угла

§ 34. Положение точки в пространстве трехмерного угла

Расположение проекций точек на комплексном чертеже зависит от положения точки в пространстве трехмерного угла. Рассмотрим некоторые случаи:

  • точка расположена в пространстве (см. рис. 62). В этом случае она имеет глубину, высоту и широту;
  • точка расположена на плоскости проекций П 1 - она не имеет высоты, П 2 - не имеет глубины, Пз - не имеет широты;
  • точка расположена на оси проекций, П 2 /П 1 не имеет глубины и высоты, П 2 /П 3 - не имеет глубины и широты и П 1 /П 3 не имеет высоты и широты.

35. Конкурирующие точки

§ 35. Конкурирующие точки

Две точки в пространстве могут быть расположены по-разному. В отдельном случае они могут быть расположены так, что проекции их на какой-нибудь плоскости проекций совпадают. Такие точки называются конкурирующими. На рис. 64, а приведен комплексный чертеж точек А и В. Они расположены так, что проекции их совпадают на плоскости П 1 [А 1 == В 1 ]. Такие точки называются горизонтально конкурирующими. Если проекции точек A и В совпадают на плоскости

П 2 (рис. 64, б), они называются фронтально конкурирующими. И если проекции точек А и В совпадают на плоскости П 3 [А 3 == B 3 ] (рис. 64, в), они называются профильно конкурирующими.

По конкурирующим точкам определяют видимость на чертеже. У горизонтально конкурирующих точек будет видима та, у которой больше высота, у фронтально конкурирующих - та, у которой больше глубина, и у профильно конкурирующих - та, у которой больше широта.

64.gif

Изображение:

36. Замена плоскостей проекций

§ 36. Замена плоскостей проекций

Свойства трехпроекционного чертежа точки позволяют по горизонтальной и фронтальной ее проекциям строить третью на другие плоскости проекций, введенные взамен заданных.

На рис. 65, а показаны точка А и ее проекции - горизонтальная А 1 и фронтальная А 2 . По условиям задачи необходимо произвести замену плоскостей П 2 . Новую плоскость проекции обозначим П 4 и расположим перпендикулярно П 1 . На пересечении плоскостей П 1 и П 4 получим новую ось П 1 /П 4 . Новая проекция точки А 4 будет расположена на линии связи, проходящей через точку А 1 и перпендикулярно оси П 1 /П 4 .

Поскольку новая плоскость П 4 заменяет фронтальную плоскость проекции П 2 , высота точки А изображается одинаково в натуральную величину и на плоскости П 2 , и на плоскости П 4 .

Это обстоятельство позволяет определить положение проекции A 4 , в системе плоскостей П 1 _|_ П 4 (рис. 65, б) на комплексном чертеже. Для этого достаточно измерить высоту точки на заменяемой плоско-

сти проекции П 2 , отложить ее на новой линии связи от новой оси проекций - и новая проекция точки А 4 будет построена.

Если новую плоскость проекций ввести взамен горизонтальной плоскости проекций, т. е. П 4 _|_ П 2 (рис. 66, а), тогда в новой системе плоскостей новая проекция точки будет находиться на одной линии связи с фронтальной проекцией, причем А 2 А 4 _|_. В этом случае глубина точки одинакова и на плоскости П 1 , и на плоскости П 4 . На этом основании строят А 4 (рис. 66, б) на линии связи А 2 А 4 на таком расстоянии от новой оси П 1 /П 4 на каком А 1 находится от оси П 2 /П 1 .

Как уже отмечалось, построение новых дополнительных проекций всегда связано с конкретными задачами. В дальнейшем будет рассмотрен ряд метрических и позиционных задач, решаемых с применением метода замены плоскостей проекций. В задачах, где введение одной дополнительной плоскости не даст желаемого результата, вводят еще одну дополнительную плоскость, которую обозначают П 5 . Ее располагают перпендикулярно уже введенной плоскости П 4 (рис. 67, а), т. е. П 5 П 4 и производят построение, аналогичное ранее рассмотренным. Теперь расстояния измеряют на заменяемой второй из основных плоскостей проекций (на рис. 67, б на плоскости П 1) и откладывают их на новой линии связи А 4 А 5 , от новой оси проекций П 5 /П 4 . В новой системе плоскостей П 4 П 5 получают новый двухпроекционный чертеж, состоящий из ортогональных проекций А 4 и А 5 , связанных линией связи

При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.

Уравнение для описания плоскости

Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее - ниже.

Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:

A*x + B*y + C*z + D = 0.

Первые три коэффициента - это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.

Понятие о проекции точки и ее вычисление

Предположим, что задана некоторая точка P(x 1 ; y 1 ; z 1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x 2 ; y 2 ; z 2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.

Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:

(x; y; z) = (x 1 ; y 1 ; z 1) + λ*(A; B; C).

Где λ - действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.

После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.

Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.

Вычисление расстояния от плоскости до точки

Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:

d = |PQ¯| = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2).

Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.

Пример задачи

Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:

Следует найти точки проекцию на плоскость и вычислить между ними расстояние.

В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90 o . Имеем:

(x; y; z) = (0; -2; 3) + λ*(2; -1; 1).

Записывая это равенство в явном виде, приходим к следующей системе уравнений:

Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:

2*(2*λ) - (-2 - λ) + λ + 3 + 4 = 0 =>

6*λ + 9 = 0 =>

λ = 9/6 = 3/2 = 1,5.

Подставим найденный параметр в и найдем координаты проекции исходной точки на плоскость:

(x; y; z) = (0; -2; 3) + 1,5*(2; -1; 1) = (3; -3,5; 4,5).

Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:

d = √((3 - 0) 2 + (-3,5 + 2) 2 + (4,5 - 3) 2) = 3,674.

В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.


В этой статье сначала дано определение проекции точки на прямую (на ось) и приведен поясняющий рисунок. Далее разобран способ нахождения координат проекции точки на прямую во введенной прямоугольной системе координат на плоскости и в трехмерном пространстве, показаны решения примеров с подробными пояснениями.

Навигация по странице.

Проекция точки на прямую – определение.

Так как все геометрические фигуры состоят из точек, а проекция фигуры представляет собой множество проекций всех точек этой фигуры, то для проецирования фигуры на прямую необходимо уметь проецировать точки этой фигуры на данную прямую.

Так что же называют проекцией точки на прямую?

Определение.

Проекция точки на прямую – это либо сама точка, если она лежит на данной прямой, либо основание перпендикуляра, опущенного из этой точки на заданную прямую.

На приведенном ниже рисунке точка H 1 является проекцией точки M 1 на прямую a , а точка M 2 есть проекция самой точки М 2 на прямую a , так как М 2 лежит на прямой a .

Это определение проекции точки на прямую справедливо как для случая на плоскости, так и для случая в трехмерном пространстве.

На плоскости, чтобы построить проекцию точки М 1 на прямую a нужно провести прямую b , которая проходит через точку М 1 и перпендикулярна прямой a . Тогда точка пересечения прямых a и b является проекцией точки М 1 на прямую a .

В трехмерном пространстве проекцией точки М 1 на прямую a является точка пересечения прямой a и плоскости , проходящей через точку М 1 перпендикулярно к прямой a .

Нахождение координат проекции точки на прямую – теория и примеры.

Начнем с нахождения координат проекции точки на прямую, когда проецируемая точка и прямая заданы в прямоугольной системе координат Oxy на плоскости. После этого покажем, как находятся координаты проекции точки на прямую в прямоугольной системе координат Oxyz в трехмерном пространстве.

Координаты проекции точки на прямую на плоскости.

Пусть на плоскости зафиксирована Oxy , задана точка , прямая a и требуется определить координаты проекции точки М 1 на прямую a .

Решим эту задачу.

Проведем через точку М 1 прямую b , перпендикулярную прямой a , и обозначим точку пересечения прямых a и b как H 1 . Тогда H 1 – проекция точки М 1 на прямую a .

Из проведенного построения логически следует алгоритм, позволяющий найти координаты проекции точки на прямую a :

Разберемся с нахождением координат проекции точки на прямую при решении примера.

Пример.

На плоскости относительно прямоугольной системы координат Oxy заданы точка и прямая a , которой соответствует общее уравнение прямой вида

Решение.

Уравнение прямой a нам известно из условия, так что можно переходить ко второму шагу алгоритма.

Получим уравнение прямой b , которая проходит через точку М 1 и перпендикулярна прямой a . Для этого нам потребуются координаты направляющего вектора прямой b .Так как прямая b перпендикулярна прямой a , то нормальный вектор прямой a является направляющим вектором прямой b . Очевидно, нормальным вектором прямой является вектор с координатами , следовательно, направляющим вектором прямой b является вектор . Теперь мы можем написать каноническое уравнение прямой b , так как знаем координаты точки , через которую она проходит, и координаты ее направляющего вектора: .

Осталось найти координаты точки пересечения прямых a и b , которые дадут искомые координаты проекции точки М 1 на прямую a . Для этого сначала перейдем от канонических уравнений прямой b к ее общему уравнению: . Теперь составим систему уравнений из общих уравнений прямых a и b , после чего найдем ее решение (при необходимости обращайтесь к статье ):

Таким образом, проекция точки на прямую имеет координаты .

Ответ:

Пример.

На плоскости в прямоугольной системе координат Oxy заданы три точки . Найдите координаты проекции точки М 1 на прямую АВ .

Решение.

Для нахождения координат проекции точки М 1 на прямую АВ будем действовать по полученному алгоритму.

Напишем уравнение прямой, проходящей через две заданные точки и :
.

Теперь можно от полученного канонического уравнения прямой АВ перейти к общему уравнению прямой АВ и продолжить решение по аналогии с предыдущим примером. Но давайте рассмотрим другой способ нахождения уравнения прямой b , проходящей через точку М 1 перпендикулярно прямой АВ .

Из канонического уравнения прямой АВ получим уравнение прямой с угловым коэффициентом : . Угловой коэффициент прямой АВ равен , а угловой коэффициент прямой b , которая перпендикулярна прямой АВ , равен (смотрите условие перпендикулярности прямых). Тогда уравнение прямой b , проходящей через точку и имеющей угловой коэффициент , имеет вид .

Чтобы определить координаты проекции точки на прямую АВ осталось решить систему уравнений :

Ответ:

Давайте еще отдельно остановимся на нахождении координат проекции точки на координатные прямые Ox и Oy , а также на прямые, им параллельные.

Очевидно, что проекцией точки на координатную прямую Ox , которой соответствует неполное общее уравнение прямой вида , является точка с координатами . Аналогично, проекция точки на координатную прямую Oy имеет координаты .

Любая прямая, параллельная оси абсцисс, может быть задана неполным общим уравнением вида , а прямая, параллельная оси ординат, - уравнением вида . Проекциями точки на прямые и являются точки с координатами и соответственно.

Пример.

Какие координаты имеют проекции точки на координатную прямую Oy и на прямую .

Решение.

Проекцией точки на прямую Oy является точка с координатами .

Перепишем уравнение прямой как . Теперь хорошо видно, что проекция точки на прямую имеет координаты .

Ответ:

И .

Координаты проекции точки на прямую в трехмерном пространстве.

Теперь переходим к нахождению координат проекции точки на прямую относительно прямоугольной системы координат Oxyz , введенной в трехмерном пространстве.

Пусть в пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , прямая a и требуется найти координаты проекции точки М 1 на прямую a .

Решим эту задачу.

Построим плоскость , которая проходит через точку М 1 перпендикулярно к прямой a . Проекцией точки М 1 на прямую a является точка пересечения прямой a и плоскости . Таким образом, получаем алгоритм, позволяющий найти координаты проекции точки на прямую a :

Рассмотрим решение примера.

Пример.

В прямоугольной системе координат Oxyz задана точка и прямая a , причем прямую a определяют канонические уравнения прямой в пространстве вида . Найдите координаты проекции точки М 1 на прямую a .

Решение.

Для определения координат проекции точки М 1 на прямую a воспользуемся полученным алгоритмом.

Уравнения прямой a нам сразу известны из условия, так что переходим ко второму шагу.

Получим уравнение плоскости , которая перпендикулярна к прямой a и проходит через точку . Для этого нам нужно знать координаты нормального вектора плоскости . Найдем их. Из канонических уравнений прямой a видны координаты направляющего вектора этой прямой: . Направляющий вектор прямой a является нормальным вектором плоскости, которая перпендикулярна к прямой a . То есть, - нормальный вектор плоскости . Тогда уравнение плоскости , проходящей через точку и имеющей нормальный вектор , имеет вид .

Осталось найти координаты точки пересечения прямой a и плоскости - они являются искомыми координатами проекции точки на прямую a . Покажем два способа их нахождения.

Первый способ.

Из канонических уравнений прямой a получим уравнения двух пересекающихся плоскостей , которые определяют прямую a:

Координаты точки пересечения прямой и плоскости мы получим, решив систему линейных уравнений вида . Применим (если Вам больше нравиться или какой-нибудь другой метод решения систем линейных уравнений, то применяйте его):

Таким образом, точка с координатами является проекцией точки М 1 на прямую a .

Второй способ.

Зная канонические уравнения прямой a , легко записать ее параметрические уравнения прямой в пространстве : . Подставим в уравнение плоскости вида вместо x , y и z их выражения через параметр:

Теперь мы можем вычислить искомые координаты точки пересечения прямой a и плоскости по параметрическим уравнениям прямой a при :

Метод проекций является основой теории построения чертежных изображений в инженерной графике. Чаще всего он используется, когда необходимо найти изображение тела в виде его проекции на плоскости либо получить данные о его положении в пространстве.

Инструкция

  • В многомерном пространстве любое изображение объекта на плоскости можно получить с помощью проецирования. Однако не стоит судить о геометрической форме тела либо о форме простейших образов в геометрии на основе одной проекции точки. Наиболее полную информацию об изображении геометрического тела дает несколько проекций точек. Для чего используют проекции точек тела минимум в двух плоскостях.
  • Например, необходимо построить проекцию точки А. Для этого расположите две плоскости перпендикулярно друг другу. Одну -горизонтально, называя ее горизонтальной плоскостью и обозначая все проекции элементов с индексом 1. Вторую - вертикально. Назовите ее, соответственно, фронтальной плоскостью , а проекциям элементов присвойте индекс 2. Обе эти плоскости считайте бесконечными и непрозрачными. Линией их пересечений становится ось координат ОХ.
  • Затем примите как факт, что пространство между плоскостями проекции условно делится на четверти. Вы находитесь в первой четверти и видите только те линии и точки, которые находятся в этой области двугранного угла.
  • Суть процесса проецирования состоит в проведении луча через заданную точку, пока луч не встретится с плоскостью проекций. Данный метод получил название метода ортогонального проецирования. Согласно нему, опустите из точки А перпендикуляр на горизонтальную и фронтальную плоскость. Основанием этого перпендикуляра как раз и будет горизонтальная проекция точки А1 либо фронтальная проекция точки А2. Таким образом, вы получите положение этой точки в пространстве заданных плоскостей проекций.