По физике за 9 класс (И.К.Кикоин, А.К.Кикоин, 1999 год),
задача №6
к главе «ЛАБОРАТОРНЫЕ РАБОТЫ ».

Цель работы: установить соотношение между моментами сил, приложенных к плечам рычага при его равновесии. Для этого к одному из плеч рычага подвешивают один или несколько грузов, а к другому прикрепляют динамометр (рис. 179).

С помощью этого динамометра измеряют модуль силы F , которую необходимо приложить для того, чтобы рычаг находился в равновесии. Затем с помощью того же динамометра измеряют модуль веса грузов Р . Длины плеч рычага измеряют с помощью линейки. После этого определяют абсолютные значения моментов М 1 и М 2 сил Р и F :

Вывод о погрешности экспериментальной проверки правила моментов можно сделать, сравнив с единицей

отношение:

Средства измерения:

1) линейка; 2) динамометр.

Материалы: 1) штатив с муфтой; 2) рычаг; 3) набор грузов.

Порядок выполнения работы

1. Установите рычаг на штатив и уравновесьте его в горизонтальном положении с помощью расположенных на его концах передвижных гаек.

2. Подвесьте в некоторой точке одного из плеч рычага груз.

3. Прикрепите к другому плечу рычага динамометр и определите силу, которую необходимо прило

жить к рычагу для того, чтобы он находился в равновесии.

4. Измерьте с помощью линейки длины плеч рычага.

5. С помощью динамометра определите вес груза Р .

6. Найдите абсолютные значения моментов сил Р и F

7. Найденные величины занесите в таблицу:

M 1 = Pl 1 , Н⋅м

8. Сравните отношение

с единицей и сделайте вывод о погрешности экспериментальной проверки правила моментов.

Основной целью работы является установление соотношения между моментами сил, приложенных к телу с закрепленной осью вращения при его равновесии. В нашем случае в качестве такого тела мы используем рычаг. Согласно правилу моментов, чтобы такое тело находилось в равновесии, необходимо чтобы алгебраическая сумма моментов сил относительно оси вращения была равна нулю.


Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:


Выводы о погрешности экспериментальной проверки правила моментов можно сделать сравнив с единицей отношение:

Средства измерения: линейка (Δl = ±0,0005 м), динамометр (ΔF = ±0,05 H). Массу грузов из набора по механике полагаем равной (0,1±0,002) кг.

Выполнение работы

, действующих на одно тело .

на другую состояние тела не изменится

~ 0 .

систему сил называют плоской .

Аксиомы статики.

Первая аксиома.



.

Вторая аксиома.

Третья аксиома.

Аксиома параллелограмма сил.

Четвертая аксиома.

Аксиома действия и противодействия (3-й закон Ньютона).

Пятая аксиома.

Аксиома отвердевания (принцип отвердевания).

Шестая аксиома.

Аксиома связей (принцип освобождаемости от связей)..

Тело называется свободным, если его движение в пространстве ничем не ограничено.

Тело, перемещения которого ограничены, называется несвободным телом.

Согласно шестой аксиоме, ограничить движение тела может только другое тело.

Тела, которые ограничивают движение свободного тела и делают его несвободным телом, называются связями.

Силы, с которыми связи действуют на несвободное тело, являются реакциями связей.

Остальные силы, не являющиеся реакциями связей, называются активными силами. .

Система пар сил.

Системой пар сил является совокупность пар сил, приложенных к одному телу.

Сложение пар сил. Система пар сил эквивалентна одной паре, момент которой равен сумме моментов пар, образующих систему:

(8)

где M 1 = M(F 1 ,F 1 ") , M 2 = M(F 2 ,F 2 ") , ..., M n = M(F n ,F n ") .

На рис. 25, a представлена исходная система пар сил. По второму свойству заменяем пары их моментами и переносим моменты пар, как свободные векторы, в одну произвольную точку (рис. 25, b). По правилу параллелограмма мы складываем векторы моментов пар и получаем второе выражение в (8). Одному моменту пары M соответствует одна пара сил (F,F") и M = M(F,F") (рис. 25, c).

Если все пары лежат в одной плоскости, векторное суммирование моментов пар теряет смысл. Поэтому мы используем алгебраические моменты пар сил и получаем

Необходимость условия сразу следует из (8). Если M = 0 , то (F,F") ~ 0 и, следовательно, ((F 1 ,F" 1), (F 2 ,F" 2), ..., (F n ,F" n)) ~ 0 . Достаточность условия докажем методом от противного. Предположим, что условие (10) не выполняется и M 0 , а твердое тело находится в равновесии. В этом случае система пар сил приводится к одной паре (F,F") и тело в равновесии находиться не может. Таким образом, наше предположение не верно, а условие (10) является верным, и его достаточность доказана.

Необходимым и достаточным условием равновесия системы пар, лежащих в одной плоскости, является равенство нулю алгебраической суммы моментов всех пар системы:

(11)

Таким образом, в этом параграфе мы рассмотрели пару сил, являющуюся, как и сила, самостоятельным элементом статики, изучили свойства пары сил, эквивалентность пар, сложение и условия равновесия для системы пар сил.

Виды трения.

Трение покоя проявляется в том случае, если тело находившееся в состоянии покоя, приводится в движение. Коэффициент трения покоя обозначается μ 0 .

Трение скольжения проявляется при наличии движения тела, и оно значительно меньше трения покоя.

μ ск < μ 0

Трение качения проявляется в том случае, когда тело катится по опоре, и оно значительно меньше трения скольжения.

μ кач << μ ск

Сила трения качения зависит от радиуса катящегося предмета. В типичных случаях (при расчетах трения качения колес поезда или автомобиля), когда радиус колеса известен и постоянен, его учитывают непосредственно в коэффициенте трения качения μ кач .

Определение коэффициента трения

Коэффициент трения можно определить экспериментально. Для этого помещают тело на наклонную плоскость, и определяют угол наклона при котором:

Коэффициент трения покоя

тело начинает двигаться
(коэффициент трения покоя μ 0 )

Предмет статики. Основные понятия статики. Аксиомы статики.

Статика - это раздел теоретической механики, в котором изучают равновесие тел под действием сил и преобразования систем сил.

Для статики и динамики одним из основных понятий является понятие силы. Состояние равновесия или движения тела зависит от его взаимодействия с другими телами. Меру этого взаимодействия в механике называют силой.

Действие силы на реальное физическое тело, которое деформируется силой, определяется: 1) величиной или модулем силы; 2) направлением силы; 3) точкой приложения силы. То есть сила, приложенная к физическому телу, является связанным вектором , который нельзя перемещать внутри физического тела. Прямая LM, на которой лежит вектор силы, называется линией действия силы .

Силу, как связанный вектор, удобнее определить в системе отсчета OXYZ (рис. 3) следующими параметрами. Это координаты точки приложения XA, YA, ZA и проекции силы на оси координат Fx, Fy, Fz . Первые три параметра определяют точку приложения силы A, а остальные три определяют величину и направление силы:

В выражении (2) представлены косинусы углов между осями координат и силой, которые называются направляющими косинусами и определяют направление силы в пространстве.

Системой сил назовем совокупность сил , действующих на одно тело .

Системы сил эквивалентны друг другу, если при замене одной системы сил на другую состояние тела не изменится . Математическая запись этого утверждения .

Система сил является уравновешенной или эквивалентной нулю, если под ее действием тело находится в равновесии и тогда ~ 0 .

В равновесии или покое все точки тела не перемещаются относительно системы отсчета.

В том случае, когда система сил эквивалентна одной силе , последняя называется равнодействующей.

В заключение пункта рассмотрим классификацию систем сил. Если на положение сил системы нет ограничений и силы произвольно расположены в пространстве, то систему сил называют произвольной или пространственной . Если силы системы лежат в одной плоскости, то систему сил называют плоской .

Аксиомы статики.

Первая аксиома.

О равновесии твердого тела под действием двух сил.

Под действием двух сил твердое тело находится в равновесии только тогда, когда силы равны по величине и направлены по одной прямой в разные стороны.

Случай равновесия изображен на рис. 4. Система двух сил будет уравновешенной, или эквивалентной нулю, то есть .

Вторая аксиома.

О добавлении (вычитании) уравновешенной системы сил.

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон - метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

здесь скриншот игры про равновесие

Катящееся по горизонтальной поверхности колесо - пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, - пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси - состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Лабораторная работа № 6 «Изучение равновесия тел под действием нескольких сил».

Цель работы: установить соотношение между моментами сил, приложенных к плечам рычага при его равновесии. Для этого к одному из плеч рычага подвешивают один или несколько грузов, а к другому прикрепляют динамометр (рис. 179).

С помощью этого динамометра измеряют модуль силы F, которую необходимо приложить для того, чтобы рычаг находился в равновесии. Затем с помощью того же динамометра измеряют модуль веса грузов Р. Длины плеч рычага измеряют с помощью линейки. После этого определяют абсолютные значения моментов М 1 и М 2 сил Р и F:

Вывод о погрешности экспериментальной проверки правила моментов можно сделать, сравнив с единицей

отношение:

Средства измерения:

1) линейка; 2) динамометр.

Материалы: 1) штатив с муфтой; 2) рычаг; 3) набор грузов.

Порядок выполнения работы

1. Установите рычаг на штатив и уравновесьте его в горизонтальном положении с помощью расположенных на его концах передвижных гаек.

2. Подвесьте в некоторой точке одного из плеч рычага груз.

3. Прикрепите к другому плечу рычага динамометр и определите силу, которую необходимо прило

жить к рычагу для того, чтобы он находился в равновесии.

4. Измерьте с помощью линейки длины плеч рычага.

5. С помощью динамометра определите вес груза Р.

6. Найдите абсолютные значения моментов сил Р и F

7. Найденные величины занесите в таблицу:

l 1 , м l 2 , М P, Н F, Н M 1 = Pl 1 , Н⋅м M 2 =Fl 2 ,

с единицей и сделайте вывод о погрешности экспериментальной проверки правила моментов.

Основной целью работы является установление соотношения между моментами сил, приложенных к телу с закрепленной осью вращения при его равновесии. В нашем случае в качестве такого тела мы используем рычаг. Согласно правилу моментов, чтобы такое тело находилось в равновесии, необходимо чтобы алгебраическая сумма моментов сил относительно оси вращения была равна нулю.

Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:

Выводы о погрешности экспериментальной проверки правила моментов можно сделать сравнив с единицей отношение:

Средства измерения: линейка (Δl = ±0,0005 м), динамометр (ΔF = ±0,05 H). Массу грузов из набора по механике полагаем равной (0,1±0,002) кг.

Выполнение работы

№ опыта l 1 , м l 2 , м P=mg, H F, H M 1 , нм M 2 , нм M 1 / M 2
1 0,1 0,35 4 1,1 0,4 0,385 1,04
2 0,2 0,15 2 2,7 0,4 0,405 0,99
3 0,3 0,1 1 3 0,3 0,3 1

Вычисления:

Оценим погрешности.

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг