О разделе

Этот раздел содержит статьи, посвященные феноменам или версиям, которые так или иначе могут быть интересны или полезны исследователям необъясненного.
Статьи разделены по категориям:
Информационные. Содержат полезную для исследователей информацию из различных областей знаний.
Аналитические. Включают аналитику накопленной информации о версиях или феноменах, а также описания результатов проведенных экспериментов.
Технические. Аккумулируют информацию о технических решениях, которые могут найти применение в сфере изучения необъясненных фактов.
Методики. Содержат описания методик, применяемых участниками группы при расследовании фактов и исследовании феноменов.
Медиа. Содержат информацию об отражении феноменов в индустрии развлечений: фильмах, мультфильмах, играх и т.п.
Известные заблуждения. Разоблачения известных необъясненных фактов, собранные в том числе из сторонних источников.

Тип статьи:

Информационные

Особенности восприятия человека. Обоняние

В повседневной жизни мы все время ощущаем запахи. Они могут быть приятные или неприятные, эти ощущения могут доставлять нам беспокойство, а могут даже спасти жизнь. Восприятие запахов играет важную роль у наземных живых существ (охота, поиск пары, защита и т.п.). Это в большей степени актуально для животных, но необходимо и человеку. Так же, помимо обычных реакций, иногда, когда мы ощущаем знакомый запах, в нашей памяти могут возникнуть определенные воспоминания, связанные с ним.

В этой статье мы попробуем разобраться в причинах возникновения этих ощущений.

Запахом называется специфическое ощущение присутствия в воздухе летучих ароматных веществ, обнаруживаемых химическими рецепторами обоняния, расположенными в носовой полости животных и людей. Это ощущение определяется суммарным эффектом от раздражения обонятельных рецепторов, рецепторов тройничного нерва и рецепторов вомероназального органа; кроме того, возможно, что в ощущение запаха вовлечено восприятие аэрозольной компоненты атмосферы.

Таким образом, восприятие запаха – это восприятие мельчайших частиц вещества, органического и неорганического происхождения, специфическими рецепторами.
Ниже мы рассмотрим физиологию восприятия запаха.

Физиология обоняния

Когда человек делает вдох, воздух течет через носовую полость к легким. Однако при выдохе носовые дыхательные пути частично перекрываются тремя костными выростами, называемыми носовыми раковинами. При прохождении через них воздух перемешивается и откладывает пахнущие молекулы на влажную слизистую оболочку. В результате при обычном дыхании мы сильнее чувствуем запах на выдохе, чем на вдохе.

При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается.

Анатомия носа и носоглотки. 1 – соустье слуховой трубы; 2 – глоточная миндалина; 3 – основная пазуха; 4 – соустье основной пазухи; 5 – ситообразная пластинка решетчатой кости; 6 – лобная пазуха; 7 – верхняя носовая раковина; 8 – средняя носовая раковина; 9 – нижняя носовая раковина; 10 – пристенок носа; 11 – твердое небо.

Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием. Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами - обонятельными рецепторами. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.

Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.

Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположенной в нейрональной клеточной мембране. Такая структура называется рецепторным белком.

Одна из моделей процесса преобразования сигнала внутри реснички обонятельного нейрона

Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.

Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин «одотоп» (odotope), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен различать молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой.

Активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге.

Пути передачи информации о запахах в головной мозг

Обонятельная луковица - это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода "слепок" запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.

Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.

Таким образом, можно выделить последовательные шаги в восприятии человеком запаха:

  1. Периферический отдел обонятельного анализатора: молекулы пахучих веществ диффундируют в область носоглотки, и чтобы воздействовать на рецепторы, они должны адсорбироваться и раствориться на влажной поверхности обонятельного эпителия. Далее информация о раздражении рецепторов проходит через проводящие пути.
  2. Проводящие пути обонятельного анализатора: Обонятельные клетки, снабженные рецепторным образованием на конце их периферического отростка, представляют собой первый нейрон проводящих путей обонятельного анализатора. Через отверстия решетчатой кости они проходят в полость черепа и проникают в обонятельную луковицу, то есть в передний, утолщенный конец обонятельного тракта. Здесь расположены тела второго нейрона. Аксоны второго нейрона образуют обонятельный тракт и направляются к телам третьего нейрона, расположенном в миндалевидном ядре, в переднем, изогнутом конце аммоновой извилины и в подмозолистой извилине. Аксоны третьего нейрона направляются к корковому отделу обонятельного анализатора.
  3. Корковый отдел обонятельного анализатора, где осуществляются корковые рефлексы на обонятельные раздражения.

Стоит отметить, что чувствительность обонятельного анализатора значительно меняется под влиянием различных внешних и внутренних условий. Эти изменения либо распространяются на весь анализатор, либо ограничиваются отдельными участками его коркового отдела.

Психология восприятия запаха

Многие психологи утверждают, что человек воспринимает запахи двум способами - естественным (реальным), и мнимым, так как любой запах вызывает в сознании ассоциативные образы, связанные с прошлыми событиями.

В зависимости от концентрации, одно и то же вещество может оказывать разный эффект.
В общем случае, с ростом концентрации летучих ароматических веществ типично изменение индивидуального восприятия от нейтрального или приятного (аромат), через индифферентное при среднем уровне «нагрузки рецепторов» - к неприятному и отвратительному (вонь), при «сенсорной перегрузке».

Существуют такие эффекты при восприятии запахов, как адаптация и интерференция.

  • Адаптация – это полная потеря ощущения запаха от вещества (в качестве примера можно привести сероводород: он легко обнаруживается в минимальных концентрациях, еще не опасных для здоровья, однако через короткое время сила ощущения резко падает - вплоть до того, что человек не в состоянии ощутить концентрации, превышающие ПДК в воздухе)
  • Интерференция – наложение нескольких запахов, которое может существенно исказить общую оценку аромата.

При различных заболеваниях или в определенных эмоциональных состояниях у человека могут возникать обонятельные иллюзии и галлюцинации (например, человек начинает ощущать запах гари как цитрусовый аромат).

Явления иллюзорного восприятия запахов еще называется хеморецепторной анестезией (притуплением) или гиперстезией (обострением), они могут возникать в различное время, некоторые - периодически (в начале менструального цикла, после перенесенной черепно-мозговой травмы, тяжелого нервного потрясения).

Помимо иллюзий, могут появляться также обонятельные галлюцинации. Они, чаще всего, представляют собой мнимое восприятие неприятных запахов (человек ощущает, например, запах плесени, уксуса или гниения), реже – совсем не знакомый запах, еще реже – запах чего то приятного. В большинстве случаев такие эффекты возникают в результате различных патологических процессов.

Вывод

В этой статье была представлена краткая информация о физиологии и психологии восприятия запахов.

Общие принципы этого восприятия известны, однако детали еще недостаточно изучены и оставляют множество вопросов.

Отдельно можно отметить, что часто запах человеком ощущается, но не осознается.

Запахом можно пользоваться, чтобы пробудить некоторые воспоминания человека, даже те, которые в обычном состоянии вспоминаются с трудом.

Запахи играют важную роль в формировании картины мира, однако и здесь возникают ошибки, обусловленные особенностями физиологии и психологии.

Доктор технических наук В. МАЙОРОВ.

В последнее десятилетие ХХ века в науке о запахах произошла подлинная революция. Решающую роль сыграло открытие 1000 видов обонятельных рецепторов, связывающих молекулы пахучих веществ. Однако механизм передачи обонятельного сигнала в центральную нервную систему таит в себе еще много загадок.

Наука и жизнь // Иллюстрации

Пути передачи информации о запахах в головной мозг.

Схематическое изображение обонятельного эпителия. Базальные клетки являются клетками-предшественниками обонятельных рецепторных нейронов.

Изображение реснички обонятельного нейрона, сделанное с помощью флуоресцентного красителя. На мембране ресничек расположены рецепторные белки, взаимодействующие с молекулами одорантов.

Модель молекулы обонятельного рецепторного белка мыши, к которому присоединена молекула одоранта - гексанола (пурпурного цвета).

Одна из моделей процесса преобразования сигнала внутри реснички обонятельного нейрона.

Схематическое изображение комбинаторных рецепторных кодов одорантов.

Электроольфактограмма (ЭОГ) - электрический колебательный сигнал, регистрируемый специальным электродом с участка внешней поверхности обонятельного эпителия крысы.

Чуть более четверти века назад в журнале "Наука и жизнь" (№ 1, 1978 г.) была опубликована статья "Загадка запаха". Ее автор, кандидат химических наук Г. Шульпин, справедливо отмечал, что современное ему состояние науки о запахах примерно такое же, как состояние органической химии в 1835 году. Тогда один из зачинателей этой науки, Ф. Велер, писал, что органическая химия представляется ему дремучим лесом, из которого невозможно выбраться. Но уже через четверть века А. М. Бутлеров, создав теорию химического строения вещества, сумел "выбраться из чащи". Шульпин выражал уверенность, что загадка запаха будет решена едва ли не быстрее, чем в случае органической химии.

И он оказался прав на все 100%! В последнее время произошел настоящий прорыв в понимании молекулярных основ обоняния. Разберем основные стадии восприятия запахов в свете современных представлений.

КАК ВОСПРИНИМАЕТСЯ ЗАПАХ

Проделаем простой опыт. Возьмем флакон с пахучей жидкостью, например духами, откроем пробку и понюхаем содержимое в спокойном ритме дыхания. Легко обнаружить, что мы ощущаем запах только во время вдоха; начинается выдох - запах исчезает.

При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается. Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием.

Общая поверхность, занимаемая эпителием в обеих половинках носа взрослого человека, невелика - 2 - 4 см 2 (у кролика эта величина равна 7-10 см 2 , у собак - 27 - 200 см 2). Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. При нормальном спокойном дыхании вблизи обонятельного эпителия проходит 7 -10% вдыхаемого воздуха. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами - обонятельными рецепторами.

Основная функция обонятельного рецептора состоит в выделении, кодировании и передаче информации об интенсивности, качестве и продолжительности запаха в обонятельную луковицу и специальным центрам в головном мозге. Эпителий в обеих носовых полостях у человека содержит приблизительно 10 млн обонятельных нейронов (у кролика - около 100 млн, а у немецкой овчарки - до 225 млн).

Как известно, нейрон состоит из тела и отростков: аксонов и дендритов. Нервный импульс с одной нервной клетки на другую передается с аксона на дендрит. Диаметр утолщенной центральной части обонятельного нейрона (сомы) 5-10 мкм. Дендритная часть в виде волокнистых отростков диаметром 1-2 мкм выходит к внешней поверхности эпителия. Здесь дендриты заканчиваются утолщением, от которого отходит пучок из 6-12 ресничек (цилий) диаметром 0,2-0,3 мкм и длиной до 200 мкм, погруженный внутрь слоя слизи (у кролика число ресничек в одном рецепторном нейроне составляет 30-60, а у собак достигает 100-150). Отходящее от сомы нервное волокно (аксон) имеет диаметр около 0,2 мкм и выходит к внутренней поверхности эпителия. Здесь аксоны от соседних нейронов объединяются в жгуты (филы), доходящие до обонятельной луковицы.

СЕМИОТИКА ОБОНЯНИЯ

Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположен ной в нейрональной клеточной мембране. Такая структура называется рецепторным белком. Используя методы молекулярной биологии, американские ученые Линда Бак и Ричард Аксель в 1991 году установили, что обонятельные нейроны у млекопитающих содержат около 1000 различных видов рецепторных белков (у человека их меньше - около 350). Признанием важности этого открытия стало присуждение им в 2004 году Нобелевской премии за исследования в области физиологии и медицины (см. "Наука и жизнь" № 12, 2004 г).

Каким образом рецепторы распределяются по нейронам: имеются ли отдельные представители этого семейства во всех обонятельных нейронах или каждый нейрон несет на своей мембране только один вид рецепторного белка? Как может мозг определить, какой из 1000 типов рецепторов подал сигнал? Имеющиеся данные позволяют сделать заключение о том, что на одном нейроне присутствует только обонятельный рецепторный белок одного вида. Нейроны с разными рецепторами обладают различной функциональностью, то есть в эпителии имеются тысячи различных типов нейронов. В этом случае проблема идентификации активированного запахом отдельного рецептора сводится к задаче выявления подавшего сигнал нейрона.

Принимая во внимание, что общее число обонятельных нейронов у человека около 10 млн, число обонятельных рецепторов одного типа исчисляется в среднем десятками тысяч.

Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и как бы выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.

Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин "одотоп" (odotope ), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен "различать" молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой. Учитывая, что в эпителии млекопитающих имеется приблизительно 1000 видов обонятельных рецепторов, можно полагать, что такая комбинаторная схема позволяет различить громадное число одорантов (даже человек различает до 10 000 запахов).

Полученные в последнее время результаты экспериментальных исследований свойств обонятельных рецепторных белков позволили создать на молекулярном уровне структурную модель спиральной молекулы обонятельного белка. Обонятельные рецепторные белки принадлежат к суперсемейству мембранносвязанных рецепторов. Они пересекают двухслойную липидную мембрану реснички семь раз. У содержащей 300-350 аминокислот молекулы рецепторного белка три наружные петли соединяются с тремя внутриклеточными петлями семью пересекающими мембрану трансмембранными участками.

НЕОБХОДИМАЯ СЛИЗЬ

Находящиеся в потоке воздуха молекулы одоранта, перед тем как достичь обонятельных рецепторных нейронов, должны пересечь обволакива ющий поверхность обонятельного эпителия слой слизи. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.

Слой слизи состоит из двух подслоев. Внешний, водный, имеет толщину примерно 5 мкм, а внутренний, более вязкий, - около 30 мкм. Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.

Слой слизи содержит разнообразные растворимые в воде белки, значительную часть которых составляют так называемые гликопротеины. Благодаря разветвленной молекулярной структуре эти белки способны связывать и удерживать молекулы воды, образуя гель.

Другие виды белков, содержащихся в слизи, взаимодействуют с молекулами одорантов и тем самым могут оказывать влияние на восприятие и распознавание запахов. Эти белки подразделяются на два основных класса - одорант-связующие белки (OBP) и одорант-разрушающие ферменты.

ОВР относятся к семейству белков, имеющих складчатую бочкообразную структуру с внутренней глубокой полостью, в которую попадают маленькие молекулы гидрофильных (жирорастворимых) одорантов. Разные подвиды этих белков отличаются высокой избирательностью взаимодействия с одорантами различных химических классов.

Полагают, что OBP способствуют растворению одоранта и транспортируют его молекулы сквозь слой слизи, действуют как фильтр для разделения одорантов, могут облегчать связывание одоранта с рецепторным белком и даже очищать околорецепторное пространство от ненужных компонентов.

Кроме одорант-связующих белков в слизи обонятельного эпителия вблизи рецепторных нейронов обнаружены несколько видов одорант-разрушающих ферментов. Все эти ферменты запускают реакции превращения молекул одорантов в другие соединения. Образующиеся в результате этих реакций продукты также вносят свой вклад в восприятие запаха. В конечном итоге все поступающие в слой слизи молекулы одорантов быстро, практически одновременно с завершением вдоха, теряют свою "запаховую" активность. Так что обонятельная система при каждом вдохе получает новую информацию от свежих порций одоранта.

ОБОНЯНИЕ НА УРОВНЕ МОЛЕКУЛ

Многие свойства системы восприятия запахов можно объяснить на молекулярном уровне. Молекула одоранта встречает на поверхности слизи, покрывающей обонятельный эпителий, молекулу одорант-связующего белка, которая связывает и переносит молекулу одоранта через слой слизи к поверхности реснички обонятельного нейрона. В ресничках осуществляется основной процесс передачи обонятельного сигнала. Его механизм достаточно типичен для многих видов взаимодействий физиологически активных веществ с рецепторами нервных клеток.

Молекула одоранта прикрепляется к определенному обонятельному рецептору (R). Между процессом связывания молекулы одоранта с рецептором и передачей обонятельного сигнала в нервную систему лежит сложный каскад биохимических реакций, проходящих в нейроне. Связывание молекулы одоранта с рецепторным белком активирует так называемый G-белок, расположенный на внутренней стороне клеточной мембраны. G-белок в свою очередь активирует аденилатциклазу (AC) - фермент, преобразующий внутриклеточный аденозинтрифосфат (ATP) в циклический аденозинмонофосфат (cAMP). А уже cAMP активирует другой мембранносвязанный белок, который называется ионным каналом, поскольку открывает и закрывает вход заряженным частицам внутрь клетки. Когда ионный канал открыт, в клетку проникают катионы металлов. Таким способом меняется электрический потенциал клеточной мембраны и генерируется электрический импульс, передающий сигнал с одного нейрона на другой.

Несколько молекулярных стадий передачи внутриклеточного сигнала обеспечивают его усиление, в результате чего небольшого числа молекул одоранта становится достаточно для генерирования нейроном электрического импульса. Такие усилительные каскады обеспечивают большую чувствительность системы восприятия запахов.

Итак, активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу.

Одиночный электрический сигнал-импульс на выходе имеет длительность не более 5 мс и пиковую амплитуду около 100 мкВ. Почти все нейроны генерируют импульсы и при отсутствии воздействия одоранта, то есть обладают спонтанной активностью, называемой биологическим шумом. Частота этих импульсов меняется в диапазоне от 0,07 до 1,8 импульса в секунду.

ЛУКОВИЧНАЯ НЕЙРОСЕТЬ

Обонятельные рецепторные нейроны распознают громадное число разнообразных молекул пахучих веществ и посылают информацию о них через аксоны в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге. Парные обонятельные луковицы представляют собой продолговатые образования "на ножках". Отсюда начинается путь обонятельного сигнала к полушариям мозга. Аксоны обонятельных нейронов оканчиваются в обонятельной луковице разветвлениями в сферических концентраторах (диаметром 100-200 мкм), называемых гломерулами. В гломерулах осуществляется контакт между окончаниями аксонов обонятельных нейронов и дендритами нейронов второго порядка, которыми являются митральные и пучковые клетки.

Митральные клетки - самые крупные нервные клетки, выходящие из обонятельной луковицы. Пучковые клетки меньше митральных, но функционально с ними схожи. Представление о количестве нервных клеток у млекопитающих могут дать характеристики обонятельной системы кролика. В ней имеется по 50 миллионов обонятельных рецепторных нейронов справа и слева (ровно в десять раз больше, чем у человека). Аксоны обонятельных рецепторов распределены между 1900 гломерулами обонятельной луковицы - примерно по 26 000 аксонов на гломерулу. Дендритные окончания 45 000 митральных и 130 000 пучковых клеток получают сигналы от аксонов в гломерулах и передают их из обонятельной луковицы в центры обоняния в головном мозге. Около 24 митральных и 70 пучковых клеток получают информацию от аксонов в каждой гломеруле. У человека около 10 млн аксонов обонятельных нейронов распределяются по 2000 гломерул обонятельной луковицы.

Все аксоны одной популяции обонятельных нейронов сходятся на две гломерулы, зеркально расположенные по разные стороны двумерного поверхностного слоя обонятельной луковицы. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода "слепок" запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.

Механизм активации гломерул до сих пор не выяснен. Усилия исследователей направлены на то, чтобы выяснить, каким образом многообразие одорантов воспроизводится в двумерном слое гломерул на поверхности обонятельной луковицы. Кстати, эти отображения имеют динамический характер - они постоянно меняются в ходе восприятия запаха, усложняя научную задачу.

Обонятельная луковица - это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. Ее можно рассматривать как совокупность множества микросхем с большим количеством связей, со взаимной активацией и ингибированием активности нейронов. Выполняемые нейронами операции выделяют характерные свойства карты запаха.

От обонятельной луковицы аксоны митральных и пучковых клеток передают информацию в первичные обонятельные участки коры головного мозга, а затем в высшие ее участки, где формируется осознанное ощущение запаха, и в лимбическую систему, которая порождает эмоциональную и мотивационную реакцию на обонятельный сигнал.

Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.

ЗАГАДКИ ЗАПАХОВ

То, о чем говорилось в предыдущих разделах, относится пусть к самому сложному, основополагающему, но начальному разделу науки о запахах - к их восприятию. Не раскрыт механизм взаимодействия обоняния с другими системами восприятия, например со вкусом (см. "Наука и жизнь" № , с. 16-20). Ведь известно, что если человеку зажать ноздри, то при дегустации даже хорошо известных вкусовых пищевых продуктов (например - кофе) он не в состоянии точно определить, что он пробовал. Достаточно разжать ноздри - и вкусовые ощущения восстанавливаются.

С молекулярной точки зрения пока непонятно, в каких единицах измерять интенсивность запаха и от чего она зависит, что такое качество запаха, его "букет", чем отличается один запах от другого и как охарактеризовать это отличие, что происходит с запахом при смешивании различных одорантов. Оказывается, что независимо от вида одорантов и уровня подготовленности даже опытный эксперт не может определить все составляющие смесь компоненты, если их больше трех. Если же смесь содержит более десяти одорантов, то человек не в состоянии идентифицировать ни одного из них.

Остается еще множество вопросов, касающихся механизмов и видов воздействия запахов на эмоциональное, психическое и физическое состояния человека. В последнее время на эту тему появилось немало спекуляций, чему поспособствовал вышедший в 1985 году роман П. Зюскинда "Парфюмер", более восьми лет прочно занимавший место в первой десятке бестселлеров на западном книжном рынке. Фантазии на тему чрезвычайной силы подсознательного воздействия ароматов на эмоциональное состояние человека обеспечили этому произведению огромный успех.

Однако художественный вымысел постепенно получает обоснование. Недавно в периодической печати появились сообщения о том, что американские военные "парфюмеры" разработали на редкость дурно пахнущую бомбу, способную не только вызвать отвращение, но и разогнать солдат противника или агрессивно настроенную толпу.

Общественные аллюзии на парфюмерные темы подстегнули всеобщий интерес к искусству ароматерапии. Расширилось использование ароматов в общественных местах, таких, как офисы, торговые залы, холлы гостиниц. Появились даже специальным образом ароматизированные товары, улучшающие настроение. Возникла такая отрасль рыночной экономики, как аромамаркетинг - "наука" о привлечении клиентов с помощью приятных запахов. Так, запах кожи навевает покупателю мысли о дорогом качественном товаре, аромат кофе побуждает к покупкам для домашнего ужина и т.д. Каким образом запахи формируют в головном мозге сигналы, побуждающие человека совершать покупки? Ученым предстоит совершить еще немало открытий, прежде чем ответить на этот и многие другие вопросы и отделить мифы о запахах от реальности.

Литература

Лозовская Е., канд. физ.-мат. наук. // Наука и жизнь, 2004, № 12.

Майоров В. А. Запахи: их восприятие, воздействие, устранение. - М.: Мир, 2006.

Марголина А., канд. биол. наук. // Наука и жизнь, 2005, № 7.

Шульпин Г., канд. хим. наук. Загадка запаха // Наука и жизнь, 1978, № 1.

Мы слышим запахи благодаря обонятельному эпителию в верхней части носа, глубоко внутри. На его поверхности расположено около 10 миллионов обонятельных нейронов. В их клеточной мембране содержится около 1000 различных рецепторов. При этом каждый нейрон имеет только один белок и отвечает за определенный запах. За данное исследование американские ученые Линда Бак и Ричард Аксель получили Нобелевскую премию. Такое количество рецепторов создает огромный диапазон воспринимаемых запахов. Каждый конкретный запах кодируется, чтобы мы без труда узнали его в следующий раз. За счет механизма присвоения индивидуальных кодов мы можем различать и запечатлевать около 10 тысяч запахов.

Какой путь преодолевает запах прежде, чем мы поймем, что именно слышим?

Представим, что перед нами букет пионов. Мы наклоняемся к нему, чтобы насладиться ароматом цветов. Здесь начинается самое интересное. На вдохе молекула запаха, называемая одорантом, попадает в наш нос.

1. Одорант растворяется в слизистой и активизируют обонятельные рецепторы.

2. Они распознают, что это запах пиона, и начинают передавать информацию об этом в виде электрического импульса.

3. Сигнал проходит через обонятельный нерв, представляющий собой систему аксонов, и попадает в обонятельный тракт. Далее импульс следует в обонятельный треугольник.

4. Из обонятельного треугольника электрический импульс стремится по трем направлениям: длинным путем над мозолистым телом (тогда появляются ассоциации), средним путем от ядер перегородки (происходит поиск источника запаха), и коротким — сразу в крючок (обеспечивает двигательную защитную реакцию на резкий запах).

5. Нервный импульс поступает в подкорковый слой, который связан с лобными долями мозга и некоторыми двигательными центрами, а также с лимбической системой.

6. После того как мы услышали аромат, мы начинаем его анализировать. «Раскодированный» запах классифицируется человеком как приятный или неприятный; узнаваемый или новый; интенсивный или едва уловимый.

Эти стадии классификации проходят последовательно. Если нам нравится запах пионов, мы слушаем дальше, узнаем и оцениваем его интенсивность.

Мы слышим запахи только тогда, когда вес пахучей молекулы находится в диапазоне 17 — 300 дальтон (атомная единица массы равная 1.66053892 * 10-27 кг). Например, мы не слышим запах кислорода (15,99903 дальтон), зато мы прекрасно распознаем его аллотропную модификацию — озон (48 дальтон). Именно им пахнет после грозы.

С обонянием и лимбической системой все не так-то просто! Мы приближаемся к ответу, который поставили еще в начале: почему запахи вызывают эмоции и воспоминания, пробуждают аппетит или настораживают.

Дело в том, что обонятельный тракт является частью лимбической системы наряду с другими из элементов, такими как: гиппокамп, отвечающий за формирование долговременной памяти; гипоталамус, который отвечает за голод, жажду, половое влечение, режимы сна и бодрствования; миндалевидное тело, управляющее страхом, агрессией и осторожным поведением. Поэтому обоняние тесно связано с памятью, эмоциями, половым влечением, голодом, агрессией, защитой, сном и бодрствованием. Например, неприятные запахи сигнализируют об опасности: запах гари предостерегает нас от пожара, а запах прокисшего молока предупреждает, что его лучше не пить. И наоборот: аромат булочек с корицей вызывает в нас аппетит, а запах любимого человека пламенеет в нас желанием.

Мы также выяснили, что лимбическая система отвечает не только за обоняние, но также за память и эмоции. Благодаря гиппокампу формируется ассоциативная память. Именно поэтому определенные запахи вызывают у нас конкретные эмоции и способны пробудить воспоминания. Для памяти ароматы становятся «ярлыками», которые прочно ассоциируются с важными для нас событиями. Часто это происходит неосознанно. Например, спустя много лет, вы услышали парфюм, который напомнил вам о первом поцелуе, потому что тогда на вашем возлюбленном был такой же. Мы не сомневаемся, что каждый найдет в своей жизни подобные примеры. Но как запоминать запахи осознанно? В этом нам поможет дворец памяти и некоторые другие техники запоминания.

Как дворец памяти поможет нам запоминать запахи?

Для начала мы разберемся, что такое дворец памяти. Это мнемотехника, иначе говоря, техника запоминания, впервые упомянутая великим оратором Цицероном. Он рассказывает историю поэта Симонида, который должен был прочесть поэму в честь одного богача, у которого он пировал. Когда поэт вышел на улицу, здание, где проходило празднество рухнуло, и все погибли. Лица умерших были настолько обезображены, что родственники не могли их опознать. Помог Симонид, который помнил, в каком порядке за столом сидели гости. Отсюда и берет начало дворец памяти как техника упорядоченного расположения фактов в хорошо знакомом месте.

Для того чтобы создать дворец памяти, нужно выбрать хорошо знакомое вам место. Это может быть ваша квартира, улица, по которой вы часто гуляете, или дорога от работы до дома. Важно, чтобы вы знали местность подробно и смогли ярко, живо представить ее в любой момент времени, пройтись по ней, оглядеться вокруг и увидеть детали.

После этого можно начать привязывать запахи, которые нам надо запомнить, к местам и вещам в выбранном месте. К примеру, в начальных нотах аромата у вас бергамот, апельсин и роза. Начальные ноты можно расположить у входной двери вашей комнаты. Бергамот созвучно со словом бегемот, а значит можно представить у двери бегемота оранжевого (апельсинового цвета) с розой в зубах. Чем абсурднее будут ваши образы, тем легче будет запомнить ароматы. Но есть одно уточнение: вы должны знать, как пахнет бергамот, апельсин, роза, иначе вы будете запоминать только составы духов, но не представлять их запах, что гораздо сложнее.

По аналогии с примером, вы можете расположить запахи в комнате, используя образы, созвучия, схожести форм. Не нагружайте предметы дворца памяти лишними запахами. Чем меньше привязанных запахов к той же двери, тем лучше. Пусть ассоциация наталкивает вас на дальнейший ход мысли. И чем чаще вы мысленно прогуливаетесь по дворцу памяти, тем лучше.

Таким образом вы можете запоминать составы множества духов и любую другую информацию. Но как же запоминать сами запахи?

1. Ассоциируйте запахи с людьми, которых вы хорошо знаете, с животными, явлениями природы. Благодаря образам вам будет легче вспомнить аромат. В этом деле лучше довериться интуиции и запоминать первую ассоциацию или образ, которые возникнут у вас в голове.

2. Классический прием парфюмера: ассоциация запаха с цветом. Можно разделить оттенки на теплые и холодные и подобрать запахи, которыми вы располагаете к этим оттенкам, исходя из собственных предпочтений.

3. Вы можете изобразить запах на бумаге. Дайте волю фантазии, пусть аромат примет ту форму, которую вы пожелаете!

4. Ассоциируйте запах с музыкой. Вдыхая аромат полыни, вы слышите одинокую свирель в поле, а при запахе сандалового дерева в голове вдруг заиграл ситар? Значит, вы идете в верном направлении.

5. Описывайте запах как можно подробнее. Заведите себе блокнот и пишите в него все, что вы чувствуете, услышав аромат. Любые мысли, образы. Воспоминания и переживания станут вам помощниками в запоминании запахов.

Комбинируйте техники и запоминайте комплексно. Для начала возьмите пять ароматов, например: иланг-иланг, пачули, ваниль, бергамот и сандал. Запомнив эти ароматы, можно добавлять новые. Не забывайте регулярно тренироваться и успех обязательно придет!

Кто бы мог подумать, что...

Многие гены обоняния наших предков выключились в процессе эволюции из-за отсутствия необходимости. Хороший нюх не давал особого преимущества в борьбе за существование, поэтому механизм естественного отбора не устранил особей со слабым обонянием.

Змеиный нос — это раздвоенный язык, который улавливает природу и направление запаха. Молекулы пахучего вещества попадают на органы обоняния во рту. Так что, если змея показывает вам язык, она не дразнится, скорее всего, она просто ищет добычу.

Мы заблуждались, думая, что акулы способны учуять каплю крови за несколько километров. Да, у них отличный нюх, но им не тягаться с угрем, который способен по одной молекуле одоранта понять, что это за запах.

Женщины лучше, чем мужчины, распознают и классифицируют ароматы. Возможно, так сложилось в процессе эволюции. Женщины более избирательно выбирали полового партнера, обращая внимание, в том числе, и на запах. Это обеспечивало более здоровое потомство.

В жару мы слышим запахи острее, чем в холодное время года. Поэтому зимние ароматы интенсивные, а летние — легкие.

Текст подготовил Михаил Поздняков

С. САМСОНОВ, кандидат биологических наук.

В познании фоторецепции – работы органов зрения за последнюю четверть века достигнуты существенные успехи. Механизмы обоняния, восприятия запахов изучены значительно меньше, хотя интерес к ним продолжает возрастать. Перспективные результаты, имеющие не только научную, но и практическую ценность, получены в лаборатории рецепции Института биологической физики АН СССР, которой руководит профессор Е.Е. Фесенко.

Орган обоняния поистине уникален. Он способен быстро распознавать огромное число самых различных веществ, хотя бы их было ничтожно мало – всего несколько сотен молекул в кубическом сантиметре окружающего нас пространства. Природный анализатор запахов неизмеримо превосходит соответствующие приборы, созданные людьми. Как писал академик П.Л. Капица, «физика располагает приборами во много раз чувствительнее наших органов чувств. Только... обоняние... у животных более совершенно...». И считал одной из важнейших проблем физики будущего – «догнать обоняние собаки».

Очевидно, чувство обоняния появилось у представителей животного царства раньше остальных. В глубинах теплых древнейших морей оно расширило возможности поисков пищи, особей другого пола и, конечно, помогало избежать опасности.

С тех пор миновала длинная череда миллионолетий, но свое непреходящее значение обоняние сохранило и сейчас. Конечно, люди в смысле восприятия запахов многое потеряли по сравнению со своими далекими предками и в ряду живых существ занимают в этом отношении скромное место. И все же современный человек способен уловить разницу между доброй сотней тысяч различных соединений и множеством их комбинаций. Можно сказать, что это даже слишком много, поскольку человеческий язык не в состоянии дать каждому из запахов достаточно полную качественную характеристику. Слишком беден словарный запас.

Исследователи постоянно стремятся найти у пахучих соединений общие черты, обусловливающие их восприятие. Например, имеет значение молекулярная масса вещества: она должна находиться в диапазоне 17...300 дальтон – только тогда они для нас пахнут. И тем сильнее, чем больше и сложнее молекула, но тоже до определенных пределов, поскольку при усложнении уменьшается летучесть вещества, а это свойство определяет распространение запаха.

Делались попытки найти зависимость между особенностями восприятия различных веществ и формой их молекулы. Американский ученый Дж. Эймур, анализируя несколько сотен органических соединений, пришел к выводу, что их можно сгруппировать вокруг семи основных запахов: камфорного, мускусного, мятного, эфирного, цветочного, острого, гнилостного. Каждая группа имеет внутреннее сходство в молекулярном строении, а на мембранах рецепторных клеток должны находиться стереоспецифические активные центры семи типов. Так появилась на свет стереохимическая теория, ставшая существенным шагом вперед на пути классификации запахов, хотя она и носила в значительной степени умозрительный характер. Последующие исследования показали, что дело обстоит сложнее, чем предполагал Дж. Эймур, и воздействие на клетки, воспринимающие запах (обонятельные рецепторы), определяется не только формой, но и другими параметрами молекулы.

Результаты многих исследований также окончательно подтвердили, что обонятельный анализатор животных способен обнаруживать чрезвычайно низкие концентрации пахучих веществ. Особенно он чувствителен у насекомых, улавливающих издалека присутствие полового феромона, даже если в кубическом сантиметре воздуха его не более 100 молекул. Но все-таки многие свойства рецепторной клетки продолжали оставаться неясными.

Одним из центральных вопросов, вставших перед исследователями, была необходимость найти тот элемент клетки, с помощью которого она воспринимает запахи.

Предварительно стоит коротко рассказать об общей организации обонятельной системы у позвоночных. Рецепторные клетки обонятельного эпителия играют роль первичного механизма, улавливающего запахи извне. Они, по существу, являются нервными клетками, и от каждой из них отходит очень тонкий (диаметром около 0,2 микрометра) отросток – аксон, который оканчивается на поверхности одного из периферических отделов головного мозга – обонятельной луковицы. Здесь происходит первичная обработка полученной пахучей информации. Далее она передается по нервным волокнам обонятельного тракта в соответствующие участки головного мозга.

Обычно обонятельные клетки имеют веретенообразную форму и наделены периферическим и центральным отростками. Первый заканчивается обонятельной булавой, усаженной тончайшими волосками (антеннами), имеющими довольно сложное строение. Антенны содержат набор трубчатых фибрилл, напоминая в этом отношении жгутики или реснички, широко распространенные в мире простейших. Они находятся в постоянном движении, напоминая при разглядывании в микроскоп колосящуюся ниву.

Центральный отросток – аксон представляет собой не что иное, как ответвление обонятельного нерва. Аксоны разных клеток объединены в группы по 20...100 волокон и в составе обонятельного нерва идут к уже упомянутой обонятельной луковице.

Анализаторы различных животных могут существенно отличаться друг от друга. Разница заключается не только в плотности размещения рецепторных клеток, но и в их общем количестве. Для примера сравним собаку и человека. Разница в восприятии запахов у них громадна, хотя на квадратный сантиметр обонятельного эпителия приходится примерно одинаковое число рецепторных клеток. Зато их общее количество у собаки в 20...25 раз больше, чем у человека, и составляет около 200 миллионов. Поскольку каждая рецепторная клетка имеет свой аксон, обонятельный нерв собаки представляет собой «кабель», содержащий 200 миллионов «жил»!

Строение участка эпителия – приемника запахов

Кроме обонятельных, в составе эпителия имеются опорные клетки. Они образуют каркас эпителия, поддерживающий его структуру. Это, однако, не единственная их функция. Ряд исследователей полагают, что они не только поддерживают рецепторные клетки, но и помогают им в обмене веществ.

Есть еще третий тип клеток – базальные, находящиеся в глубине эпителия. Они образуют клеточный резерв, из которого при необходимости формируются рецепторные и опорные клетки. Поверхность эпителия, выстилающего обонятельную полость, покрыта слизью, что характерно для всех позвоночных. Слизь защищает эпителий от высыхания у наземных животных и от излишнего смачивания – у водных. Кроме того, она является источником ионов, необходимых для генерации электрического ответа клетки (то есть сигнала в мозг о появлении запаха), и участвует, возможно, в удалении остатков пахучих веществ с поверхности обонятельного эпителия по окончании их действия. В сущности, она является средой, где возникает и заканчивается взаимодействие пахучих веществ с обонятельными клетками.

Теперь вернемся к исследованию природы рецепторного элемента. Основой для постановки экспериментов послужила давно известная способность белков обеспечивать высокую специфичность и избирательность биологических реакций, в которые они вовлечены. Образно говоря, к каждому белку можно подобрать определенный «ключ», он будет единственным, и по нему можно узнавать, с каким «замком» имеешь дело. Ученые предполагали, что и обонятельные клетки не обходятся без белковых структур, взаимодействующих с пахучими веществами, но это надо было проверить.

Чтобы найти эти структуры, ученые решили ввести в клетку радиоактивное пахучее вещество, а затем, разделяя клеточные компоненты и измеряя радиоактивность каждого из них, найти тот, что взаимодействует с пахучей радиоактивной меткой. Это и будет кандидат в рецепторы пахучих веществ.

Для этих экспериментов необходимо было пахучее вещество с высокой удельной радиоактивностью. Выбор пал на камфору, которая часто используется в электрофизиологических экспериментах и обладает одним из 7 основных запахов по классификации Дж. Эймура. Здесь на помощь биологам пришли радиохимики из Института молекулярной генетики АН СССР, которые специально для этих опытов синтезировали радиоактивную камфору с нужными свойствами.

Опыты ставились следующим образом. На первом этапе с помощью соскоба получали препараты обонятельного эпителия лягушки и крысы с частичками мембран рецепторных клеток. В препарат вводили радиоактивную камфору и затем выделяли фракцию, содержащую радиоактивную метку. Для контроля то же самое проделывали с препаратами, приготовленными из других органов животного.

Как и следовало ожидать, компонент, способный эффективно связывать камфору при очень низких концентрациях последней, был обнаружен только в препарате обонятельного эпителия. В тканях языка, легких, печени его не оказалось. Удалось определить и молекулярную массу рецептора, составившую около 140 000 дальтон. В специальных экспериментах была установлена белковая природа рецептора. Исследователи показали, что молекула рецептора состоит из 2-х субъединиц с молекулярной массой 88 000 и 55 000 дальтон, причем центр связывания камфоры находится на большой субъединице. Как и предполагали, рецептор пахучих веществ оказался мембранным белком, практически не растворимым в воде.

Но полученные результаты не удовлетворили исследователей. Дело в том, что сама по себе способность связывать пахучее вещество еще не доказательство рецепторной природы того или иного компонента клетки. Она может оказаться случайной или играющей иную роль, не связанную с узнаванием пахучего вещества. В принципе в обонятельном эпителии могут быть несколько компонентов, способных связывать пахучие вещества, и только один из них может оказаться рецептором. Необходимо было еще раз проверить, но уже иными методами, что обнаруженные белки действительно служат рецепторами запахов.

Здесь исследователи пошли иммунохимическим путем. Если взять проверяемые белки, скажем, у крысы и ввести кролику, то там они сыграют роль «чужака»-антигена и, стало быть, вызовут образование антител к этим белкам. Если затем ввести антитела в препарат обонятельной ткани, то они, найдя там «свои» белки (кандидаты в рецепторы), помешают им связаться с радиоактивной камфорой. В этом случае электрического сигнала о получении запаха не будет. А если будет, то, значит, этот белок не рецептор.

Выполнив чрезвычайно трудоемкую операцию по извлечению нужных белков из крыс, исследователи иммунизировали ими кролика и получили в конечном итоге антитела к рецептору. Затем в специальных экспериментах было показано, что антитела эффективно блокируют связывание камфоры с рецептором. Остался последний, решающий шаг – показать, что антитела блокируют также электрический ответ клетки на пахучие вещества. Электрофизиологический эксперимент показал, что это действительно так. Сомнений в том, что выделенный белок относится к классу рецепторных, практически не осталось.

Иммунохимический подход позволил исследователям попутно решить еще две важные задачи. Во-первых, было определено место расположения рецепторов запаха в обонятельном эпителии. Как и предполагали, они локализованы в его поверхностном слое. Во-вторых, с помощью антител удалось резко упростить и ускорить процедуру выделения рецептора. Вместо прежних многосуточных процедур рецептор теперь можно выделить в течение 2...3 часов: для этого достаточно один раз пропустить препарат обонятельного эпителия через колонку с антителами. При этом через колонку проходят все компоненты препарата, кроме рецептора, который задерживает антитела. После удаления всех остальных компонентов рецептор вымывается из колонки специальным раствором, в котором ослабляется взаимодействие антитела и рецептора.

Сравнив свойства камфорных рецепторов из обонятельной ткани лягушки и крысы, исследователи обнаружили, что они очень похожи по своим свойствам. А как обстоит дело с рецепторами на другие пахучие вещества? Быть может, все они очень похожи друг на друга и составляют семейство обонятельных рецепторных белков, подобно зрительным пигментам различных животных? Чтобы ответить на этот вопрос, необходимо было синтезировать хотя бы несколько радиоактивных пахучих веществ, относящихся к разным классам запахов. К сожалению, синтез каждой такой метки представляет сложную и очень трудоемкую задачу, поэтому исследователи были вынуждены пойти по другому пути. Они сменили объект и стали использовать в опытах препараты обонятельного эпителия рыб, для которых химическими стимулами служат аминокислоты, а их радиоактивные аналоги легкодоступны.

Надо сказать, что рыбы обладают хорошо развитой обонятельной системой и способны реагировать на весьма низкие концентрации пахучих веществ. Некоторые аминокислоты и их смеси имеют сигнальное значение для рыб. Так, угорь находит моллюска, которого использует в пищу, по выделенному им в воду комплексу из 7 аминокислот. С давних пор известно, что лососи стараются обойти то место в реке, где медведь ловит рыбу. Было выяснено, что сигнал тревоги имеет химическую природу и вымывается из кожи медведя. Его назвали «фактором звериной шкуры». Оказалось, что главным компонентом этого фактора является аминокислота L-серин. Ее добавление в речную воду само по себе вызывает реакцию тревоги у лососей. В последнее время удалось экспериментально доказать возможность привлечения с помощью химических сигналов некоторых морских рыб.

Все это делает рыб весьма привлекательным объектом с точки зрения изучения механизмов восприятия запахов. В опытах сотрудников лаборатории, которые были проведены на базе Карадагской биостанции, использовались черноморские скаты-хвостоколы, обладающие хорошо развитым и легкодоступным обонятельным анализатором. В качестве стимулов применялись уже упомянутые L-серин и другие аминокислоты. Во всех случаях были обнаружены мембранные белки, способные эффективно связывать аминокислоты. Их характеристики, в частности молекулярный вес и субъединичное строение, оказались практически такими же, как у камфорного рецептора лягушки и крысы. Сегодня у исследователей нет сомнений, что они имеют дело с новым семейством рецепторных белков, уникальными свойствами которых в значительной степени объясняются рекордные чувствительность и избирательность обонятельного анализатора.

Последующие эксперименты показали, что, кроме белкового рецептора, в обонятельном эпителии животных присутствует другой высокомолекулярный компонент, также способный связывать пахучие вещества. В отличие от мембранного белка он растворяется в воде, и, по крайней мере, часть его находится в слизи, покрывающей обонятельный эпителий. Установлено, что он имеет нуклеопротеидную природу, его молекулярная масса составляет около 150 000 дальтон. Его концентрация в эпителии в несколько тысяч раз выше, чем мембранного рецептора, а специфичность по отношению к пахучим веществам значительно меньше. Принимает ли нуклеопротеид участие в восприятии пахучих веществ? Если да, то какова его роль в этом процессе? Исследователи полагают, что он входит в состав неспецифической системы, обеспечивающей очистку обонятельного эпителия от различных пахучих веществ по окончании их действия, что необходимо для приема других запахов. Иными словами, предполагается, что нуклеопротеид, попадая в слизь, способен усиливать ток слизи и тем увеличивать эффективность очистки обонятельного эпителия. Не исключено также, что нуклеопротеид, находясь в слизи, способствует растворению пахучих веществ в ней и, возможно, выполняет транспортные функции.


Молекула пахучего вещества, доставленная гранулой-адсорбентом к мембране клетки, взаимодействует с распознающим участком рецептора, который специальным белком G активирует аденилатцинлазу (АЦ) или какой-нибудь другой фермент. Синтезированные при этом внутриклеточные медиаторы (АТФ → цАМФ) активизируют ионные каналы, что приводит к возбуждению электрического сигнала в мозг о появлении запаха.

Исследователи располагают данными, указывающими на то, что нуклеопротеид синтезируется в опорных клетках и входит в состав пигментных гранул, которые выбрасываются из опорных клеток в слизь в ответ на стимуляцию обонятельного эпителия пахучими веществами. Может быть, это одна из основных функций опорных клеток при восприятии пахучих веществ?

Итак, результаты исследований говорят о том, что в процессе восприятия пахучих веществ участвуют две системы рецепторных элементов. Одна из них – система мембранных рецепторов – обеспечивает физиологический ответ клетки, характеризующийся высокой чувствительностью и избирательностью, вторая же – нуклеопротеидной природы – обеспечивает очистку обонятельного эпителия от пахучих веществ после приема сигнала.

Над чем сейчас работают ученые? Одна из задач – дальнейшее исследование свойств рецепторов и в частности определение функциональной роли малой (с молекулярной массой 55 000 дальтон) его субъединицы в реакции клетки на пахучее вещество. Но главное, пожалуй, сегодня не это. Необходимо понять, каким образом взаимодействие рецептора, с пахучим веществом вызывает генерацию электрического ответа клетки. По косвенным данным можно судить, что обонятельная клетка способна реагировать на одну (!) молекулу пахучего вещества – это предел физической чувствительности. Но в этом случае она должна обладать эффективной системой усиления слабых сигналов и чрезвычайно низким уровнем собственного шума. Расшифровать эти механизмы – значит сделать принципиальный шаг в познании общих принципов, лежащих в основе возбуждения клетки. И в этом направлении имеются уже первые успехи.

Познание тончайших механизмов восприятия разнообразнейших запахов, несомненно, имеет далеко идущие перспективы. Об этом свидетельствует то, что новые данные, полученные в лаборатории рецепции, быстро нашли выход в практику. Они послужили основой для разработки способа разделения тутового шелкопряда по полу. На первый взгляд проблема кажется не особенно важной, но такое впечатление ошибочно. С древнейших времен шелководство связано с сортировкой шелкопряда по половому признаку. До последнего времени операция производится вручную, что отнимает массу времени и сил.

Сотрудники лаборатории совместно со специалистами Среднеазиатского НИИ шелководства предложили оригинальный способ, который базируется на применении синтетического полового феромона. Этот способ дает научную основу для коренной модернизации производства грены (яичек шелкопряда) с помощью автоматизации ряда трудоемких операций. Его использование в промышленных масштабах сулит немалую экономию.

Наука и жизнь. 1988. №4.

Запах - это способность вещества воздействовать на рецепторы обонятельного анализатора, что сопровождается возникновением специфического ощущения.

Обоняние увеличивает объем информации об окружающем мире.

Существует несколько теорий восприятия запахов. По химической теории запах - это следствие присутствия в окружающей среде определенных концентраций пахучих молекул. Недостатком химической теории запаха является то, что она не объясняет, почему молекулы различных структур имеют одинаковый запах. В то же время молекулы, имеющие разное строение и химический состав, могут обладать одинаковым запахом.

Согласно стереохимической теории , запах обусловлен формой и размерами молекул, а не их химическим составом. Запах вещества зависит от того, насколько точно их молекулы вписываются в соответствующие лунки, расположенные на рецепторных мембранах обоняния. Однако эта теория не может дать ответ на все вопросы, связанные с восприятием запахов.

Согласно квантовой теории , восприятие запахов связано с колебательными движениями атомов, входящих в состав ароматических веществ. В результате колебаний атомов возникают электромагнитные волны, которые поглощаются рецепторной мембраной и трансформируются в ощущение запаха. Но эта теория не может объяснить, почему два вещества имеют совершенно разные запахи, хотя электромагнитные колебания их атомов полностью совпадают. Эта теория также не дает ответа на все вопросы [Губанов Н.И. и др., 1978]. По-видимому, имеют значение структура, форма молекул и их квантовые свойства. До сих пор не известно, какое именно свойство пахучего вещества вызывает нервный импульс.

У человека обонятельные клетки (обонятельные нейроны) входят в состав обонятельного эпителия. Они расположены в верхнем носовом ходе и задней части носовой перегородки. Обонятельные клетки лежат тонким слоем, живут около 60 дней и гибнут. Затем они дифференцируются из базальных клеток. Обонятельные клетки являются единственными нейронами, способными в течение всей жизни организма непрерывно обновляться. Эти клетки расположены среди обонятельного эпителия, в состав которого входят также клетки ненейронной природы, опорные клетки, разделяющие рецепторные клетки. Базальные клетки выполняют функцию стволовых. За счет базальных клеток обонятельные нейроны способны к постоянному обмену и регенерации. Секреторные клетки обонятельных (боуменовых) желез продуцируют слизь.

Чувствительная площадь первичного контакта воспринимающей поверхности с пахучими молекулами представляет собой обнаженное вещество самого нерва, т.е. при ощущении запаха происходит непосредственный контакт с окружающим миром [Райт Р.Х., 1966].



Учитывая количество обонятельных волосков, их длину, диаметр, можно рассчитать, что, например, у кролика первичная площадь контакта между пахучими молекулами и воспринимающей поверхностью составляет 600 м 2 . У человека она в 100 раз меньше. Эта чувствительная поверхность представляет собой обнаженное вещество нерва.

У человека количество обонятельных клеток составляет около 60 млн. Импульс в отдельном нервном волокне возникает при попадании на его рецепторы 8-10 молекул пахучих веществ. Ощущение запаха возникает, если одновременно возбуждается не менее 40 нервных волокон.

Обонятельные клетки имеют форму веретена с двумя отростками - периферическим и центральным. От периферического (апикального) отдела отходит дендрит, который заканчивается обонятельной булавой, несущей 10-15 ресничек - обонятельных рецепторов, которые находятся в слое слизи и медленно, но несинхронно колеблются [Бронштейн А.И., 1950].

Молекулы ароматических веществ сначала поглощаются слизью, затем контактируют с ресничками и рецепторными молекулами в мембране обонятельных клеток.

Сходство и различие запахов связывают, во-первых, со структурой (т.е. с конфигурацией пахучих молекул и рецепторных участков на поверхностной мембране обонятельных волосков), во-вторых, с колебательными свойствами пахучих молекул (соответствием резонансных колебательных частот молекул ароматических веществ и рецептора).

Обонятельные рецепторы - это выросты плазматических мембран. Каждая из них состоит из 9 пар двойных трубочек, расположенных по периферии реснички, и одной пары, расположенной в центре. Они - участники рецепции, усиления сигнала и преобразования его в изменение биоэлектрической активности клетки. Рецепторы распадаются на группы с одинаковыми спектрами, т.е. одинаковыми ответами на стимул. Выделяют три группы рецепторов:

· реагирующие на феромоны;

· реагирующие на запахи пищи;

· реагирующие на широкий круг веществ.

Механизм преобразования сигнала при изменении ионной проницаемости плазматической мембраны клетки, дающий начало развитию рецепторного потенциала, до конца не расшифрован.

Исследователи считают, что трансдукция обонятельного сигнала сопряжена с цитоскелетом обонятельных нейронов. Основная роль отводится микротрубочкам, которые, как полагают, участвуют в рецепции, трансформации и проведении стимулов внешней среды. Акцепторной молекулой одорантов служит тубулин - основной белок микротрубочек [Этингоф Р.Н. и др., 1987].

От центрального (дистального) отдела обонятельной клетки отходит аксон. В виде нескольких (до 20) тонких нитей он проникает через отверстия решетчатой кости и поступает в мозг, образуя на нижней поверхности лобной доли обонятельные луковицы. Внутри такой луковицы аксоны переплетены между собой и заканчиваются в теле клубочка, где имеются синапсы, через которые нервные импульсы с помощью неиромедиаторов передаются в обонятельные структуры мозга [Шеперд Г., 1978].

Ключевой системой действия растительных ароматических веществ является лимбическая система, включающая гиппокамп, гипоталамус, миндалевидное ядро и другие образования. Эти структуры названы обонятельным мозгом. Лимбическая система действует совместно с корой больших полушарий и ретикулярной формацией.

Эмоциональные напряжения, стрессы, действие экологических факторов сопровождаются глубокими сдвигами во многих функциональных системах организма. При этом первичные запускающие изменения, ведущие к патологии, происходят в лимбической системе.

Растительные ароматические вещества осуществляют свое действие через лимбическую систему, что сопровождается нормализацией нейрофизиологической функции лимбической системы, включением гипофизадреналовой системы, формированием биорегулирующих эффектов на всех органах и системах организма.

В последние годы выявлена ноотропная активность растительных ароматов на медиаторное звено ЦНС. Так, ароматы лаванды способствуют выделению серотонина, ароматы жасмина стимулируют выделение эндорфинов, а герани - действуют на ацетилхолин. Ароматы мяты способствуют снижению повышенного количества катехоламинов и т.д.

Привлекают внимание особенности и закономерности действия растительных ароматов через органы обоняния и обонятельный мозг на различные органы и системы. Они характеризуются сверхмалыми дозами (в диапазоне 10 -18 - 10 -10), а также противоположно направленным эффектом при более высоких дозах. Кроме того, несмотря на различный химический состав действующих ароматов и объектов, наблюдаются общие закономерности их действия в сверхмалых дозах. В этом диапазоне активны именно регуляторные вещества, которые в основном имеют пептидную и полипептидную природу, однако и некоторые вещества непептидной природы (в частности, растительные ароматические) действуют в сверхмалых дозах.

В нашей лаборатории на животных получены данные о действии растительных ароматических веществ (РАВ) на соматические клетки в сверхмалых дозах - на уровне 10 -10 - 10 -9 .

Нередко ароматы растений независимо от того, ощущаем мы их в атмосфере или нет, оказывают биорегулирующие эффекты.