Изменчивость представляет собой результат реакции генотипа в процессе индивидуального развития организма (онтогенеза) на условия внешней среды.

Изменчивость является одним из главных факторов эволюции. Она служит источником естественного и искусственного отбора.

Различают наследственную и ненаследственную изменчивость. К наследственной изменчивости относятся такие изменения признаков, которые определяются генотипом и сохраняются в ряду поколений. Наследственная изменчивость возникает в результате мутаций (мутационная изменчивость) или в результате рекомбинации генетического материала двух особей, например, родителей (комбинативная изменчивость).

Комбинативная изменчивость представляет собой результат перекомбинации генов и перекомбинации хромосом, несущих различные аллели, и выражается в появлении разнообразия организмов – потомков, получивших новые комбинации генов, уже существовавших у родительских форм.

У эукариотических организмов комбинативная изменчивость возникает за счет перекомбинации генетического материала родителей при половом размножении. Рекомбинация генов осуществляется различными способами. Этот процесс может быть связан с перераспределением целых хромосом. Такой механизм в соответствии с третьим законом Менделя обеспечивает независимое наследование несцепленных генов и признаков. Чаще всего рекомбинацию в узком смысле слова связывают с кроссинговером, то есть с перекомбинацией генов, локализованных в гомологичных хромосомах.

У бактерий найдено три механизма объединения и рекомбинации генетического материала: трансформация, конъюгация и трансдукция .

К ненаследственной изменчивости относят изменения признаков организма, не сохраняющиеся при половом размножении. Это так называемая модификационная изменчивость - свойство организмов менять свой фенотип в зависимости от условий среды при сохранении стабильности генотипа. Модификационные изменения имеют массовый приспособительный характер и исчезают при изменении условий. Они не представляют интереса для эволюции, поскольку не наследуются. Пределы, в рамках которых организм способен реагировать на условия окружающей среды, называются нормой реакции . Широкая норма реакции обеспечивает хорошую адаптационную способность организма. Норма реакции определяется генотипом особи.

Эпигенетическая изменчивость связана с изменением экспрессии генов без изменения их структуры. Набор работающих генов меняется в процессе индивидуального развития и в ответ на внешние воздействия. Эти изменения могут быть как ненаследуемыми, так и сохраняться на протяжении нескольких поколений.

Мутационная изменчивость.


Термин «мутация» был предложен в начале XX века Г. Де Фризом. В результате многолетних исследований растения энотеры он обнаружил ряд форм, которые отличались от основной массы, причем эти отличия сохранялись из года в год. Обобщив свои наблюдения, Де Фриз сформулировал мутационную теорию: «мутация – это явление скачкообразного, прерывистого изменения наследственного признака».

Основные положения мутационной теории.

  1. Мутации возникают внезапно как дискретные изменения признаков.
  2. Новые формы устойчивы.
  3. В отличие от модификаций мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные изменения.
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.
  5. Вероятность обнаружения мутаций зависит от числа исследованных особей.
  6. Сходные мутации могут возникать неоднократно.

В дальнейшем все положения этой теории, кроме пункта 3, подтвердились.

В современном понимании мутации это наследуемые изменения генетического материала.

Существует несколько типов классификации мутаций

  1. По характеру изменения генома: геномные, хромосомные, генные.
  2. По проявлению в гетерозиготе: доминантные рецессивные.
  3. По уклонению от нормы (дикого типа): прямые, обратные.
  4. В зависимости от причин, вызвавших мутацию: спонтанные, индуцированные.
  5. По локализации в клетке: ядерные, митохондриальные, хлоропластные.
  6. По отношению к возможности наследования: генеративные, соматические.

К геномным мутациям относят изменения числа хромосом. Минимальный набор хромосом, когда каждая хромосома представлена одной копией, называется гаплоидным . Гаплоидными являются гаметы. Гаплоидный набор хромосом обозначается буквой n. В соматических клетках обычно присутствует диплоидный набор хромосом, содержащий двойной по сравнению с гаплоидным набор хромосом (2 n). В жизненных циклах эукариот встречаются случаи сверхнормального умножения числа хромосом. Если такие изменения пропорциональны (кратны) гаплоидному набору, то говорят о полиплоидизации . Если изменяется число экземпляров только одной или нескольких хромосом набора, то говорят об анеуплоидии .

Полиплоидия широко и неравномерно распределена в природе. Известны полиплоидные грибы и водоосли, часто встречаются полиплоиды среди цветковых растений. Макронуклеусы инфузорий в высокой степени полиплоидны (более 100 n).

Автополиплоидия – повторение в клетке одного и того же хромосомного набора. Один из путей возникновения полиплоидов - образование нередуцированных гамет. Удвоение числа хромосом может быть результатом эндоредупликации генетического материала: клетки, находившиеся в исходном растении в G2 фазе, вместо митоза повторно вступают в S фазу. Затем такие клетки с удвоенным числом хромосом делятся и дают начало полиплоидным клонам. Другой причиной появления полиплоидных клеток является эндомитоз – процесс нерасхождения хромосом в анафазе из-за нарушения функции веретена деления. Для искусственного получения полиплоидов применяют агенты, блокирующие расхождение удвоившихся хромосом, например, колхицин, вырабатываемый растением безвременником, винбластин, получаемый из другого растения – барвинка, камфора.

Аллополиплоиды – организмы, содержащие наборы хромосом двух или нескольких видов, полученные в результате гибридизации и полиплоидизации. Природными аллополиплоидами являются некоторые виды растений, например, геном мягкой пшеницы включает два генома родственных диплоидных пшениц и геном эгилопса. Примером искусственного аллополиплоида является гибрид редьки и капусты, полученный в 1927 г. Г.Д.Карпеченко.

Полиплоидия часто ведет к появлению более мощных и продуктивных организмов. Однако фертильность полиплоидов понижена из-за неправильной конъюгации хромосом в мейозе и неравномерного расхождения хромосом по гаметам, триплоиды не дают потомства

Хромосомные мутации связаны с перестройками хромосом – аберрациями . Выделяют аберрации внутрихромосомные (вовлечены участки одной хромосомы) и межхромосомные (вовлечены участки разных негомологичных хромосом).

Внутрихромосомные перестройки :

Дефишенси – концевые нехватки;

Делеции – выпадение частей хромосомы, не затрагивающее теломеру;

Дупликации – удвоение (умножение) части хромосомы;

Инверсии – изменения чередования генов в хромосоме в результате поворота участка хромосомы на 180 градусов.

Межхромосомные перестройки - транслокации – перемещения части одной хромосомы на другую, не гомологичную ей.

Особое положение занимают транспозиции, или инсерции – изменения локализации небольших участков генетического материала, включающих один или несколько генов. Транспозиции могут происходить как в пределах одной хромосомы, так и между хромосомами. Поэтому транспозиции занимают промежуточное положение между внутрихромосомными и межхромосомными перестройками.

Генные (точковые) мутации это изменения последовательности нуклеотидов в ДНК. Точковые мутации подразделяются на следующие группы:

а) транзиции – замена пурина на пурин; пиримидина на пиримидин;

б) трансверсии – замена пиридина на пурин и обратно;

в) вставка лишней пары нуклеотидов;

г) выпадение пары нуклеотидов.

Основная причина возникновения мутаций – «ошибки трех Р»: репликации, репарации и рекомбинации. Такие ошибки происходят при нарушении регуляции этих трех процессов. Показана положительная корреляция между частотой мутаций и дефектами ДНК полимераз и других ферментов репликации и репарации.

Основания ДНК могут существовать в нескольких таутомерных формах. Если аденин находится в обычной аминной форме, он спаривается с тимином. Будучи в редкой иминной форме, аденин образует пары с цитозином. Этот таутомерный переход аденина при последующей репликации может привести к транзиции АТ-ГЦ. Редкий енольный таутомер тимина способен образовывать пару с гуанином, а это также приведет к замене пары нуклеотидов. Все транзиции и трансверсии можно объяснить некоторой неоднозначностью соответствия между нуклеотидами в комплементарных цепях ДНК.

Частота спонтанных, то есть возникших без воздействия внешних факторов мутаций варьирует от 10 -4 до 10 -10 . Например, мутации устойчивости к стрептомицину у кишечной палочки наблюдаются с частотой 4 . 10 -10 , а появление белых глаз у дрозофилы – 4 . 10 -5 . У различных микроорганизмов – бактерий, бактериофагов, грибов – общая частота спонтанного мутирования в пересчете на репликацию генома приблизительно одинакова – около 1%. Одновременно может мутировать несколько (много) генов.

В 1925-1927 гг. было открыто мутагенное действие рентгеновских лучей. В 30-е годы ХХ века обнаружили мутагенный эффект ряда химических веществ. К физическим мутагенам относятся кроме рентгеновского ультрафиолетовое и гамма- излучение, быстрые нейтроны. Химические мутагены очень разнообразны по химической структуре и механизму действия. Например, азотистая кислота вызывает дезаминирование оснований нуклеиновых кислот, а алкилирующие супермутагены – присоединение к ним метильной или этильной групп. Это приводит к неправильному спариванию. Акридиновые соединения способствуют появлению вставок нуклеотидов.

В геномах многих организмов обнаружены особо подвижные мигрирующие генетические элементы. Впервые их обнаружила американская исследовательница Б.Мак Клинток в 1940 г. Изучая мутацию окраски зерновок у кукурузы, она нашла нестабильную мутацию, которая ревертировала к дикому типу с повышенной частотой. Нестабильные мутации часто сопровождались хромосомными нарушениями. Гены, вызывающие разрывы хромосом, были названы мобильными элементами , поскольку могли перемещаться с одного участка хромосомы на другой. Эти элементы характеризуются следующими свойствами:

  1. они могут перемещаться из одного сайта в другой;
  2. их встраивание в данный район влияет на активность генов, расположенных рядом;
  3. утрата МЭ в данном локусе превращает прежде мутабильный локус в стабильный;
  4. в сайтах, в которых присутствуют МЭ, могут возникать хромосомные аберрации и разрывы хромосом.

Геном кукурузы содержит несколько семейств мобильных элементов. Члены каждого семейства могут быть подразделены на два класса:

Автономные элементы, которые способны вырезаться и транспозироваться. Их внедрение ведет к появлению нестабильных аллелей.

Неавтономные элементы, которые могут быть активированы к танспозициям только определенными автономными элементами (членами того же семейства).

У кукурузы лучше всего изучены семейства Ac-Ds (активатор-диссоциатор), Spm (супрессор-мутатор) и Dt. Ac-элемент имеет длину 4563 пн, на концах у него инвертированные повторы. Он кодирует фермент транспозазу, обеспечивающий перемещение Ac и Ds. Элементы Ds возникают в результате делеций внутренних участков гена Ac.

В настоящее время мобильные элементы открыты у множества видов растений, животных и микроорганизмов. У E.coli были найдены IS-элементы (insertion sequences – вставные последовательности). Они характеризуются следующими характерными особенностями:

1) на концах IS-элементы несут инвертированные (повернутые на 180 градусов относительно друг друга) повторы от нескольких пар до нескольких десятков пар нуклеотидов.

2) большинство IS-элементов содержит ген транспозазы, контролирующий синтез фермента, ответственного за их перемещение.

3) в точке внедрения каждого IS-элемента, на его флангах всегда обнаруживается дупликация в прямой ориентации длиной 4-9 пар нуклеотидов.

Обычно хромосома E.coli содержит несколько IS-элементов.

В дальнейшем у бактерий были обнаружены более сложные МЭ – транспозоны, которые отличаются от IS-элементов тем, что в них включены некоторые гены, не имеющие отношения к самому процессу транспозиции, например, гена устойчивости к антибиотикам, тяжелым металлам и другим ингибиторам. Транспозоны обычно фланкированы длинными прямыми или инвертированными повторами, в роли которых часто выступают IS-элементы.

Сходно устроены и МЭ эукариот, например, Ty 1 дрожжей, множественные диспергированные гены дрозофилы.

По механизмам транспозиции МЭ делятся на два класса. Элементы первого класса перемещаются, используя обратную транскриптазу, то есть на РНК-матрице мобильного элемента синтезируется ДНК. Обратная транскриптаза (ревертаза) не только ведет синтез нити ДНК на РНК, но и осуществляет синтез второй комплементарной нити ДНК, а ЗНК матрица распадается и удаляется. Двунитевая ДНК синтезируется в цитоплазме, а затем перемещается в ядро и может встроиться в геном. Такие мобильные элементы называются ретротранспозонами. Ретротранпозоны составляют более 2% генома у дрозофилы и до 40% у растений. Элементы второго класса перемещаются непосредственно как ДНКовые элементы и называются транспозонами. Все они имеют короткие инвертированные повторы на концах.

Функциональное значение мобильных элементов.

1. Перемещения и внедрение МЭ в гены может вызвать мутации. Около 80% спонтанных мутаций в разных локусах дрозофилы вызвано инсерциями МЭ. Внедряясь в ген, МЭ может повредить экзон, разорвав его. В таком случае ген перестанет кодировать белок. Попадая в район протоморов или энхансеров, мобильный элемент может повредить регуляторную зону гена, изменить его экспрессию. Инсерция в район интрона может оказаться безвредной.

2. Может измениться состояние активности гена. Длинные концевые повторы ретротранспозонов и сами ретротранспозоны содержат нуклеотидные последовательности, являющиеся энхансерами транскрипции. Поэтому перемещение этих сигналов в геноме может изменить регуляцию активности генов.

3. В результате кроссинговера между одинаково ориентированными элементами возникает дупликация и делеция материала, расположенного между инсерциями. Если МЭ ориентированы в противоположных направлениях, возникает инверсия.

В последние десятилетия произошел огромный прогресс в изучении эпигенетической изменчивости , под которой понимают разнообразные наследуемые, хотя, возможно, и обратимые изменения экспрессии генов, не связанные с нарушением структуры генетического материала. Сейчас очевидно, что эпигенетические факторы играют значительную роль в онтогенетической дифференцировке, и нарушение этой системы ассоциировано со многими патологическими состояниями. Регуляция работы многих генов осуществляется путем ДНК-белковых взаимодействий. Это относится, в частности, к контролю экспрессии генов транскрипционными факторами, обратной регуляции работы гена его продуктом или продуктами других генов при достижении ими определенных концентраций. Если под влиянием каких-то внешних воздействий произойдут изменения в подобных белках-регуляторах, их последствия будут выражаться в виде нарушения экспрессии определенных генов.

Эпигенетические изменения могут наследоваться не только на клеточном уровне, но и на уровне целого организма. На экспрессию генов влияет характер гетерохроматинизации хромосом, который зависит не только от эндогенных, но и от экзогенных факторов. Это феномен впервые был изучен А. А. Прокофьевой-Бельговской, которая в материалах своей докторской диссертации убедительно показала, что «развитие признака в организме не определяется только наличием на участке хромосомы определенного гена, а контролируется еще состоянием данного участка, обнаруживаемого на микроскопическом уровне, то есть находится ли этот участок хромосомы в интерфазе в деконденсированном состоянии или он конденсирован». Активность многих белков определяется их посттрансляционными модификациями – фосфорилированием, ацетилированием, метилированием. В частности, подобные модификации, касающиеся гистоновых белков или белков, участвующих в регуляции работы генов, могут существенно влиять на их транскрипцию. Важную роль в регуляции экспрессии генов играют пространственные взаимоотношения между генами и соответствующими регуляторными комплексами. Все эти особенности работы генов определяют хорошо известное генетикам явление, получившее название «эффект положения » - то есть разный характер фенотипического проявления гена в зависимости от его локализации в специфических районах генома. Список явлений, которые могут быть объяснены с позиций эпигенетической изменчивости, может быть продолжен.

Одним из наиболее хорошо изученных эпигенетических механизмов является метилирование ДНК , проходящее, чаще всего, по 5-му углероду цитозина. Эта модификация ДНК играет значительную роль в регуляции экспрессии генов эукариот. 5’-нетранслируемые области генов содержат последовательности, обогащенные CpG-парами, так называемые CpG-островки. Во многих случаях инактивация гена достигается за счет метилирования этих последовательностей, причем такое состояние может стабильно поддерживаться в течение многих поколений клеток. Метильные группы нарушают взаимодействия между ДНК и белками, препятствуя тем самым связыванию транскрипционных факторов. Кроме того, метилированные районы ДНК могут взаимодействовать с репрессорами транскрипции.

Два года назад была изобретена технология изменения генома CRISPR/Cas9. В 2015 году она сделала настоящий переворот в генной инженерии. В основе технологии лежит молекулярный защитный механизм микроорганизмов, благодаря которому можно с повышенной точностью редактировать фрагменты ДНК и вырезать их. Причем делать это можно непосредственно в живых клетках любого организма!

Конечно, сегодня манипуляциями с генами никого не удивишь, однако работа с ними до этого выполнялась в специально оборудованных лабораториях при крупнейших институтах. Но технгология CRISPR/Cas9 может стать доступной каждому. Молекулярный биолог НАСА Джосиа Зайнер намерен разработать набор, который бы позволял проводить эксперименты с изменением генов в домашних условиях. Он позволит у себя на кухне изменять геном дрожжей и микроорганизмов.

Принцип действия технологии

Аббревиатуру CRISPR на русский язык дословно можно перевести как «кластерные регулярно разделяемые короткие палиндромические повторы», в первый раз они были найдены в генах архей и бактерий. Потом было обнаружено, что микроорганизмы, которым удалось пережить нападение вируса, прописывают в собственную ДНК участок гена недоброжелателя. Благодаря этому, сформированные организмом клетки смогут распознать подобный штамм. Если в «базе данных» генов имеются сведения врага, то при встрече с ним микроорганизмы используют специальный молекулярный механизм. Он присоединяется к ДНК вируса в том месте, которое соответствует сохраненному участку. Далее белки группы Cas применяются для разрезания ее и уничтожения вируса. Ученые определили, что подобные ножницы для разрезания молекул можно использовать для любого участка генетического кода млекопитающих, и человек не является исключением. С их помощью можно заменять либо, редактировать различные гены.

Интернет-магазин The ODIN начнет продавать наборы для редактирования генного кода

По мнению господина Зайнера, CRISPR/Cas9 должен стать общедоступным, возможность проводить эксперименты с этим методом должны получить даже начинающие исследователи и любители. С этой целью был разработан интернет-магазин The ODIN. Его цель – помочь в проведении домашних экспериментов с искусственно созданными бактериями. Сегодня компания Зайнера привлекает средства на краудфандинговой площадке Indiegogo, предлагая в качестве «вознаграждения» полноценные наборы и реактивы для редактирования генов.

Доступные наборы

Продаваемая продукция похожа на развивающие наборы для проведения химических опытов школьниками и студентами. За 75 долларов США здесь можно купить комплект, позволяющий добавлять в геном бактерий флуоресцентный белок, в результате чего они начинают светиться в темноте. Для создания генно модифицированного штамма бактерий, который бы смог выжить в экстремальных условиях, необходимо купить комплект за 130 долларов США. А вот набор за 160 американских долларов позволит вносить изменения в генный код дрожжей, добавляя в них красный пигмент.

Компания предлагает и более дорогостоящие наборы. Так, например, за 200 долларов можно получить комплект, который наделяет бактерии способностями удобрять почву и разрушать пластик. За 500 долларов можно купить набор для классной комнаты – клиент может указать вид комплектов, которые будут высланы в количестве 20 штук для группового использования. Инструменты из этого набора могут наделять бактерии свойством светиться в темноте или изменять цвет.

Комплект за 3000 долларов позволит создать настоящую домашнюю лабораторию для проведения опытов по молекулярной и синтетической биологии. В него входят: центрифуги, пипетки, реагенты, гель электрофореза, химические вещества и многое другое. Набор комплектуется позволяет использовать систему CRISPR для проведения различных исследований.

Самым невероятным является предложение за 5000$: авторы проекта обещают возможность создать новый уникальный живой организм. С его помощью можно выделять нужный признак дрожжей или бактерий и изменять его. Владелец такого комплекта может самостоятельно выводить генетически модифицированные организмы. Компания помогает определить параметры, которые содействуют достижению поставленных целей! Детальная инструкция, прилагающаяся к каждому набору, поможет проводить эксперименты без посторонней помощи, хотя автора с готовностью обещают провести консультацию в случае необходимости.

Планы на будущее

Технология CRISPR способна проводить изменения с генами человека. Однако Зайнер не планирует реализовывать наборы, которые бы помогали бороться с облысением либо наращивать дополнительную почку.

Чтобы добиться своей цели, на сайте Indiegogo Зайнером была начата краудфандинговая кампания. Посмотреть компанию можно . Благодаря нарастающему интересу к методу CRISPR, авторам компании удалось раньше установленного срока получить 10 000 долларов США, необходимые для создания портативных наборов. По мнению экспертов Инвестток.ру, до конца компании авторы проекта могут собрать в десять раз больше средств, чем планировали изначально, поскольку интерес аудитории к новой технологии огромен.

Биохакер Джошуа Зайнер хочет создать мир, в котором любой человек способен и в праве экспериментировать со своей ДНК.

«У нас здесь немного ДНК и шприц», – говорит Джошуа Зайнер в комнате, полной синтетических биологов и других исследователей. Он наполняет иглу и вонзает её в кожу. «Это изменит мои мышечные гены, и даст мне больше мышечной массы».

Зайнер – биохакер, он экспериментирует с биологией в DIY, а не в обычной лаборатории, – выступил на конференции SynBioBeta в Сан-Франциско с докладом «Пошаговое руководство по генетическому изменению себя с помощью CRISPR», где в других презентациях участвовали академики в костюмах и молодые руководители типичных биотехнологических стартапов. В отличие от прочих, он начал своё выступление, раздавая образцы и буклеты, в которых объяснялись основы DIY генной инженерии.

Биохакер Зайнер выступил на конференции SynBioBeta с докладом «Пошаговое руководство по генетическому изменению себя с помощью CRISPR»

Если вы хотите генетически модифицировать себя, – это не обязательно сложно. Когда он предложил образцы в маленьких пакетиках толпе, Зайнер объяснил, что ему потребовалось около пяти минут, чтобы сделать ДНК, которую он привёз на презентацию. В пробирке был Cas9, фермент, который разрезает ДНК в определённом месте, ориентированном по направляющей РНК, в системе редактирования генов, известной как CRISPR. В этом примере он был разработан для выключения гена миостатина, который вырабатывает гормон, ограничивающий рост мышц и уменьшающий мышечную массу. В исследовании, проведённом в Китае , собаки с отредактированным геном имели удвоенную мышечную массу. Если кто-то из зрителей захотел попробовать, они могли взять пробирку домой и ввести его позже. Даже капая его на кожу, сказал Зейнер, вы получите эффект, хотя и ограниченный.

Зайнер имеет докторскую степень по молекулярной биологии и биофизике, он также работал научным сотрудником в НАСА по модификации организмов для жизни на Марсе. Но он полагает, что синтетическая биология для редактирования других организмов или себя может стать столь же простой в использовании, как, например, CMS для создания веб-сайта.

«Вам не нужно знать, какой промотор использовать чтобы заставить работать нужный ген или фрагмент ДНК, – говорит он, используя некоторые технические термины из генной инженерии. «Вы не хотите знать, какой терминатор использовать, или ориджин репликации… Инженер, программирующий ДНК, должен знать, как это сделать. Но единственное, что вам нужно знать, – так, я хочу, чтобы гриб был фиолетовым. Это не должно быть сложнее. Всё это вполне возможно – это просто создание инфраструктуры и платформы, чтобы любой мог это сделать».

Конечно, магазин приложений для генетического редактирования ещё не создан. Но немалое число биохакеров узнали достаточно, чтобы – порой необдуманно – экспериментировать над собой. Несколько человек, которых Зайнер знает, например, начали вводить себе миостатин. «Это происходит прямо сейчас», – говорит он. «Все эти вещи начали появляться буквально в последние несколько недель». Пока ещё рано говорить о том, улучшили ли инъекции экспериментаторов или вызвали проблемы, но некоторые надеются увидеть результаты в ближайшие месяцы.

Несмотря на проведённое в академических кругах время, Зайнер явно не является типичным исследователем и избегает идеи, что эксперименты должны ограничиваться лабораториями. Когда в НАСА он начал общаться с другими биохакерами через список рассылки, и узнал о проблемах тех, кто хотел делать DIY работу, – поставщиков было трудно найти, и они не всегда отправляли нужные заказы тем, у кого не было лаборатории, – он в 2013 году начал бизнес под названием The ODIN (Open Discovery Institute, and an homage to the Norse god), чтобы пересылать комплекты и инструменты людям, желающим работать в своём гараже или комнате. В 2015 году, решив покинуть НАСА, потому что ему не нравилось работать в их консервативной среде, он запустил успешную кампанию по сбору средств для набора DIY CRISPR.

«Единственное, что вам нужно знать, – так, я хочу, чтобы гриб был фиолетовым. Это не должно быть сложнее.»

В 2016 году он продал продуктов на сумму $200 000, включая набор для дрожжей, которые можно использовать для заправки светящегося биолюминесцентного пива , набор для обнаружения антибиотиков дома и полную домашнюю лабораторию по цене MacBook Pro. В 2017 году он ожидает удвоения продаж. Многие наборы просты, и большинство покупателей, вероятно, не используют их, чтобы изменить себя (многие комплекты идут в школы). Но Зайнер также надеется, что по мере получения новых знаний, люди будут экспериментировать более необычными способами.

Зайнер продает полную домашнюю лабораторию биохакинга примерно по цене MacBook Pro.

Если вы измените свою ДНК, вы можете затем секвенировать свой геном, чтобы увидеть, произошло ли изменение. Но эксперимент в гараже не может предоставить столько информации, сколько обычные методы. «Вы можете подтвердить, что вы изменили ДНК, но это не значит, что оно безопасно и эффективно», – говорит Джордж Чёрч, профессор генетики в Гарвардской Медицинской Школе (которая также выступает в качестве адвайзера компании Зайнера, признавая ценность биологически грамотной публики в веке биологии). «Всё, что он делает, – говорит вам, что вы сделали правильную работу, но это может быть опасно, потому что вы также изменили что-то ещё. Это может быть неэффективным в том смысле, что недостаточно клеток было изменено, или уже слишком поздно, и ущерб уже был нанесён». Если ребёнок рождается с микроцефалией, например, изменение генов в его теле, скорее всего, не повлияет на его мозг.

img

«Мы живём в невероятное время, когда мы изучаем очень многое в биологии и генетики благодаря CRISPR, но мы всё ещё многого не знаем о безопасности редактирования человеческих клеток с помощью CRISPR.»

Любой, кто хочет ввести себе модифицированную ДНК, рискует без достаточного количества данных или, возможно, любых реальных данных – о том, что может произойти, для принятия обоснованного решения. Это, наверное, само собой разумеется: не пытайтесь делать это дома. «Мы живём в невероятное время, когда мы изучаем очень многое в биологии и генетики благодаря CRISPR, но мы всё ещё многого не знаем о безопасности редактирования человеческих клеток с помощью CRISPR», – говорит Алекс Марсон, исследователь в области микробиологии и иммунологии в Калифорнийском университете в Сан-Франциско и эксперт по CRISPR. «Очень важно, чтобы оно проходило через тщательные и проверенные тесты безопасности в каждом случае, и делалось ответственным образом».

В Германии биохакинг теперь вне закона, и человек, проводящий эксперименты за пределами лицензированной лаборатории, может получить штраф в размере €50 000 или три года в тюрьме. Всемирное антидопинговое агентство теперь запрещает все формы редактирования генов у спортсменов. Однако в США биохакинг ещё не регулируется. И Зайнер не считает, что вообще должен, он сравнивает опасения, что люди изучают, как использовать синтетическую биологию, с опасениями изучения, как использовать компьютеры, в начале 1980-х. (Он приводит интервью 1981 года, в котором Тед Коппел спросил Стива Джобса, есть ли опасность того, что люди окажутся под контролем компьютеров.) Зайнер надеется продолжать помогать как можно большему числу людей, становится более «грамотными в ДНК».

«Я хочу жить в мире, где люди генетически модифицируют себя. Я хочу жить в мире, где все эти классные вещи, которые мы видим в научно-фантастических телешоу, реальны. Может быть, я сумасшедший и глупый… но я думаю, наверное, это действительно возможно».

Вот почему, он сделал себе инъекцию перед толпой на конференции. «Я хочу, чтобы люди перестали спорить о том, можно ли использовать CRISPR или нельзя, нормально ли генетически модифицировать себя», – говорит он. «Уже слишком поздно: я сделал выбор за вас. Споры закончены. Давайте продолжим. Давайте использовать генную инженерию, чтобы помочь людям. Или дать им фиолетовую кожу».



Группе российских исследователей Петра Гаряева удалось с помощью метода модуляции доказать, что можно восстановить хромосомы, поврежденные рентгеновским излучением. Биофизики даже смогли выделить информационные паттерны одной ДНК и наложить их на другую. Таким образом, они перепрограммировали клетки второго организма по образу первого генома. Сообщается, что ученые успешно трансформировали эмбрионы лягушки в эмбрионы саламандры, просто облучая их волнами, которые несли информационные паттерны соответствующей другой ДНК. Иными словами, они переписали программу и изменили волновую форму тела животного.

Все это было сделано лишь за счет наложения звуковых колебаний специально подобранных слов на луч лазера, а не устаревшей процедуры вырезания генов. Этот эксперимент научно объясняет «волшебство», когда маг при помощи заклинания превращает одно животное в другое. Однако ученые из группы Петра Гаряева были далеко не первыми из тех, кто провел успешные опыты перепрограммирования ДНК.

Например, в самом начале 60-х годов прошлого столетия китайский исследователь Цзян Каньчжен опытным путем убедился в том, что все живые существа излучают энергию, которая управляет всеми процессами в их организме на клеточном уровне. Эта энергия содержит всю информацию о его генетическом коде. И если в зону действия психической энергии попадает существо другого вида, то ДНК этого существа меняются. Вот что пишет об удивительных опытах Цзян Каньчженя Владимир Бабанин в своей книге «Машины времени»:

«Усиленный поток психической энергии, выходящий через вершину пирамиды, можно было использовать для лечебных целей, для изменения кода генов ДНК… Нет, это не фантазия автора настоящей книги. Это открытие сделал в 60-х годах ХХ века китайский ученый-медик Цзян Каньчжен. Как известно, в современной радиотехнике широкое применение находят всякого рода волноводы, с помощью которых можно направить энергию излучения или сигнал, как воду из пожарного брандспойта, в нужном направлении. Раньше они были в основном металлическими трубочками с круглым или прямоугольным сечением. Сейчас применяют в качестве волноводов и другие материалы, в том числе неметаллические. Интересный вопрос: если по волноводу можно направить световые, акустические, радио- и другие волны, то можно ли направить по нему энергию психического характера, обладающую чрезвычайно высокими частотами? Могли ли волны психической энергии в какой-то мере подчиняться известным законам физики, преломлению и отражению? Странный вопрос… Ведь психическая энергия — более тонкого плана, чем известные нам СВЧ радиоволны. К тому же она — всепроникающая. Но она обладает выдающимися способностями к творчеству и трансформации в другие виды энергии, а потому может проявлять себя по-разному в разных условиях. Это хорошо будет заметно, когда человек овладеет психическими силами своего организма. Ему подчинится гравитационная энергия, и он будет способен летать. Ему подчинится электромагнитная энергия, и он будет способен посылать разящие молнии. Он сможет изменить ход времени и перенестись в другие, параллельные миры… На этом же принципе будут построены звездолеты — вихрелеты, которые преодолеют пространство и время. И все это — возможности психической энергии, ее огромной способности к трансформации и проявлению в других видах энергии. Так можно ли психическую энергию, излучаемую через вершину пирамид или излучаемую телом живого существа, направить в волновод и использовать по своему усмотрению? Надо бы попробовать… Вот здесь и заявил о себе китайский исследователь-медик Цзян Каньчжен. Уже в самом начале 60-х годов 20 столетия он опытным путем убедился в том, что все живые существа излучают энергию, которая управляет всеми процессами в их организме на клеточном уровне, содержит всю информацию о его генетическом коде. И если в зону действия этой энергии попадал растущий зародыш существа другого вида, то у него происходили изменения на генетическом уровне! В результате появилось составное существо — сфинкс. Так, путем «облучения» развивающегося в курином яйце эмбриона курицы энергетическим полем тела утки был получен цыпленок куроутки. В нем присутствовали признаки и курицы и утки. И это без хирургического вмешательства в ДНК зародыша куриного яйца! Затем были проведены опыты на других животных и созданы новые монстры-сфинксы. Когда же в 1963 году была опубликована первая статья с результатами опытов, она произвела в Китае эффект взорвавшейся бомбы. Лишь немногие ученые выразили свое восхищение этим открытием, увидели в нем будущее генетической инженерии, способной преобразовать мир. Другие же ученые и соответственно общественность имели другое мнение. Они увидели в открытии угрозу эволюции человечества и животного мира, возможность создания психотронного оружия, способного подчинить себе человека в интересах честолюбцев, переделать его природу. В конце концов, никому не хотелось в результате чьих-то экспериментов оказаться куроуткой, саблезубым монстром или каким-либо другим сфинксом. Реакция последовала незамедлительно: закрылись исследовательские лаборатории. Мощная волна культурной революции, охватившая в то время Китай, поставила заслон на пути дальнейших изучений. Цзяна отправили в деревню на перевоспитание, где он пас свиней, а после попытки бегства его посадили в тюрьму, где он просидел несколько лет. И только в 1971 году он тайно пересек советско-китайскую границу и осел в Хабаровске, где позднее стал сотрудником медицинского института. По странному совпадению, он сам стал «составным» русско-китайцем: фамилия Цзян Каньчжен у него сохранилась китайская, а имя и отчество стали русскими: Юрий Владимирович. Открытием Цзяна впоследствии заинтересовались советские ученые и продолжили свои исследования в этом направлении. Какие результаты? Они очень важны, но не становятся достоянием общественности. Нас же сейчас интересует, каким образом, с помощью каких технических средств Цзяну удавалось концентрировать и передавать психическую энергию в строго определенном направлении, и для чего он ее использовал. Со стороны вся его конструкция казалась довольно простой. В одном из помещений была расположена просторная замкнутая объемная контур-камера, изготовленная из немагнитного материала — листовой меди. В стенки камеры раструбом внутрь впаяны несколько пустотелых медных конусов — аналогов моделей-колпаков пирамид. Вершины конусов срезаны, и к ним припаяны длинные тонкие медные трубки — волноводы. Они тянулись в соседнее помещение и заканчивались в другой объемной контур-камере. Вот и вся конструкция. Как мы понимаем, первую камеру с ее наружными конусами моделировали в принципе, как обычную пирамиду со срезанной вершиной и камерой внутри. Как же тогда работала эта странная установка? В первой камере — «пирамиде» находился «донор» — «генератор» психической энергии. Здесь не требовалось изобретать какое-нибудь техническое средство, генерирующее волны психической энергии. Да это и сложно при нашем уровне развития науки. Лучшим генератором психической энергии являлось живое существо — человек, животное или растение. Их аура — энергоинформационное поле — и являлась носителем источником этой энергии. Она содержала в себе всю информацию о процессах, протекающих в живом организме на уровне клеток, о сигналах и командах, которым подчинялись клетки. Вот эти команды и программы всех процессов одного организма и подлежали передаче по «биоСВЧсвязи» другому организму находящемуся на удалении. Конусы в установке выполняли функцию пирамид. Вихревой поток внутри них как бы «всасывал» энергию живого существа — «донора» и направлял ее в волновод, а по нему — в другую камеру. В ней размещался живой объект того же или другого вида. Он и подлежал «облучению». Он должен был принять поступившие команды и приказы и исполнить их, даже если они разрушали весь его организм. Какой организм лучше всего выполнял поступившие, часто чуждые команды и приказы? Как заметил в свое время известный русский селекционер И. В. Мичурин, лучше всего приспосабливался к новым условиям молодой растущий организм. Поэтому с целью получения быстрого эффекта во вторую камеру могли помещаться растущие особи животных, яйца птиц, змей, крокодилов с развивающимися эмбрионами, прорастающие зерна растений. В нормальных привычных условиях зародыши растений и живых существ развиваются в соответствии с генетической программой, заложенной в их клетках. Но вот по волноводу от «донора» пришли сигналы с другой генетической программой, даже совершенно другого вида живого существа. И тогда начиналась борьба между программами, итог которой был непредсказуем. Как правило, находился компромиссный вариант, в результате которого менялся генетический код развивающегося зародыша. Так во второй камере вырастало растение или живое существо, содержавшее в себе признаки двух существ — того, кто находился в первой камере, и того, кто находился во второй. Но это уже был монстр, урод, сфинкс! Хорошо, если в эксперименте участвовали растения. Но когда дело доходило до разных видов животных, здесь уже было не только не смешно, но даже преступно, особенно когда в одной камере находился человек, а в другой — животное. Кстати, Цзян ставил и такие опыты: в первой камере в качестве «донора» был он сам, а во второй — яйцо курицы в инкубаторе. В результате облучения выросла курица, тело которой вместо перьев было покрыто… волосами! Но могло быть и еще хуже — птица с человеческой головой. Такие создания — любимые персонажи многих древних легенд. Может быть, они отражают факты, которые действительно имели место в результате неосторожных экспериментов древних генетиков? И самое главное: произведенные сфинксы могли размножаться и давать потомство сфинксов! По сути, установка Цзян Каньчженя была своеобразным психотронным генератором. Как известно, всякая палка имеет два конца. Такие же два конца имело и изобретение Цзяна. Оно полезно, но в допустимых пределах: для создания новых видов растений, дающих нам пищу, для лечения неизлечимых болезней, для многих других целей, не наносящих вред. Но оно же может нести в себе большую угрозу природе человека, если возможностями подобного психотронного генератора воспользуется личность или группы людей, или даже целое государство в политических целях».

Нашим эзотерическим и духовным учителям давно было известно, что человеческое тело можно программировать не только при помощи пирамид, но и с помощью определенных звуков, рифмованных предложений или концентрированной мысли. Сейчас это научно доказано исследователями ДНК и объяснено . Разумеется, что перепрограммирование ДНК необходимо выполнять на соответствующей частоте, и именно поэтому не каждому ученому или эзотерику удается постоянно получать одинаково успешные и глубокие результаты. Воплощенная в тело душа должна постоянно работать над своими внутренними процессами, она должна стремиться установить сознательную связь со своей ДНК и привести ее к гармонии. Ибо духовное сознание человека может и должно переписывать программу ДНК. Ту же самую работу по перепрограммированию ДНК может выполнять и правильная золотосеченная пирамида, если человек ежедневно медитирует в ней около одного часа.
Однако, чем выше развито сознание человека, чем больше раскрыты его душевные и духовные качества, тем меньше у него ощущается потребность в каком-либо внешнем устройстве для перепрограммирования своей ДНК.

Данная брошюра содержит информацию о том, что такое хромосомные нарушения, как они могут наследоваться, и какие проблемы могут быть с ними связаны. Данная брошюра не может заменить Ваше общение с врачом, однако она может помочь Вам при обсуждении интересующих Вас вопросов.

Для того, чтобы лучше понять, что представляют собой хромосомные нарушения, вначале будет полезно узнать, что такое гены и хромосомы.

Что такое гены и хромосомы?

Наше тело состоит из миллионов клеток. Большинство клеток содержат полный набор генов. У человека тысячи генов. Гены можно сравнить с инструкциями, которые используются для контроля роста и согласованной работы всего организма. Гены отвечают за множество признаков нашего организма, например, за цвет глаз, группу крови или рост.

Гены расположены на нитевидных структурах, называемых хромосомами. В норме в большинстве клеток организма содержится по 46 хромосом. Хромосомы передаются нам от родителей - 23 от мамы, и 23 от папы, поэтому мы часто похожи на своих родителей. Таким образом, у нас два набора по 23 хромосомы, или 23 пары хромосом. Так как на хромосомах расположены гены, мы наследуем по две копии каждого гена, по одной копии от каждого из родителей. Хромосомы (следовательно, и гены) состоят из химического соединения, называемого ДНК.

Рисунок 1: Гены, хромосомы и ДНК

Хромосомы (см. Рисунок 2), пронумерованные от 1 до 22, одинаковые у мужчин и у женщин. Такие хромосомы называют аутосомами. Хромосомы 23-й пары различны у женщин и мужчин, и их называют половыми хромосомами. Есть 2 варианта половых хромосом: Х-хромосома и Y-хромосома. В норме у женщин присутствуют две Х-хромосомы (ХХ), одна из них передается от матери, другая - от отца. В норме у мужчин есть одна X-хромосома и одна Y-хромосома (XY), при этом Х-хромосома передается от матери, а Y-хромосома - от отца. Так, на Рисунке 2 изображены хромосомы мужчины, так как последняя, 23-я, пара представлена сочетанием XY.

Рисунок 2: 23 пары хромосом, распределенные по размеру; хромосома под номером 1 - самая большая. Две последние хромосомы - половые.

Хромосомные изменения

Правильный хромосомный набор является очень важным для нормального развития человека. Это связано с тем, что гены, которые дают «инструкции к действиям» клеткам нашего организма, находятся на хромосомах. Любое изменение количества, размера или структуры наших хромосом может означать изменение количества или последовательности генетической информации. Такие изменения могут привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка.

Хромосомные изменения могут быть унаследованы от родителей. Чаще всего хромосомные изменения возникают на этапе формирования яйцеклетки или сперматозоида, или при оплодотворении (вновь возникшие мутации, или мутации de novo). Эти изменения невозможно контролировать.

Существует два основных типа хромосомных изменений. Изменение числа хромосом. При таком изменении существует увеличение или уменьшение числа копий какой-либо хромосомы. Изменение структуры хромосом. При таком изменении материал какой-либо хромосомы поврежден, или изменена последовательность генов. Возможно появление дополнительного или утрата части исходного хромосомного материала.

В данной брошюре мы рассмотрим хромосомные делеции, дупликации, инсерции, инверсии и кольцевые хромосомы. Если Вас интересует информация о хромосомных транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».

Изменение числа хромосом.

В норме в каждой клетке человека содержится 46 хромосом. Однако, иногда ребенок рождается либо с большим, либо с меньшим числом хромосом. В таком случае возникает, соответственно, либо избыточное, либо недостаточное число генов, необходимых для регуляции роста и развития организма.

Один из наиболее распространенных примеров генетического заболевания, вызванного избыточным числом хромосом, является синдром Дауна. В клетках людей с этим заболеванием находится 47 хромосом вместо обычных 46-ти, так как присутствует три копии 21-ой хромосомы вместо двух. Другими примерами заболеваний, вызванных избыточным числом хромосом являются синдромы Эдвардса и Патау.

Рисунок 3: Хромосомы девочки (последняя пара хромосом ХХ) с синдромом Дауна. Видны три копии 21-ой хромосомы вместо двух.

Изменение структуры хромосом.

Изменения в структуре хромосом происходят, когда материал определенной хромосомы поврежден, или изменена последовательность генов. К структурным изменениям также относятся избыток или утрата части хромосомного материала. Это может происходить несколькими путями, описанными ниже.

Изменения структуры хромосом могут быть очень небольшими, и специалистам в лабораториях бывает сложно их выявить. Однако даже если структурное изменение найдено, часто бывает сложно предсказать влияние этого изменения на здоровье конкретного ребенка. Это может разочаровать родителей, которые хотят получить исчерпывающую информацию о будущем своего ребенка.

Транслокации

Если Вы хотите больше узнать о транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».

Делеции

Термин «хромосомная делеция» означает, что часть хромосомы утрачена или укорочена. Делеция может случиться в любой хромосоме и на протяжении любой части хромосомы. Делеция может быть любого размера. Если утраченный при делеции материал (гены) содержал важную информацию для организма, то у ребенка могут возникать трудности в обучении, задержка развития и другие проблемы со здоровьем. Тяжесть этих проявлений зависит от размеров утраченной части и локализации внутри хромосомы. Примером такого заболевания является синдром Жубер.

Дупликации

Термин «хромосомная дупликация» означает, что часть хромосомы удвоена, и из-за этого возникает избыток генетической информации. Этот избыточный материал хромосомы означает, что организм получает слишком большое число «инструкций», и это может привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка. Примером заболевания, вызванного дупликацией части хромосомного материала является моторно-сенсорная нейропатия типа IA.

Инсерции

Хромосомная инсерция (вставка) означает, что часть материала хромосомы оказалась «не на своем месте» на этой же или на другой хромосоме. Если общее количество хромосомного материала не изменилось, то такой человек, как правило, здоров. Однако если такое перемещение приводит к изменению количества хромосомного материала, то у человека могут возникать трудности в обучении, задержка развития и другие проблемы здоровья ребенка.

Кольцевые хромосомы

Термин «кольцевая хромосома» означает, что концы хромосомы соединились, и хромосома приобрела форму кольца (внорме хромосомы человека имеют линейную структуру). Обычно это происходит, когда оба конца одной и той же хромосомы укорочены. Оставшиеся концы хромосомы становятся «липкими» и соединяются, формируя «кольцо». Последствия формирования кольцевых хромосом для организма зависят от размера делеций на концах хромосомы.

Инверсии

Хромосомная инверсия означает такое изменение хромосомы, при котором часть хромосомы развернута, и гены в этом участке расположены в обратном порядке. В большинстве случаев носитель инверсии здоров.

Если у родителя обнаружена необычная хромосомная перестройка, как это может отразиться на ребенке?

Возможны несколько исходов каждой беременности:

  • Ребенок может получить совершенно нормальный набор хромосом.
  • Ребенок может унаследовать такую же хромосомную перестройку, которая есть у родителя.
  • У ребенка могут быть трудности в обучении, задержка развития или другие проблемы со здоровьем.
  • Возможно самопроизвольное прерывание беременности.

Таким образом, у носителя хромосомной перестройки могут рождаться здоровые дети, и во многих случаях происходит именно так. Так как каждая перестройка уникальна, Вашу конкретную ситуацию следует обсудить с врачом-генетиком. Часто бывает, что ребенок рождается с хромосомной перестройкой, несмотря на то, что хромосомный набор родителей нормальный. Такие перестройки называют вновь возникшими, или возникшими “de novo” (от латинского слова). В этих случаях риск повторного рождения ребенка с хромосомной перестройкой у этих же родителей очень мал.

Диагностика хромосомных перестроек

Возможно проведение генетического анализа для выявления носительства хромосомной перестройки. Для анлиза берется образец крови, и клетки крови исследуют в специализированной лаборатории для выявления хромосомных перестроек. Такой анализ называется кариотипированием. Также возможно проведение теста во время беременности для оценки хромосом плода. Такой анализ называется пренатальной диагностикой, и этот вопрос следует обсудить с врачом-генетиком. Более подробная информация на эту тему представлена в брошюрах «Биопсия ворсин хориона» и «Амниоцентез».

Как это касается других членов семьи

Если у одного из членов семьи обнаружена хромосомная перестройка, возможно, Вы захотите обсудить этот вопрос с другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ хромосом в клетках крови) для определения носительства хромосомной перестройки. Это может быть особенно важно для родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями хромосомной перестройки, они не могут передать ее своим детям. Если же они являются носителями, то им может быть предложено пройти обследование во время беременности для анализа хромосом плода.

Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.

Что важно помнить

  • Хромосомная перестройка может как наследоваться от родителей, так и возникать в процессе оплодотворения.
  • Перестройку нельзя исправить - она остается на всю жизнь.
  • Перестройка не заразна, например, ее носитель может быть донором крови.
  • Люди часто испытывают чувство вины в связи с тем, что в их семье есть такая проблема, как хромосомная перестройка. Важно помнить, что это не является чьей-либо виной или следствием чьих-либо действий.
  • Большинство носителей сбалансированных перестроек могут иметь здоровых детей.