Перевод Дмитрия Викторова

Аббревиатура: ИК излучение
Определение: невидимое излучение с длинами волн примерно от 750 нм до 1мм.

Инфракрасное излучение - это излучение с длиной волны больше чем 700 - 800 нм, верхняя граница видимого диапазона длин волн. Эта граница не определяет, как снижается чувствительность глаза к видимому излучению в данной спектральной области.

Несмотря на то, что чувствительность глаза к видимому излучению, например, при 700 нм уже очень слабая, излучение от некоторых лазерных диодов с длиной волны выше 750 нм все равно можно увидеть, если это излучение достаточно интенсивно. Такое излучение может быть вредно для глаз, даже если оно не воспринимается как очень яркое. Верхний предел инфракрасной области спектра с точки зрения длины волны также четко не определен, под ним обычно понимается примерно 1 мкм.

Для того, чтобы "видеть" в инфракрасном свете, используются приборы ночного видения .

Для областей инфракрасного спектра используется следующая классификация:

  • - ближняя инфракрасная область спектра (также называется ИК-A) составляет ~ от 700 до 1400 нм. Лазеры, излучающие в этом диапазоне длин волн, особенно опасны для глаз, так как ближнее инфракрасное излучение передается и фокусируется на чувствительной сетчатки так же, как видимый свет, в то же время не вызывает защитного рефлекса моргания. Необходима соответствующая защита для глаз.
  • - коротковолновый инфракрасный (ИК-B) распространяется от 1,4 до 3 мкм . Этот диапазон является относительно безопасным для глаз, так как такое излучение будет поглощено веществом глаза прежде, чем оно сможет достичь сетчатки. Легированные эрбием волоконные усилители для оптоволоконной связи работают в этом диапазоне.
  • - средневолновый инфракрасный диапазон (ИК-C) от 3 до 8 мкм . Атмосфера испытывает сильное поглощение в этом диапазоне. Существует много линий поглощений, например, для двуокиси углерода (CO2) и водяного пара (H2O). Многие газы обладают сильными и характерными линиями поглощения среднего ИК излучения, что делает эту область спектра интересной для высокочувствительной газовой спектроскопии.
  • - длинноволновый ИК варьируется от 8 до 15 мкм , следуя за дальним инфракрасным, который распространяется до 1 мм, в литературе иногда он начинается уже с 8 мкм. Длинноволновую ИК область спектра используют для тепловидения.

Однако следует отметить, что определения этих терминов существенно различаются в литературе. Большая часть стекол прозрачна для ближнего инфракрасного излучения, но сильно поглощает излучение больших длин волн, при этом фотоны этого излучения могут быть напрямую превращены в фононы. Для кварцевого стекла, используемого в кварцевых волокнах, сильное поглощение происходит после 2 мкм.

Инфракрасное излучение также называется тепловым излучением, так как тепловое излучение от нагретых тел находится в большей степени в инфракрасной области. Даже при комнатной температуре и ниже, тела выделяют значительное количество среднего и дальнего инфракрасного излучения, который может быть использован для тепловидения.
Например, инфракрасные изображения нагретого зимой дома могут выявить утечки тепла (например, на окнах, крыше, или в плохо изолированных стенах за радиаторами) и тем самым помогают принять эффективные меры по улучшению.

По материалам интернет-портала

Инфракрасное излучение – один из типов электромагнитного излучения, что граничит с красной частью спектра видимого света с одной стороны и микроволнами – с другой. Длина волны – от 0.74 до 1000-2000 микрометров. Инфракрасные волны называют еще «тепловыми». Исходя из длины волны, их классифицируют на три группы:

коротковолновые (0.74-2.5 микрометров);

средневолновые (длиннее 2.5, короче 50 микрометров);

длинноволновые (больше 50 микрометров).

Источники инфракрасного излучения

На нашей планете инфракрасное излучение отнюдь не редкость. Практически любое тепло – эффект воздействия инфракрасных лучей. Неважно что это: солнечный свет, тепло наших тел или нагрев, исходящий от отопительных приборов.

Инфракрасная часть электромагнитного излучения греет не пространство, а непосредственно сам объект. Именно на этом принципе построена работа инфракрасных ламп. Да и Солнце обогревает Землю аналогичным образом.

Влияние на живые организмы

На данный момент, науке неизвестны подтвержденные факты негативного влияния инфракрасных лучей на организм человека. Разве что из-за чересчур интенсивного излучения может повредиться слизистая оболочка глаз.

А вот о пользе можно говорить очень долго. Еще в 1996 году, ученые из США, Японии и Голландии подтвердили ряд позитивных медицинских фактов. Тепловое излучение:

уничтожает некоторые из видов вируса гепатита;

подавляет и замедляет рост раковых клеток;

обладает способностью нейтрализации вредных электромагнитных полей и излучения. В том числе и радиоактивного;

помогает вырабатывать инсулин диабетиками;

может помочь при дистрофии;

улучшение состояния организма при псориазе.

Под улучшается самочувствие, внутренние органы начинают работать эффективнее. Увеличивается питание мускулов, изрядно повышается сила иммунной системы. Известный факт, что при отсутствии инфракрасного излучения, организм ощутимо быстрее стареет.

Инфракрасные лучи еще называют «лучами жизни». Именно под их воздействием зародилась жизнь.

Использование инфракрасных лучей в быту человека

Инфракрасный свет используют не менее широко, чем он распространен. Пожалуй, будет очень сложно найти хоть одну область народного хозяйства, где не нашла себе применения инфракрасная часть электромагнитных волн. Перечислим самые известные сферы применения:

военное дело. Самонаведение боеголовок ракет или приборы ночного видения – это все результат использования инфракрасного излучения;

термография широко используется в науке для определения перегретых или переохлажденных частей исследуемого объекта. Инфракрасные снимки также широко используются в астрономии, наряду с другими типами электромагнитных волн;

бытовые обогреватели. В отличие от конвекторов, такие устройства с помощью лучистой энергии нагревают все объекты помещения. А уже дальше, предметы интерьера отдают тепло окружающему воздуху;

передача данных и дистанционное управление. Да, все пульты от телевизоров, магнитофонов и кондиционеров используют инфракрасные лучи;

дезинфекция в пищевой промышленности

медицина. Лечение и профилактика многих разнотипных заболеваний.

Инфракрасные лучи – относительно небольшая часть электромагнитного излучения. Являясь естественным способом передачи тепла, без него не обходится ни один жизненный процесс на нашей планете.

В 1800 году ученый Уильям Гершель объявил на заседании Лондонского Королевского общества о своем открытии. Он измерил температуру за пределами спектра и обнаружил невидимые лучи с большой нагревательной силой. Опыт проводился им с помощью светофильтров телескопа. Он заметил, что они в разной мере поглощают свет и тепло солнечных лучей.

Через 30 лет факт существования невидимых лучей, расположенных за красной частью видимого солнечного спектра, был неоспоримо доказан. Французский Беккерель назвал это излучение инфракрасным.

Свойства ИК-излучения

Спектр инфракрасного излучения состоит из отдельных линий и полос. Но он может быть так же непрерывным. Все зависит от источника ИК лучей. Иначе говоря, имеет значение кинетическая энергия или температура атома или молекулы. Любой элемент таблицы Менделеева в условиях разных температур имеет различные характеристики.

Например, инфракрасные спектры возбужденных атомов из-за относительного состояния покоя связки ядро - будут иметь строго линейчатые ИК-спектры. А возбужденные молекулы - полосатые, хаотично расположенные. Все зависит не только от механизма наложения собственных линейных спектров каждого атома. Но так же от взаимодействия этих атомов между собой.

При повышении температуры изменяется спектральная характеристика тела. Так, нагретые твердые и жидкие тела выделяют непрерывный инфракрасный спектр. При температурах ниже 300°С излучение нагретого твердого тела целиком расположено в инфракрасной области. От диапазона температур зависит как изучение ИК-волн, так применения их важнейших свойств.

Главные свойства ИК-лучей это поглощение и дальнейший нагрев тел. Принцип передачи тепла инфракрасными обогревателями отличается от принципов конвекции или теплопроводности. Находясь в потоке горячих газов, предмет теряет какое-то количество тепла, пока его температура ниже температуры нагретого газа.

И наоборот: если инфракрасные излучатели облучают предмет, еще не значит, что его поверхность данное излучение поглощает. Он может так же отражать, поглощать или пропускать лучи без потерь. Практически всегда облучаемый предмет поглощает часть этого облучения, часть отражает и часть пропускает.

Далеко не все светящиеся объекты или нагретые тела излучают ИК-волны. Например, люминесцентные лампы или пламя газовой плиты такого излучения не имеют. Принцип работы люминесцентных лам основан на свечении (фотолюминесценции). Ее спектр ближе всего к спектру дневного, белого света. Поэтому ИК-излучения в нём почти нет. А наибольшая интенсивность излучения пламени газовой плиты приходится на длину волны голубого цвета. У перечисленных нагретых тел ИК-излучение очень слабое.

Существуют так же вещества, которые прозрачны для видимого света, но не способны пропускать ИК-лучи. Например, слой воды толщиной несколько сантиметров не пропустит инфракрасное излучение с длиной волны больше 1 мкм. При этом человек может различить находящиеся на дне предметы невооруженным глазом.

Инфракрасное излучение (ИК ) - это электромагнитное излучение с большей длиной волны, чем видимый свет , простирающийся от номинального красного края видимого спектра на 0,74 мкм (микрон) до 300 мкм. Этот диапазон длин волн соответствует частоте диапазона примерно от 1 до 400 ТГц, и включает в себя большую часть теплового излучения, испускаемого объектами вблизи комнатной температуры. Инфракрасное излучение испускается или поглощается молекулами, когда они меняют свои вращательно-колебательные движения . Наличие инфракрасного излучения было впервые обнаружено в 1800 году астрономом Уильямом Гершелем.


Большая часть энергии от Солнца поступает на Землю в виде инфракрасного излучения. Солнечный свет в зените обеспечивает освещённость чуть более 1 киловатта на квадратный метр над уровнем моря. Из этой энергии, 527 ватт инфракрасного излучения, 445 Вт является видимым светом, и 32 ватта ультрафиолетовым излучением.

Инфракрасный свет используется в промышленных, научных и медицинских нуждах. Приборы ночного видения с помощью инфракрасной подсветки позволяют людям наблюдать за животными, которые невозможно заметить в темноте. В астрономии изображение в инфракрасном диапазоне позволяет наблюдать объекты скрытые межзвездной пылью. Инфракрасные камеры используются для обнаружения потери тепла в изолированных системах, наблюдать изменение кровотока в коже, а также для обнаружения перегрева электрооборудования.

Сравнение света

Название

Длина волны

Частота (Гц)

Энергия фотона (эВ)





Гамма лучи

менее 0,01 нм

более чем на 10 EHZ

124 кэВ - 300 + ГэВ





Рентгеновые лучи

0,01 нм до 10 нм

124 эВ до 124 кэВ





Ультрафиолетовые лучи

10 нм - 380 нм

30 PHZ - 790 ТГц

3,3 эВ до 124 эВ





Видимый свет

380 нм - 750 нм

790 ТГц - 405 ТГц

1,7 эВ - 3,3 эВ





Инфракрасное излучение

750 нм - 1 мм

405 ТГц - 300 ГГц

1,24 мэВ - 1,7 эВ





Микроволны

1 мм - 1 метр

300 ГГц - 300 МГц

1,24 мкэВ - 1,24 мэВ





1 мм - 100 км

300 ГГц - 3 Гц

12,4 фэВ - 1,24 мэВ





Инфракрасные изображения широко используются для военных и гражданских целей. Военные применения включают в себя такие цели как наблюдение, ночное наблюдение, наведение и слежение. Не для военного применения включают тепловую эффективность анализа, мониторинга окружающей среды, промышленной инспекции объектов, дистанционное зондирование температуры, короткодействующую беспроводную связь, спектроскопию и прогноз погоды. Инфракрасная астрономия использует датчик оборудованный телескопами для того, чтобы проникнуть в пыльные области пространства, такие как молекулярные облака, и обнаруживать объекты, такие как планеты .

Хотя ближневолновая инфракрасная область спектра (780-1000 нм) уже давно считается невозможной из-за шума в зрительных пигментах, ощущение ближнего инфракрасного света сохранилось у карпа и в трех видах циклид. Рыбы используют ближневолновую инфракрасную область спектра, чтобы захватить добычу и для фототактической ориентации во время плавания. Ближневолновая инфракрасная область спектра для рыбы может быть полезна в условиях плохой освещенности в сумерках и в мутных поверхностях воды.

Фотомодуляция

Ближний инфракрасный свет, или фотомодуляция, используется для лечения химиотерапией индуцированных язв, а также заживления ран. Существует ряд работ, связанных с лечением вируса герпеса. Исследовательские проекты включают в себя работу над изучением центральной нервной системы и лечебным воздействием через регуляцию цитохром и оксидаз и другие возможные механизмы.

Опасность для здоровья

Сильное инфракрасное излучение в определенной отрасли и режиме высоких температур может быть опасно для глаз, в результате может привести к повреждению зрения или слепоте по отношению к пользователю. Поскольку излучение невидимо, необходимо надевать специальные инфракрасные очки в таких местах.

Земля как инфракрасный излучатель

Поверхность Земли и облака поглощают видимое и невидимое излучение от солнца и вновь возвращают большую часть энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом, капли облаков и водяные пары, а также диоксид углерода, метан, окись азота, гексафторид серы и хлорфторуглерод поглощают инфракрасное излучение, и вновь возвращают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект сохраняет атмосферу и поверхность гораздо теплее, чем если бы инфракрасные амортизаторы отсутствовали в атмосфере.

История науки об инфракрасном излучении

Открытие инфракрасного излучения приписывается Уильяму Гершелю, астроному, в начале 19 века. Гершель опубликовал результаты своих исследований в 1800 году до Лондонского королевского общества. Гершель использовал призму, чтобы преломить свет от солнца и обнаружить инфракрасное излучение, вне красной части спектра, через увеличение температуры, зарегистрированной на термометре. Он был удивлён результатом и назвал их «тепловыми лучами». Термин «инфракрасное излучение» появились только в конце 19 века.

Другие важные даты включают:

  • 1737: Эмили дю Шатле предсказал, то, что сегодня известно как инфракрасное излучение в своей диссертации.
  • 1835: Маседонио Мельони делает первые термобатареи с инфракрасным детектором.
  • 1860: Густав Кирхгоф формулирует теорему абсолютно чёрного тела.
  • 1873: Уиллоуби Смит обнаружил фотопроводимость селена.
  • 1879: Опытным путем сформулирован закон Стефана-Больцмана, согласно которому энергия , излученная абсолютно чёрным телом пропорциональна.
  • 1880-е и 1890-е года: Лорд Рэлей и Вильгельм Вин оба решают часть уравнения абсолютно чёрного тела, но оба решения - приблизительные. Эту проблему называли «ультрафиолетовой катастрофой и инфракрасной катастрофой».
  • 1901: Макс Планк Макс Планк издал уравнение абсолютно чёрного тела и теорему. Он решил проблему квантования допустимых энергетических переходов.
  • 1905: Альберт Эйнштейн разрабатывает теорию фотоэлектрического эффекта, которая определяет фотоны. Также Уильям Коблентз в спектроскопии и радиометрии.
  • 1917: Теодор Кейз разрабатывает датчик таллия-сульфида; британцы разрабатывают первый прибор инфракрасного поиска и слежения в Первой мировой войне и обнаруживают самолеты в диапазоне 1,6 км.
  • 1935: Свинцовые соли - раннее ракетное руководство во Второй мировой войне.
  • 1938: Тью Та предсказал, что пироэлектрический эффект может использоваться, чтобы обнаружить инфракрасную радиацию.
  • 1952: Н. Уилкер обнаруживает антимониды, соединения сурьмы с металлами.
  • 1950: Поль Круз и техасские инструменты образуют инфракрасные изображения до 1955 года.
  • 1950-е и 1960-е годы: Спецификация и радиометрические подразделения, определенные Фредом Никодеменасом, Робертом Кларком Джоунсом.
  • 1958: У. Д. Лоусон (Королевское Радарное Учреждение в Мальверне) обнаруживает свойства обнаружения ИК-фотодиодом.
  • 1958: Фэлкон разработал ракеты с использованием инфракрасного излучения и появляется первый учебник по инфракрасным датчикам Поля Круза, и др.
  • 1961: Джей Купер изобрёл пироэлектрическое обнаружение.
  • 1962: Kruse и Родат продвигают фотодиоды; элементы сигналов и линейных массивов доступны.
  • 1964: У. Г. Эванс обнаруживает инфракрасные терморецепторы у жука.
  • 1965: Первый инфракрасный справочник, первые коммерческие тепловизоры; сформирована лаборатория ночного видения в армии Соединённых Штатов Америки (в настоящее время лаборатория управления ночного видения и электронными датчиками.
  • 1970: Уиллард Бойл и Джордж Э.Смит предлагают прибор с зарядовой связью для телефона с изображениями.
  • 1972: Создан общий программный модуль.
  • 1978: Инфракрасная астрономия изображений достигает совершеннолетия, запланировано создание обсерватории, массовое производство антимонидов и фотодиодов и других материалов.

Инфракрасное излучение активно используется в медицине, причем его полезные свойства были замечены задолго до появления современных исследований. Еще в античности жар углей, нагретой соли, металла и других материалов использовали для лечения ран, ушибов, обморожений, туберкулеза и многих других болезней.

Исследования XX-XXI веков доказали, что инфракрасное излучение имеет определенное воздействие на внешние покровы и внутренние органы, что позволяет использовать его в лечебных и профилактических целях.

Воздействие инфракрасного излучения на организм

Инфракрасные лучи не только греют, но об этом знают лишь немногие. С момента открытия ИК излучения Гершелем в 1800 году, ученые и медики выявили следующие типы воздействий его на организм человека:

  • активизация обмена веществ;
  • расширение сосудов, в том числе капилляров;
  • активизация капиллярного кровообращения;
  • антиспазматическое воздействие;
  • болеутоляющее воздействие;
  • противовоспалительное воздействие;
  • активизация реакций внутри клетки.

При дозированном использовании воздействие инфракрасных лучей оказывает общеоздоровительный эффект. Уже сегодня разработано немало аппаратов, которые используют в физиотерапевтических кабинетах.

Естественно, воздействие должно осуществляться дозированно, чтобы избежать перегрева, возникновения ожогов и других негативных реакций.

Способы применения инфракрасных лучей

Так как ИК лучи расширяют сосуды и ускоряют кровоток, их используют для улучшения и стимуляции кровообращения. Когда длинноволновые ИК лучи направлены на кожу, ее рецепторы раздражаются, от чего возникает реакция гипоталамуса, посылающая сигнал «расслабиться» гладким мышцам кровеносных сосудов. В результате капилляры, вены и артерии расширяются, ускоряется кровоток.

Не только стенки сосудов реагируют на инфракрасное излучение, на клеточном уровне отмечается ускорение метаболизма, а также улучшение протекания нейрорегуляционных процессов.

Неоценимую роль играет воздействие инфракрасных лучей для улучшения иммунитета. Благодаря усиленной выработке макрофагоцитов ускоряется фагоцитоз, на жидкостном и клеточном уровне у человека усиливается иммунитет. Параллельно идет стимуляция синтеза аминокислот, а также усиленная выработка ферментов и питательных веществ.

Также отмечен обеззараживающий эффект, от ИК лучей в организме человека погибает целый ряд бактерий, нейтрализуется воздействие некоторых вредных веществ.

Медицинские проблемы, которые решают с помощью ИК излучения

Инфракрасная терапия используется как часть лечения, так как она позволяет решить оказывает такое воздействие:

  • уменьшается сила болей;
  • проходит болевой синдром;
  • восстанавливается водно-солевой баланс;
  • улучшается память;
  • имеет место лимфодренажный эффект;
  • нормализуется кровообращение (в том числе и мозговое) и кровоснабжение тканей;
  • нормализуется давление;
  • быстрее выводятся токсины и соли тяжелых металлов;
  • усиливается выработка эндорфина и мелатонина;
  • нормализуется выработка гормонов;
  • уничтожаются патогенные организмы, грибки;
  • подавляется рост раковых клеток;
  • имеет место противоядерное воздействие;
  • проявляется дезодорирующий эффект;
  • восстанавливается иммунная система;
  • снимается гипертонус, повышенное напряжение мышц;
  • уходит эмоциональное напряжение;
  • меньше накапливается усталость;
  • нормализуется сон;
  • приходят в норму функции внутренних органов.

Болезни, которые лечат с помощью инфракрасного излучения

Естественно, столь масштабное позитивное воздействие активно используется для лечения целого спектра болезней:

  • бронхиальная астма;
  • грипп;
  • пневмония;
  • онкологические заболевания;
  • образование спаек;
  • аденома;
  • язвенная болезнь;
  • эпидемический паротит;
  • гангрена;
  • ожирение;
  • варикозное расширение вен;
  • отложение солей;
  • шпоры, натоптыши, мозоли;
  • кожные заболевания;
  • сосудистые заболевания;
  • плохо заживающие раны;
  • ожоги, обморожения;
  • заболевания периферической нервной системы;
  • паралич;
  • пролежни.

За счет того, что активизируется обмен веществ и нормализуется кровоток, в том числе и в капиллярах, органы и ткани значительно быстрее восстанавливаются и возвращаются к нормальному режиму работы.

При регулярном воздействии инфракрасных лучей на организм имеет место обратное развитие воспалительных процессов, повышается тканевая регенерация, противоинфекционная защита и местная сопротивляемость.

Когда излучающие приборы применяются вместе с лекарственными препаратами и физиотерапевтическими процедурами, удается добиться положительно динамики в 1,5-2 раза быстрее. Выздоровление идет более быстрыми темпами и снижается вероятность рецидива.

Отдельной темой является использование терапии инфракрасными лучами у больных ожирением. Здесь основной эффект достигается за счет нормализации обмена веществ, в том числе клеточного метаболизма. Также нагревание поверхности тела способствует более быстрому избавлению от накопленной жировой массы. ИК излучение используют совместно с диетой и медикаментозным лечением.

Инфракрасное излучение в спортивной медицине

Исследования в области эффективных средств восстановления после травм показали, что ИК лучи ускоряют заживление травм. Практические результаты достаточно внушительны, у спортсменов отмечены такие положительные изменения.