Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.

Определение 1

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость О х у, то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у, перпендикулярной О х. Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .

Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой

При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.

Пример 1

Задана прямая вида 2 x + 7 y - 4 = 0 _, найти координаты нормального вектора.

Решение

По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты, которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .

Ответ: 2 , 7 .

Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.

Пример 2

Указать нормальный вектор для заданной прямой y - 3 = 0 .

Решение

По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y - 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .

Ответ: 0 , 1 .

Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.

Пример 3

Найти координаты нормального вектора, если дано уравнение прямой x 1 3 - y = 1 .

Решение

Для начала необходимо перейти от уравнения в отрезках x 1 3 - y = 1 к уравнению общего вида. Тогда получим, что x 1 3 - y = 1 ⇔ 3 · x - 1 · y - 1 = 0 .

Отсюда видно, что координаты нормального вектора имеют значение 3 , - 1 .

Ответ: 3 , - 1 .

Если прямая определена каноническим уравнением прямой на плоскости x - x 1 a x = y - y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = (a x , a y) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .

Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0

Для решения можно выбирать любой удобный способ.

Пример 4

Найти нормальный вектор заданной прямой x - 2 7 = y + 3 - 2 .

Решение

Из прямой x - 2 7 = y + 3 - 2 понятно, что направляющий вектор будет иметь координаты a → = (7 , - 2) . Нормальный вектор n → = (n x , n y) заданной прямой является перпендикулярным a → = (7 , - 2) .

Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = (7 , - 2) и n → = (n x , n y) запишем a → , n → = 7 · n x - 2 · n y = 0 .

Значение n x – произвольное, следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 - 2 · n y = 0 ⇔ n y = 7 2 .

Значит, нормальный вектор имеет координаты 1 , 7 2 .

Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем

x - 2 7 = y + 3 - 2 ⇔ 7 · (y + 3) = - 2 · (x - 2) ⇔ 2 x + 7 y - 4 + 7 3 = 0

Полученный результат координат нормального вектора равен 2 , 7 .

Ответ: 2 , 7 или 1 , 7 2 .

Пример 5

Указать координаты нормального вектора прямой x = 1 y = 2 - 3 · λ .

Решение

Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:

x = 1 y = 2 - 3 · λ ⇔ x = 1 + 0 · λ y = 2 - 3 · λ ⇔ λ = x - 1 0 λ = y - 2 - 3 ⇔ x - 1 0 = y - 2 - 3 ⇔ ⇔ - 3 · (x - 1) = 0 · (y - 2) ⇔ - 3 · x + 0 · y + 3 = 0

Отсюда видно, что координаты нормального вектора равны - 3 , 0 .

Ответ: - 3 , 0 .

Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .

Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) .

Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x - x 1 a x = y - y 1 a y = z - z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = (a x , a y , a z) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = (a x , a y , a z) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Существует ряд заданий, которым для решения необходимо нормальный вектор на плоскости, чем саму плоскость. Поэтому в этой статье получим ответ на вопрос определения нормального вектора с примерами и наглядными рисунками. Определим векторы трехмерного пространства и плоскости по уравнениям.

Чтобы материал легко усваивался, необходимо предварительно изучить теорию о прямой в пространстве и представление ее на плоскости и векторы.

Определение 1

Нормальным вектором плоскости считается любой ненулевой вектор, который лежит на перпендикулярной к данной плоскости прямой.

Отсюда следует, что имеет место существование большого количества нормальных векторов в данной плоскости. Рассмотрим на рисунке, приведенном ниже.

Нормальные векторы располагаются на параллельных прямых, поэтому они все коллинеарны. То есть, при нормальном векторе n → , расположенном в плоскости γ , вектор t · n → , имея ненулевое значение параметра t , также нормальный вектор плоскости γ . Любой вектор может быть рассмотрен как направляющий вектор прямой, которая перпендикулярна этой плоскости.

Имеются случаи совпадения нормальных векторов плоскостей из-за перпендикулярности одной из параллельных плоскостей, так как прямая перпендикулярна и второй плоскости. Отсюда следует, что нормальные векторы перпендикулярных плоскостей должны быть перпендикулярными.

Рассмотрим на примере нормального вектора на плоскости.

Задана прямоугольная система координат О х у z в трехмерном пространстве. Координатные векторы i → , j → , k → считаются нормальными векторами плоскостей O y z , O x z и O x y . Это суждение верно, так как i → , j → , k → ненулевые и расположены на координатных прямых O x , O y и O z . Эти прямые перпендикулярны координатным плоскостям O y z , O x z и O x y .

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости из уравнения плоскости

Статья предназначена для того, чтобы научить находить координаты нормального вектора плоскости при известном уравнении плоскости прямоугольной системы координат О х у z . Для определения нормального вектора n → = (A , B , C) в плоскости необходимо наличие общего уравнения плоскости, имеющее вид A x + B y + C z + D = 0 . То есть достаточно иметь уравнение плоскости, тогда появится возможность для нахождения координат нормального вектора.

Пример 1

Найти координаты нормального вектора, принадлежащего плоскости 2 x - 3 y + 7 z - 11 = 0 .

Решение

По условию имеем уравнение плоскости. Необходимо обратить внимание на коэффициенты, так как они и являются координатами нормального вектора заданной плоскости. Отсюда получаем, что n → = (2 , - 3 , 7) - это нормальный вектор плоскости. Все векторы плоскости задаются при помощи формулы t · n → = 2 · t , - 3 · t , 7 · t , t является любым действительным числом не равным нулю.

Ответ: n → = (2 , - 3 , 7) .

Пример 2

Определить координаты направляющих векторов заданной плоскости x + 2 z - 7 = 0 .

Решение

По условию имеем, что дано неполное уравнение плоскости. Чтобы увидеть координаты, необходимо преобразовать уравнение x + 2 z - 7 = 0 к виду 1 · x + 0 · y + 2 z - 7 = 0 . Отсюда получим, что координаты нормального вектора данной плоскости равны (1 , 0 , 2) . Тогда множество векторов будет иметь такую форму записи (t , 0 , 2 · t) , t ∈ R , t ≠ 0 .

Ответ: (t , 0 , 2 · t) , t ∈ R , t ≠ 0 .

При помощи уравнения плоскости в отрезках, имеющего вид x a + y b + z c = 1 , и общего уравнения плоскости возможна запись нормального вектора этой плоскости, где координаты равны 1 a , 1 b , 1 c .

Знания о нормальном векторе позволяют с легкостью решать задачи. Часто встречающимися задачами являются задания с доказательствами параллельности или перпендикулярности плоскостей. Заметно упрощается решение задач на составление уравнений заданной плоскости. Если имеется вопрос о нахождении угла между плоскостями или между прямой и плоскостью, то формулы нормального вектора и нахождения его координат помогут в этом.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), причём все векторы нормали прямой будут коллинеарными (сонаправленными или нет – без разницы).

Разборки с ними будут даже проще, чем с направляющими векторами:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.

Если координаты направляющего вектора приходиться аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».

Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения:

Приведу примеры с теми же уравнениями, что и для направляющего вектора:

Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Если известен вектор нормали, то однозначно определено и направление самой прямой – это «жёсткая конструкция» с углом в 90 градусов.

Как составить уравнение прямой по точке и вектору нормали?

Если известна некоторая точка , принадлежащая прямой, и вектор нормали этой прямой, то уравнение данной прямой выражается формулой:

Составить уравнение прямой по точке и вектору нормали . Найти направляющий вектор прямой.

Решение: Используем формулу:

Общее уравнение прямой получено, выполним проверку:

1) «Снимаем» координаты вектора нормали с уравнения : – да, действительно, получен исходный вектор из условия (либо должен получиться коллинеарный исходному вектор).

2) Проверим, удовлетворяет ли точка уравнению :

Верное равенство.

После того, как мы убедились в том, что уравнение составлено правильно, выполним вторую, более лёгкую часть задания. Вытаскиваем направляющий вектор прямой:

Ответ:

На чертеже ситуация выглядит следующим образом:

В целях тренировки аналогичная задача для самостоятельного решения:

Составить уравнение прямой по точке и нормальному вектору . Найти направляющий вектор прямой.

Заключительный раздел урока будет посвящен менее распространённым, но тоже важным видам уравнений прямой на плоскости

Уравнение прямой в отрезках.
Уравнение прямой в параметрической форме

Уравнение прямой в отрезках имеет вид , где – ненулевые константы. Некоторые типы уравнений нельзя представить в таком виде, например, прямую пропорциональность (так как свободный член равен нулю и единицу в правой части никак не получить).



Это, образно говоря, «технический» тип уравнения. Обыденная задача состоит в том, чтобы общее уравнение прямой представить в виде уравнения прямой в отрезках . Чем оно удобно? Уравнение прямой в отрезках позволяет быстро найти точки пересечения прямой с координатными осями, что бывает очень важным в некоторых задачах высшей математики.

Найдём точку пересечения прямой с осью . Обнуляем «игрек», и уравнение принимает вид . Нужная точка получается автоматически: .

Аналогично с осью – точка, в которой прямая пересекает ось ординат.

Действия, которые я только что подробно разъяснил, выполняются устно.

Дана прямая . Составить уравнение прямой в отрезках и определить точки пересечения графика с координатными осями.

Решение: Приведём уравнение к виду . Сначала перенесём свободный член в правую часть:

Чтобы получить справа единицу, разделим каждый член уравнения на –11:

Делаем дроби трёхэтажными:

Точки пересечения прямой с координатными осями всплыли на поверхность:

Ответ:

Осталось приложить линеечку и провести прямую.

Легко усмотреть, что данная прямая однозначно определяется красным и зелёным отрезками, отсюда и название – «уравнение прямой в отрезках».

Конечно, точки не так трудно найти и из уравнения , но задача всё равно полезная. Рассмотренный алгоритм потребуется для нахождения точек пересечения плоскости с координатными осями, для приведения уравнения линии второго порядка к каноническому виду и в некоторых других задачах. Поэтому пара прямых для самостоятельного решения:

Составить уравнение прямой в отрезках и определить точки её пересечения с координатными осями.

Решения и ответы в конце. Не забывайте, что при желании всё можно начертить.

Как составить параметрические уравнениЯ прямой?



Параметрические уравнения прямой больше актуальны для прямых в пространстве, но без них наш конспект осиротеет.

Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то параметрические уравнения данной прямой задаются системой:

Составить параметрические уравнения прямой по точке и направляющему вектору

Решение закончилось, не успев начаться:

Параметр «тэ» может принимать любые значения от «минус бесконечности» до «плюс бесконечности», и каждому значению параметра соответствует конкретная точка плоскости. Например, если , то получаем точку .

Обратная задача: как проверить, будет ли точка условия принадлежать данной прямой?

Подставим координаты точки в полученные параметрические уравнения:

Из обоих уравнений следует, что , то есть, система совместна и имеет единственное решение.

Рассмотрим более содержательные задания:

Составить параметрические уравнения прямой

Решение: По условию прямая задана в общем виде. Для того чтобы составить параметрические уравнения прямой, нужно знать её направляющий вектор и какую-нибудь точку, принадлежащую данной прямой.

Найдём направляющий вектор:

Теперь нужно найти какую-нибудь точку, принадлежащую прямой (подойдёт любая), в этих целях общее уравнение удобно переписать в виде уравнения с угловым коэффициентом:

Напрашивается, конечно, точка

Составим параметрические уравнения прямой:

И напоследок небольшая творческая задача для самостоятельного решения.

Составить параметрические уравнения прямой, если известна принадлежащая ей точка и вектор нормали

Задачу можно оформить не единственным способом. Одна из версий решения и ответ в конце.

Решения и ответы:

Пример 2: Решение: Найдём угловой коэффициент:

Уравнение прямой составим по точке и угловому коэффициенту :

Ответ:

Пример 4: Решение: Уравнение прямой составим по формуле:

Ответ:

Пример 6: Решение: Используем формулу:

Ответ : (ось ординат)

Пример 8: Решение : Составим уравнение прямой по двум точкам:

Умножаем обе части на –4:

И делим на 5:

Ответ :

Пример 10: Решение : Используем формулу:

Сокращаем на –2:

Направляющий вектор прямой:
Ответ :

Пример 12:
а) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

б) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

Пример 15: Решение : Сначала составим общее уравнение прямой по точке и вектору нормали :

Умножаем на 12:

Умножаем ещё на 2, чтобы после раскрытия второй скобки избавиться от дроби:

Направляющий вектор прямой:
Параметрические уравнения прямой составим по точке и направляющему вектору :
Ответ :

Простейшие задачи с прямой на плоскости.
Взаимное расположение прямых. Угол между прямыми

Продолжаем рассматривать эти бесконечные-бесконечные прямые.



Как найти расстояние от точки до прямой?
Как найти расстояние между двумя параллельными прямыми?
Как найти угол между двумя прямыми?

Взаимное расположение двух прямых

Рассмотрим две прямые, заданные уравнениями в общем виде:

Тот случай, когда зал подпевает хором. Две прямые могут:

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность. Но существует более цивилизованная упаковка:

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .


, значит, векторы не коллинеарны и прямые пересекаются.

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при неизвестных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны, либо совпадают.

Коэффициент пропорциональности «лямбда» можно узнать прямо соотношения коллинеарных направляющих векторов . Впрочем, можно и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Как построить прямую, параллельную данной?

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение: Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими.

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Самый короткий путь – в конце.

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Найти точку пересечения прямых

Решение: Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение прямой, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений.

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Как построить прямую, перпендикулярную данной?

Прямая задана уравнением . Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение: По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ:

Развернём геометрический этюд:

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Найти точку пересечения перпендикулярных прямых , если известно уравнение и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Расстояние от точки до прямой

Расстояние в геометрии традиционно обозначают греческой буквой «р», например: – расстояние от точки «м» до прямой «д».

Расстояние от точки до прямой выражается формулой

Найти расстояние от точки до прямой

Решение: всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ:

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Как построить точку, симметричную относительно прямой?

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .


В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4-х углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса:

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Есть и третий способ решения. Идея состоит в том, чтобы вычислить угол между направляющими векторами прямых:

Здесь уже речь идёт не об ориентированном угле, а «просто об угле», то есть результат заведомо будет положительным. Загвоздка состоит в том, что может получиться тупой угол (не тот, который нужен). В этом случае придётся делать оговорку, что угол между прямыми – это меньший угол, и из «пи» радиан (180-ти градусов) вычитать получившийся арккосинус.

Найти угол между прямыми .

Это пример для самостоятельного решения. Попробуйте решить его двумя способами.

Решения и ответы:

Пример 3: Решение: Найдём направляющий вектор прямой :

Уравнение искомой прямой составим по точке и направляющему вектору

Примечание: здесь первое уравнение системы умножено на 5, затем из 1-го уравнения почленно вычтено 2-ое.
Ответ:

Типичным вектором плоскости (либо нормалью плоскости ) называют вектор, перпендикулярный данной плоскости . Одним из методов задать плоскость является указание координат ее нормали и точки, лежащей на плоскости . Если плоскость задана уравнением Ax+By+Cz+D=0, то типичным к ней является вектор с координатами (A;B;C). В иных случаях для вычисления типичного вектора придется потрудиться.

Инструкция

1. Пускай плоскость задана тремя принадлежащими ей точками K(xk;yk;zk), M(xm;ym;zm), P(xp;yp;zp). Дабы обнаружить типичный вектор, составим уравнение этой плоскости . Обозначьте произвольную точку, лежащую на плоскости , буквой L, пускай у нее будут координаты (x;y;z). Сейчас разглядите три вектора PK, PM и PL, они лежат на одной плоскости (компланарны), следственно их смешанное произведение равно нулю.

2. Обнаружьте координаты векторов PK, PM и PL:PK = (xk-xp;yk-yp;zk-zp)PM = (xm-xp;ym-yp;zm-zp)PL = (x-xp;y-yp;z-zp)Смешанное произведение этих векторов будет равно определителю, представленному на рисунке. Данный определитель следует вычислить, дабы обнаружить уравнение для плоскости . Вычисление смешанного произведения для определенного случая глядите в примере.

3. ПримерПусть плоскость задана тремя точками K(2;1;-2), M(0;0;-1) и P(1;8;1). Требуется обнаружить типичный вектор плоскости .Возьмите произвольную точку L с координатами (x;y;z). Вычислите векторы PK, PM и PL:PK = (2-1;1-8;-2-1) = (1;-7;-3)PM = (0-1;0-8;-1-1) = (-1;-8;-2)PL = (x-1;y-8;z-1)Составьте определитель для смешанного произведения векторов (он на рисунке).

4. Сейчас разложите определитель по первой строке, а после этого подсчитайте значения определителей размера 2 на 2.Таким образом уравнение плоскости -10x + 5y – 15z – 15 = 0 либо, что то же, -2x + y – 3z – 3 = 0. Отсель легко определить вектор нормали к плоскости : n = (-2;1;-3).

Перед тем как ответить на поставленный вопрос, требуется определить, нормаль чего именно нужно искать. В данном случае, ориентировочно, в задаче рассматривается некая поверхность.

Инструкция

1. Приступая к решению поставленной задачи, следует помнить, что нормаль к поверхности определяется как нормаль к касательной плоскости. Исходя именно из этого и будет выбираться методология решения.

2. График функции 2-х переменных z=f(x, y)=z(x, y) – это поверхность в пространстве. Таким образом ее почаще каждого и задают. В первую очередь нужно обнаружить касательную плоскость к поверхности в некоторой точке М0(x0, y0, z0), где z0=z(x0, y0).

3. Для этого следует припомнить, что геометрический толк производной функции одного довода, это угловой показатель касательной к графику функции в точке, где y0=f(x0). Частные производные функции 2-х доводов находят, фиксируя «ненужный» довод верно так же, как и производные обыкновенных функций. Значит геометрический толк частной производной по x функции z=z(x, y) в точке (x0,y0) состоит в равенстве ее углового показателя касательной, к косой, образуемой пересечением поверхности и плоскости y=y0 (см. рис. 1).

4. Данные, отраженные на рис. 1, дозволяют заключить, что уравнение касательной к поверхности z=z(x, y), содержащей точку М0(xo, y0, z0) в сечении при y=y0: m(x-x0)=(z-z0), y=y0. В каноническом виде дозволено записать:(x-x0)/(1/m)=(z-z0)/1, y=y0. Значит направляющий вектор этой касательной s1(1/m, 0, 1).

5. Сейчас, если угловой показатель касательно для частной производной по y обозначить n, то идеально видимо, что подобно предыдущему выражению, это приведет к (y-y0)/(1/n)=(z-z0), x=x0 и s2(0, 1/n, 1).

6. Дальше движение решения в виде поиска уравнения касательной плоскости дозволено перестать и перейти непринужденно к желанной нормали n. Ее дозволено получить как вектор ное произведение n=. Вычислив его, будет определено, что в заданной точке поверхности (x0, y0, z0). n={-1/n, -1/m, 1/mn}.

7. Потому что всякий пропорциональный вектор также останется вектор ом нормали, комфортнее каждого результат представить в виде n={-n, -m, 1} и окончательно n(дz/дx, дz/дx, -1).

Видео по теме

Обратите внимание!
У незамкнутой поверхности имеется две стороны. В данном случае результат дан для «верхней» стороны, там где нормаль образует острый угол с осью 0Z.

Для векторов есть два представления произведения. Одно из них скалярное произведение , другое – векторное. Всякое из этих представлений имеет свой математический и физический толк и вычисляется абсолютно по-различному.

Инструкция

1. Разглядим два вектора в трехмерном пространстве. Вектор a с координатами (xa; ya; za) и вектор b с координатами (xb; yb; zb). Скалярное произведение векторов а и b обозначается (a,b). Оно вычисляется по формуле: (a,b) = |a|*|b|*cosα, где α – угол между двумя векторами.Дозволено вычислить скалярное произведение в координатах: (a,b) = xa*xb + ya*yb + za*zb. Также существует представление скалярного квадрата вектора, это скалярное произведение вектора на самого себя: (a,a) = |a|² либо в координатах (a,a) = xa² + ya² + za².Скалярное произведение векторов – это число, характеризующее местоположение векторов касательно друг друга. Зачастую его применяют для вычисления угла между векторами.

2. Векторное произведение векторов обозначается . В итоге векторного произведения получается вектор, тот, что перпендикулярен обоим векторам-сомножителям, а длина этого вектора равна площади параллелограмма, построенного на векторах-сомножителях. Причем три вектора a, b и образуют так называемую правую тройку векторов .Длина вектора = |a|*|b|*sinα, где α – угол между векторами a и b.

Видео по теме

В линейной алгебре и в геометрии представление вектор определяется по различному. В алгебре вектор ом именуется элемент вектор ного пространства. В геометрии же вектор ом называют упорядоченную пару точек евклидового пространства – направленный отрезок. Над вектор ами определены линейные операции – сложение вектор ов и умножение вектор а на некоторое число.

Инструкция

1. Правило треугольника.Суммой 2-х вектор ов a и o именуется вектор , предисловие которого совпадает с началом вектор а a, а конец лежит на конце вектор а o, при этом предисловие вектор а o совпадает с концом вектор а a. Построение этой суммы представлено на рисунке.

2. Правило параллелограмма.Пускай вектор ы a и o имеют всеобщее предисловие. Достроим эти вектор ы до параллелограмма. Тогда сумма вектор ов a и o совпадает с диагональю параллелограмма, исходящей из начала вектор ов a и o.

3. Сумму большего числа вектор ов дозволено обнаружить, ступенчато применяя к ним правило треугольника. На рисунке представлена сумма четырёх вектор ов.

4. Произведением вектор а a на число? именуется число?a такое, что |?a| = |?| * |a|. Полученный при умножении на число вектор параллелен начальному вектор у либо лежит с ним на одной прямой. Если?>0, то вектор ы a и?a являются однонаправленными, если?<0, то вектор ы a и?a направлены в различные стороны.

Видео по теме

Вектор, как направленный отрезок, зависит не только от безусловной величины (модуля), которая равна его длине. Еще одна главная колляция – направление вектора. Оно может определяться как координатами, так и углом между вектором и осью координат. Вычисление вектора также производится при нахождении суммы и разности векторов.

Вам понадобится

  • – определение вектора;
  • – свойства векторов;
  • – калькулятор;
  • – таблица Брадиса либо ПК.

Инструкция

1. Вычислить вектор, дозволено зная его координаты. Для этого определите координаты начала и конца вектора. Пускай они будут равны (x1;y1) и (x2;y2). Дабы произвести вычисление вектора, обнаружьте его координаты. Для этого от координат конца вектора отнимите координаты его начала. Они будут равны (x2- x1;y2-y1). Примите x= x2- x1; y= y2-y1, тогда координаты вектора будут равны (x;y).

2. Определите длину вектора. Это дозволено сделать легко, измерив ее линейкой. Но если вестимы координаты вектора, рассчитайте длину. Для этого обнаружьте сумму квадратов координат вектора и извлеките из получившегося числа корень квадратный. Тогда длина вектора будет равна d=?(x?+y?).

3. Позже этого обнаружьте направление вектора. Для этого определите угол? между ним и осью ОХ. Тангенс этого угла равен отношению координаты y вектора к координате x (tg ?= y/x). Дабы обнаружить угол, воспользуйтесь в калькуляторе функцией арктангенса, таблицей Брадиса либо ПК. Зная длину вектора и его направление касательно оси, дозволено обнаружить расположение в пространстве всякого вектора.

4. Пример: координаты начала вектора равны (-3;5), а координаты конца (1;7). Обнаружьте координаты вектора (1-(-3);7-5)=(4;2). Тогда его длина составит d=?(4?+2?)=?20?4,47 линейных единиц. Тангенс угла между вектором и осью ОХ составит tg ?=2/4=0,5. Арктангенс этого угла округленно равен 26,6?.

5. Обнаружьте вектор, тот, что представляет собой сумму 2-х векторов, координаты которых вестимы. Для этого сложите соответствующие координаты векторов, которые складываются. Если координаты векторов, которые складываются, равны соответственно(x1;y1) и (x2;y2), то их сумма будет равна вектору с координатами ((x1+x2;y1+y2)). Если необходимо обнаружить разность 2-х векторов, то находите сумму, заранее умножив координаты вектора, тот, что вычитается на -1.

6. Если вестимы длины векторов d1 и d2, и угол между ними?, обнаружьте их сумму, применяя теорему косинусов. Для этого обнаружьте сумму квадратов длин векторов, а из получившегося числа вычтите удвоенное произведение этих длин, умноженное на косинус угла между ними. Из получившегося числа извлеките корень квадратный. Это и будет длина вектора, являющегося суммой 2-х данных векторов (d=?(d1?+d2?-d1?d2?Cos(?)).

Задача поиска вектора нормали прямой на плоскости и плоскости в пространстве слишком примитивна. Реально она завершается записью всеобщих уравнений прямой либо плоскости. От того что кривая на плоскости каждого лишь частный случай поверхности в пространстве, то именно о нормалях к поверхности и пойдет речь.

Инструкция

1. 1-й метод Данный метод самый примитивный, но для его понимания требуется умение представления скалярного поля. Однако, и неискушенный в этом вопросе читатель сумеет применять результирующие формулы данного вопроса.

2. Знаменито, что скалярное поле f задается как f=f(x, y, z), а любая поверхность при этом – это поверхность яруса f(x, y, z)=C (C=const). Помимо того, нормаль поверхности яруса совпадает с градиентом скалярного поля в заданной точке.

3. Градиентом скалярно поля (функции 3 переменных) именуется вектор g=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}. Потому что длина нормали значения не имеет, остается лишь записать результат. Нормаль к поверхностиf(x, y, z)-C=0 в точкеM0(x0, y0, z0) n=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}.

4. 2-й метод Пускай поверхность задана уравнением F(x, y, z)=0. Дабы дозволено было в будущем провести аналогии с первым методом, следует рассматривать, что производная непрерывной равна нулю, и F задается как f(x, y, z)-C=0 (C=const). Если провести сечение этой поверхности произвольной плоскостью, то возникшую пространственную кривую дозволено считать годографом какой-нибудь вектор-функции r(t)= ix(t)x+jy(t)+kz(t). Тогда производная вектора r’(t)= ix’(t)+jy’(t)+kz’(t) направлена по касательной в некоторой точке M0(x0, y0, z0) поверхности (см. рис.1).

5. Чтобы не появилось путаницы, нынешние координаты касательной прямой следует обозначить, скажем, курсивом (x, y, z). Канонические уравнение касательной прямой, с учетом, что r’(t0) – направляющий вектор, записывается как (x-x(t0))/(dx(t0)/dt)= (y-y(t0))/(dy(t0)/dt)= (z-z(t0))/(dz(t0)/dt).

6. Подставив координаты вектор-функции в уравнение поверхности f(x, y, z)-C=0 и продифференцировав по t вы получите (дf/дx)(дx/дt)+(дf/дy) (дy/дt)+(дf/дz)(дz/дt)=0. Равенство представляет собой скалярное произведение некоторого вектора n(дf/дx, дf/дy, дf/дz) и r’(x’(t), y’(t), z’(t)). Потому что оно равно нулю, то n(дf/дx, дf/дy, дf/дz) и есть желанный вектор нормали . Видимо, что итоги обоих методов одинаковы.

7. Пример (имеет теоретическое значение). Обнаружить вектор нормали к поверхности заданной типичным уравнением функции 2-х переменных z=z(x, y). Решение. Перепишите это уравнение в форме z-z(x, y)=F(x, y, z)=0. Следуя любому из предложных методов, получается, что n(-дz/дx, -дz/дy, 1) – желанный вектор нормали .

Всякий вектор дозволено разложить на сумму нескольких вектор ов, причем таких вариантов безграничное уйма. Задание разложить вектор может быть дано как в геометрическом виде, так и виде формул, от этого и будет зависеть решение задачи.

Вам понадобится

  • – начальный вектор;
  • – вектора, по которым требуется его разложить.

Инструкция

1. Если нужно разложить вектор на чертеже, выберите направление для слагаемых. Для комфорта расчетов почаще каждого применяется разложение на вектор а, параллельные осям координат, но вы можете предпочесть безусловно всякое комфортное направление.

2. Начертите один из слагаемых вектор ов; при этом он должен исходить из той же точки, что и начальный (длину вы выбираете сами). Объедините концы начального и полученного вектор а еще одним вектор ом. Обратите внимание: два полученных вектор а в итоге обязаны вас привести в ту же точку, что и начальный (если двигаться по стрелкам).

3. Перенесите полученные вектор а в то место, где ими комфортно будет воспользоваться, сберегая при этом направление и длину. Само­стоятельно от того, где вектор а будут находиться, в сумме они будут равны начальному. Обратите внимание, что если поместить полученные вектор а так, дабы они исходили из той же точки, что и начальный, и пунктиром объединить их концы, получится параллелограмм, причем начальный вектор совпадет с одной из диагоналей.

4. Если вам надобно разложить вектор {х1,х2,х3} по фундаменту, то есть по заданным вектор ам {р1, р2, р3}, {q1,q2,q3}, {r1,r2,r3}, поступите дальнейшим образом. Подставьте значения координат в формулу х=?р+?q+?r.

5. В итоге у вас получится система из 3 уравнений р1?+q1?+r1?=x1, p2?+q2?+r2?=х2, p3?+q3?+r3?=х3. Решите эту систему при помощи метода сложений либо матриц, обнаружьте показатели?, ?, ?. Если задача дана в плоскости, решение будет больше простым, потому что взамен 3 переменных и уравнений вы получите лишь два (они будут иметь вид р1?+q1?=x1, p2?+q2?=х2). Запишите результат в виде х=?p+?q+?r.

6. Если в итоге вы получите безмерное уйма решений, сделайте итог о том, что вектор ы p, q, r лежат в одной плоскости с вектор ом х и разложить его заданным образом однозначно невозможно.

7. Если же решений система не имеет, отважно пишите результат задачи: вектор ы p, q, r лежат в одной плоскости, а вектор х – в иной, следственно его невозможно разложить заданным образом.

Допустимо, что и существует особое представление плоскости пирамиды , но автору оно незнакомо. От того что пирамида относится к пространственным многогранникам, плоскости образовать могут лишь грани пирамиды . Именно они и будут рассмотрены.

Инструкция

1. Самое примитивное задание пирамиды – это представление ее координатами точек вершин. Дозволено применять и другие представления, которые без труда переводятся как друг в друга, так и в предложенное. Для простоты разглядите треугольную пирамиду. Тогда в пространственном случае представление «основание» становится крайне условным. Следственно отличать его от боковых граней не следует. При произвольной пирамиде ее боковые грани все равно треугольники, а для составления уравнения плоскости основания все равно хватит 3 точек.

2. Всякая грань треугольной пирамиды всецело определяется тремя точками вершин соответствующего треугольника. Пускай это М1(x1,y1,z1), М2(x2,y2,z2), М3(x3,y3,z3). Для нахождения уравнения плоскости , содержащей эту грань, используйте всеобщее уравнение плоскости в виде A(x-x0)+B(y-y0)+C(z-z0)=0. Тут (x0,y0,z0) – произвольная точка плоскости , в качестве которой используйте одну из 3 заданных на данный момент, скажем М1(x1,y1,z1). Показатели A, B, C образуют координаты вектора нормали к плоскости n={A, B, C}. Дабы обнаружить нормаль, дозволено применять координаты вектора, равного векторному произведению [М1,М2] (см. рис. 1). Их и возьмите равными A, B C соответственно. Осталось обнаружить скалярное произведение векторов (n, M1M) в координатной форме и приравнять его нулю. Тут М(x,y,z) – произвольная (нынешняя) точка плоскости .

3. Полученный алгорифм построения уравнения плоскости по трем ее точкам дозволено сделать больше комфортным для использования. Обратите внимание, что обнаруженная методология полагает вычисление векторного произведения, а после этого скалярного. Это не что иное, как смешанное произведение векторов. В суперкомпактной форме оно равно определителю, строки которого состоят из координат векторов М1М={x-x1, y-y1, z-z1}, M1M2={x2-x1, y2-y1, z2-z1}, M1М3={x3-x1, y3-y1, z3-z1}. Приравняйте его нулю и получите уравнение плоскости в виде определителя (см. рис. 2). Позже его раскрытия придете к всеобщему уравнению плоскости .

Видео по теме