Источник задания: Решение 2943. ЕГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Ответ.

Задание 8. Найдите объём многогранника, вершинами которого являются вершины D, Е, F, D1, E1, F1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 10, а боковое ребро равно 12.

Решение.

В основании призмы лежит правильный шестигранник. Вершины DEF образуют треугольник в основании призмы. Таких равных треугольников в основании призмы ровно 6 (см. рисунок ниже).

Легко показать, что площади треугольников AFO и FOD равны. Например, высота треугольника AFO равна y/2 (синяя линия к стороне FA на рисунке), а основание FA=x. Тогда площадь AFO S=1/2∙x∙y/2=xy/4. По аналогии площадь треугольника FOD. У него высота x/2, проведенная к стороне FD=y. Получаем площадь: S=1/2∙y∙x/2=xy/4. Также из рисунка хорошо видно, что треугольники AFO и DOC равны, и отсальные 4 треугольника также равны. Поэтому площадь треугольника DEF равна 1/6 от площади основания призмы: 10/6. В результате получаем объем многогранника.

А B C D E F Найдите объем многогранника, вершинами которого являются точки A, B, C, D, E, F, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания которой равна 4, а боковое ребро равно 3. А1А1А1А1 C1C1C1C1 F1F1F1F1 E1E1E1E1 D1D1D1D1 B1B1B1B1 3 х 1 0 х В


2. 2. Найдите объем многогранника, вершинами которого являются точки A, B, C, B 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания которой равна 6, а боковое ребро равно 3. А B C D E F А1А1А1А1 C1C1C1C1 D1D1D1D1 E1E1E1E1 F1F1F1F1 А BC Найдем площадь треугольника АВС и площадь 6-угольника. aa =sin B1B1B1B1




A BCD Найти это отношение можно исследуя геометрический чертеж, а не вычисляя площади. Шестиугольник – 6 треугольников. Треугольник АВС содержит 1 такой треугольник. А B C D E F А1А1А1А1 C1C1C1C1 D1D1D1D1 E1E1E1E1 F1F1F1F1 3 B1B1B1B1 3 S 6 = 6 3 х 1 0 х В


3. 3. Найдите объем многогранника, вершинами которого являются точки B, C, D, E, B 1, C 1, D 1, E 1, правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания которой равна 8, а боковое ребро равно 14. А B C D E F А1А1А1А1 C1C1C1C1 D1D1D1D1 F1F1F1F1 E1E1E1E1 B1B1B1B1 B CDE4 3 х 1 0 х В Площадь трапеции BCDE равна половине площади 6-угольника


Найдите объем многогранника, вершинами которого являются точки A, B, D, E, A 1, B 1, D 1, E 1, правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания которой равна 14, а боковое ребро равно 3. А B C D E F А1А1А1А1 C1C1C1C1 F1F1F1F1 3 E1E1E1E1 B CDE Найдем площадь 6- угольника и прямоугольника. D1D1D1D1 B1B1B1B1 aa = – cos60 0 a 3 a




Найдите объем многогранника, вершинами которого являются точки A, B, D, E, A 1, B 1, D 1, E 1, правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания которой равна 14, а боковое ребро равно 3. А B C D E F А1А1А1А1 C1C1C1C1 F1F1F1F1 3 E1E1E1E1 B CDE D1D1D1D1 B1B1B1B х 1 0 х В


5. 5. Найдите объем многогранника, вершинами которого являются точки A, B, C, A 1, B 1, C 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания которой равна 3, а боковое ребро равно 7. А B C D E F А1А1А1А1 C1C1C1C1 D1D1D1D1 E1E1E1E1 F1F1F1F1 А BC Найдем площадь треугольника АВС и площадь 6-угольника. aa =sin60 0 B1B1B1B1 77 7




A BCD Найти это отношение можно исследуя геометрический чертеж, а не вычисляя площади. Шестиугольник – 6 треугольников. Треугольник АВС содержит 1 такой треугольник. C1C1C1C1 А B C D E F А1А1А1А1 D1D1D1D1 E1E1E1E1 F1F1F1F1 B1B1B1B1 7 7 S 6 = х 1 0 х В 11 3, 5 5.


В А С С1С1С1С1 В1В1В1В Найдите объем многогранника, вершинами которого являются точки A 1, B 1, В, С правильной треугольной призмы ABCA 1 B 1 C 1, площадь основания которой равна 4, а боковое ребро равно 3. Искомый объем можно рассмотреть как разность объема треугольной призмы и двух пирамид. А1А1А1А1 3 х 1 0 х В 11 4


В А С С1С1С1С1 В1В1В1В Найдите объем многогранника, вершинами которого являются точки А, В, С, A 1, С 1 правильной треугольной призмы ABCA 1 B 1 C 1 D 1, площадь основания которой равна 3, а боковое ребро равно 2. Искомый объем можно рассмотреть как разность объема треугольной призмы и пирамиды A 1 B 1 C 1 B. А1А1А1А1 3 х 1 0 х В 11 4


А В С С1С1С1С1 А1А1А1А1 В1В1В1В Найдите объем многогранника, вершинами которого являются точки А, В, С, A 1 правильной треугольной призмы ABCA 1 B 1 C 1, площадь основания которой равна 2, а боковое ребро равно х 1 0 х В 11 2


C D А B D1D1 C1C1 B1B1 A1A Найдите объем многогранника, вершинами которого являются точки А, В, C, B 1 прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1, у которого АВ=3, АD=3, AA 1 = х 1 0 х В 11 4, 5 abS 2 1 = 33


Найдите объем многогранника, вершинами которого являются точки А 1, В, C, C 1, B 1 прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1, у которого АВ=4, АD=3, AA 1 =4. D A B C A1A1 D1D1 C1C1 B1B1 Получилась четырехугольная пирамида с основанием СВВ 1 С 1. Мне хочется опрокинуть параллелепипед на грань CBВ 1 C 1. C B B1B1 C1C1 A DD1D1 A1A х 1 0 х В


Найдите объем многогранника, вершинами которого являются точки А, В, B 1, C 1 прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1, у которого АВ=5, АD=3, AA 1 =4. C D A B D1D1 C1C1 B1B1 A1A1 Неудобный чертеж, т.к. не совсем ясен вид отсеченного многогранника. Мне хочется опрокинуть параллелепипед на грань ABВ 1 А 1. A B B1B1 A1A1 C DD1D1 C1C1 АВВ 1 С 1 – треугольная призма с основанием АВС и высотой В 1 С х 1 0 х В abS 2 1 = 54


Найдите объем многогранника, вершинами которого являются точки А, В, C, D 1 прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1, у которого АВ=4, АD=3, AA 1 =4. C D A B D1D1 C1C1 B1B1 A1A х 1 0 х В 11 8 abS 2 1 = 34


Найдите объем многогранника, вершинами которого являются точки А, D, A 1, B, C, B 1 прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1, у которого АВ=3, АD=4, AA 1 =5. D A В C A1A1 D1D1 C1C1 В1В х 1 0 х В Диагональное сечение делит параллелепипед на два равных многогранника. Равные фигуры имеют равные объемы.






Найдите объем многогранника, вершинами которого являются вершины A, B, C, B 1, D 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомый многогранник ABCB 1 D 1 составлен из двух треугольных пирамид с общим основанием. Он получается из куба отсечением трех треугольных пирамид. Его объем равен 0,5.




Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1 правильной треугольной призмы ABCA 1 B 1 C 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ABC. Ее объем равен 1/3.


Найдите объем многогранника, вершинами которого являются вершины A, B, A 1, C 1 правильной треугольной призмы ABCA 1 B 1 C 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида C 1 ABA 1. Ее объем равен 1/3.


Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, E, F, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является шестиугольная пирамида A 1 ABCDEF. Ее объем равен 1/3.


Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ABC. Ее объем равен 1/18.


Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является четырехугольная пирамида A 1 ABCD. Ее объем равен 1/6.


Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, E, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является пятиугольная пирамида A 1 ABCDE. Ее объем равен 5/18.


Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1, B 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является четырехугольная пирамида СABB 1 A 1. Ее объем равен 1/9.


Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1, B 1, C 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная призма ABCA 1 B 1 C 1. Ее объем равен 1/6.


Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1, B 1, C 1, D 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является четырехугольная призма ABCDA 1 B 1 C 1 D 1. Ее объем равен 1/2.


Найдите объем многогранника, вершинами которого являются вершины A, B, D, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ABD. Ее объем равен 1/9.


Найдите объем многогранника, вершинами которого являются вершины A, C, E, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ACE. Ее объем равен 1/6.


Найдите объем многогранника, вершинами которого являются вершины A, B, B 1, C 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида C 1 ABB 1. Ее объем равен 1/18.


Найдите объем многогранника, вершинами которого являются вершины A, B, С 1, D 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида D 1 ABC 1. Ее объем равен 1/18.

Решение заданий части В ЕГЭ по математике

Решение. Точки максимума соответствуют точкам смены знака производной с плюса на минус. На рисунке изображен график производной функции f(x) , определенной на интервале (−10; 8). Найдите количество точек максимума функции f(x) на отрезке [−9;6].

Решение. Точки максимума соответствуют точкам смены знака производной с плюса на минус. На отрезке [−9;6] функция имеет две точки максимума x = − 4 и x = 4. Ответ: 2 . На рисунке изображен график производной функции f(x) , определенной на интервале (−10; 8). Найдите количество точек максимума функции f(x) на отрезке [−9;6].

Решение. На рисунке изображен график функции y=f(x), определенной на интервале (−1; 12). Определите количество целых точек, в которых производная функции отрицательна. Производная функции отрицательна на тех интервалах, на которых функция убывает.

Решение. На рисунке изображен график функции y=f(x), определенной на интервале (−1; 12). Определите количество целых точек, в которых производная функции отрицательна. Производная функции отрицательна на тех интервалах, на которых функция убывает, т. е. на интервалах (0,5; 3), (6; 10) и (11; 12). В них содержатся целые точки 1, 2, 7, 8 и 9. Всего 5 точек. Ответ: 5.

На рисунке изображен график производной функции f(x), определенной на интервале (−10; 4). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки убывания функции f(x) соответствуют промежуткам, на которых производная функции отрицательна.

На рисунке изображен график производной функции f(x), определенной на интервале (−10; 4). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки убывания функции f(x) соответствуют промежуткам, на которых производная функции отрицательна, то есть интервалу (−9; −6) длиной 3 и интервалу (−2; 3) длиной 5. Длина наибольшего из них равна 5. Ответ: 5.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9]. Решение. Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9]. Решение. Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. На отрезке [−6; 9] функция имеет одну точку максимума x = 7. Ответ: 1.

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 6). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки возрастания функции f(x) соответствуют промежуткам, на которых производная функции положительна.

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 6). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Решение. Промежутки возрастания функции f(x) соответствуют промежуткам, на которых производная функции положительна, то есть интервалам (−7; −5), (2; 5). Наибольший из них - интервал (2; 5), длина которого 3.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 10). Найдите количество точек минимума функции f(x) на отрезке [−3; 8]. Решение. Точки минимума соответствуют точкам смены знака производной с минуса на плюс.

На рисунке изображен график производной функции f(x) , определенной на интервале (−7; 10). Найдите количество точек минимума функции f(x) на отрезке [−3; 8]. Решение. Точки минимума соответствуют точкам смены знака производной с минуса на плюс. На отрезке [−3; 8] функция имеет одну точку минимума x = 2. Ответ: 1.

На рисунке изображен график производной функции f(x) , определенной на интервале (−16; 4). Найдите количество точек экстремума функции f(x) на отрезке [−14; 2]. Решение. Точки экстремума соответствуют точкам смены знака производной - изображенным на графике нулям производной. Производная обращается в нуль в точках −13, −11, −9, −7. На отрезке [−14; 2] функция имеет 4 точки экстремума. Ответ: 4.

На рисунке изображен график функции y=f(x) , определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x) . Решение. Заданная функция имеет максимумы в точках 1, 4, 9, 11 и минимумы в точках 2, 7, 10. Поэтому сумма точек экстремума равна 1 + 4 + 9 + 11 + 2 + 7 + 10 = 44. Ответ: 44.

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 . Решение. Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Построим треугольник с вершинами в точках A (2; −2), B (2; 0), C (−6; 0). Угол наклона касательной к оси абсцисс будет равен углу, смежному с углом ACB

На рисунке изображен график функции y = f(x) и касательная к этому графику в точке абсциссой, равной 3. Найдите значение производной этой функции в точке x = 3. Для решения используем геометрический смысл производной: значение производной функции в точке равняется угловому коэффициенту касательной к графику этой функции, проведенной в этой точке. Угловой коэффициент касательной равен тангенсу угла между касательной и положительным направлением оси х (tg α). Угол α = β, как накрест лежащие углы при параллельных прямых y=0, y=1 и секущей-касательной. Для треугольника ABC

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 . По свойствам касательной y=f ′ (x 0)⋅x+b, b=const По рисунку видно, что касательная к функции f(x) в точке x 0 проходит через точки (-3;2), (5,4). Следовательно, можно составить систему уравнений

Источники http://reshuege.ru/

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .