Ксенон

КСЕНО́Н -а; м. [от греч. xenos - чужой]. Химический элемент (Хе), один из инертных газов (применяется в электротехнике и медицине).

Ксено́новый, -ая, -ое. К-ая лампа. К-ая трубка.

ксено́н

(лат. Xenon), химический элемент VIII группы периодической системы, относится к благородным газам. Название от греческого xénos - чужой (открыт как примесь к криптону). Плотность 5,851 г/л, t кип –108,1ºC. Первый благородный газ, для которого получены химические соединения (например, XePtF 6). Ксеноновая лампа применяется в прожекторах, кинопроекторах. Фториды XeF 2 , XeF 4 - мощные окислители и фторирующие агенты.

КСЕНОН

КСЕНО́Н (лат. Xenon, от греческого xenos - чужой), Хе (читается «ксенон»), химический элемент с атомным номером 54, атомная масса 131,29. Инертный, или благородный, газ. Расположен в группе VIIIA в 5 периоде периодической системы.
Природный атмосферный ксенон состоит из девяти изотопов: 124 Хе (0,096%), 126 Хе (0,090%), 128 Хе (1,92%), 129 Хе (26,44%), 130 Хе (4,08), 131 Хе (21,18%), 132 Хе (26,89%), 134 Хе (10,44%) и 136 Хе (8,87%).
Радиус атома 0,218 нм. Электронная конфигурация внешнего слоя 5s 2 p 6 . Энергии последовательной ионизации - 12,130, 21,25, 32,1 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,6.
История открытия
Открыт английскими учеными У. Рамзаем (см. РАМЗАЙ Уильям) и М. Траверсом (см. ТРАВЕРС Моррис Уильям) в 1898 методом спектрального анализа как примесь к криптону (см. КРИПТОН) . В 1962 в Канаде Н. Бартлетт (см. БАРТЛЕТТ Нил) получил первое устойчивое при комнатной температуре химическое соединение ксенона XePtF 6 .
Нахождение в природе
Ксенон - редчайший газ земной атмосферы, содержание в воздухе 8,6·10 -5 % по объему. Общие запасы ксенона в атмосфере 1,6·10 11 м 3 .
Получение
Ксенон выделяют как побочный продукт при переработке воздуха на азот и кислород.
Физические и химические свойства
Ксенон - одноатомный газ без цвета и запаха. Температура кипения –108,12 °C, плавления –11,85 °C. Критическая температура 16,52 °C, критическое давление 5,84 МПа. Плотность 5,85 кг/м 3 .
В 100 мл воды при 20 °C растворяется 9,7 мл Xe.
Ксенон образует клатраты (см. КЛАТРАТЫ) с водой и многими органическими веществами: Хе·5,75Н 2 О, 4Хе·3С 6 Н 5 ОН и другие. В клатратах атомы-гости Xe занимают полости в кристаллических решетках веществ-хозяев.
Непосредственно Xe взаимодействует только со фтором, образуя XeF 2 , XeF 4 и XeF 6 . Дифторид ксенона XeF 2 имеет тетрагональную решетку, температуру плавления 129 °C, плотность 4,32 г/см 3 . Решетка тетрафторида XeF 4 моноклинная, температура плавления 117,1 °C, плотность 4,0 г/см 3 . Решетка гексафторида XeF 6 моноклинная, температура плавления 49,5 °C, плотность 3,41 г/см 3 .
Гидролизом XeF 4 и XeF 6 получают неустойчивые оксифториды XeОF 4 , XeО 2 F 2 , XeОF 2 , XeО 3 F 2 и XeО 2 F 4 и оксиды ХеО 3 и ХеО 4 , которые при комнатной температуре они разлагаются на простые вещества.
Фториды ксенона взаимодействуют с водными растворами щелочей, образуя ксенаты МНХеО 4 (М = Na, K, Rb, Cs), устойчивые до 180 °C. При гидролизе растворов XeF 6 , диспропорционировании XeО 3 в щелочных растворах и при озонировании водных растворов XeО 3 получены перксенаты Na 4 XeO 6 и (NH 4) 4 XeO 6 .
Применение
Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света.
Радиоактивные изотопы применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. Фториды ксенона используют для пассивации металлов.
Физиологическое действие
Газ ксенон безвреден. Фториды ксенона ядовиты, ПДК в воздухе 0,05 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ксенон" в других словарях:

    Zenon: Z3 … Википедия

    - (символ Хе), газообразный неметаллический элемент, один из инертных газов. Открыт в 1898 г. Ксенон присутствует в земной атмосфере (в соотношении около 1:20000000) и может быть получен РЕКТИФИКАЦИЕЙ (разделением на фракции) жидкого воздуха.… … Научно-технический энциклопедический словарь

    - (гр. xenon.). Элемент из группы аргона; в ничтожн. количестве входит в состав воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ксенон (гр. xenos чужой (впервые был найден как примесь к криптону)) хим.… … Словарь иностранных слов русского языка

    - (Xenon), Xe химический элемент VIII группы периодической системы, атомный номер 54, атомная масса 131,29; относится к благородным газам. Ксенон открыли английские ученые У. Рамзай и М. Траверс в 1898 … Современная энциклопедия

    Ксенон - (Xenon), Xe химический элемент VIII группы периодической системы, атомный номер 54, атомная масса 131,29; относится к благородным газам. Ксенон открыли английские ученые У. Рамзай и М. Траверс в 1898. … Иллюстрированный энциклопедический словарь

    - (лат. Xenon) Xe, химический элемент VIII группы периодической системы, атомный номер 54, атомная масса 131,29, относится к благородным газам. Название от греческого xenos чужой (открыт как примесь к криптону). Плотность 5,851 г/л, tкип 108,1 .С.… … Большой Энциклопедический словарь

    Xe (от греч. xenos чужой * a. xenon; н. xenon; ф. xenon; и. xenon), хим. элемент VIII группы периодич. системы Менделеева, относится к инертным газам, ат.н. 54, ат. м. 131,3. Природный K. смесь девяти стабильных изотопов, среди к рых… … Геологическая энциклопедия

    КСЕНОН, а, муж. Химический элемент, инертный газ без цвета и запаха, применяемый в мощных осветительных приборах. | прил. ксеноновый, ая, ое. Ксеноновая трубка. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (Xenon), Хе, хим. элемент VIII группы периодич. системы элементов, инертный газ. Ат. номер 54, ат. масса 131,30. Природный К. состоит из 9 стабильных изотопов: 124 Хе (0,10%), 126 Хе (0,09%), 128 Хе (1,91%), 129 Хе (26,4%), 130 Хе (4,1%), 131 Хе… … Физическая энциклопедия

    Сущ., кол во синонимов: 2 газ (55) элемент (159) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Инертный газ нулевой гр. периодической системы, порядковый № 54. К. земной атмосферы состоит из 9 стабильных изотопов. Обогащенный тяжелыми изотопами, К. обнаружен в урановых м лах, где он образуется при спонтанном делении изотопов урана. См.… … Геологическая энциклопедия

Ксенон
Атомный номер 54
Внешний вид простого вещества инертный газ без цвета, вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
131,29 а. е. м. ( /моль)
Радиус атома ? (108) пм
Энергия ионизации
(первый электрон)
1 170,0 (12,13) кДж /моль (эВ)
Электронная конфигурация 4d 10 5s 2 5p 6
Химические свойства
Ковалентный радиус 140 пм
Радиус иона 190 пм
Электроотрицательность
(по Полингу)
2,6
Электродный потенциал 0
Степени окисления 0, +1, +2, +4, +6, +8
Термодинамические свойства простого вещества
Плотность 3,52 (при −109 °C) /см ³
Молярная теплоёмкость 20,79 Дж/( ·моль)
Теплопроводность 0,0057 Вт /( ·)
Температура плавления 161,3
Теплота плавления 2,27 кДж /моль
Температура кипения 166,1
Теплота испарения 12,65 кДж /моль
Молярный объём 42,9 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
гранецентрированая
Параметры решётки 6,200
Отношение c/a
Температура Дебая n/a
Xe 54
131,29
4d 10 5s 2 5p 6
Ксенон

Ксенон — элемент главной подгруппы восьмой группы, пятого периода периодической системы химических элементов, с атомным номером 54. Обозначается символом Xe (Xenon). Простое вещество ксенон (CAS-номер: 7440-63-3) — инертный одноатомный газ без цвета, вкуса и запаха. Открыт в 1898 году английскими учеными У.Рамзаем и У. Рэлей как небольшая примесь к криптону.

Происхождение названия

ξένος — чужой.

Распространённость

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли, хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Земная кора

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133 Xe и 135 Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

Физические свойства

Температура плавления −112 °C,температура кипения −108 °C,свечение в разряде фиолетовым цветом.

Химические свойства

Первый инертный газ, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона.

Изотопы ксенона

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон. Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов.

Ксенон (лат. Xenonum), Xe, химический элемент VIII группы периодической системы Д. И. Менделеева, относится к инертным газам; атомный номер 54, атомная масса 131,30. На Земле Ксенон присутствует главным образом в атмосфере. Атмосферный Ксенон состоит из 9 стабильных изотопов, среди которых преобладают 129 Хе, 131 Хе и 132 Хе. Открыт в 1898 году английскими исследователями У. Рамзаем и М. Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как примесь к криптону, с чем связано его название (от греч. xenos - чужой). Ксенон -весьма редкий элемент. При нормальных условиях 1000 м 3 воздуха содержат около 87 см 3 Ксенона. Ксенон - одноатомный газ без цвета и запаха; плотность при 0 °С и 10 5 н/м 2 (760 мм рт. ст.) 5,851 г/л, t пл -111,8 °С, t кип -108,1 °С. В твердом состоянии обладает кубической решеткой с параметром элементарной ячейки а = 6.25Å (при -185 °С). Пятая, внешняя электронная оболочка атома Ксенона содержит 8 электронов и весьма устойчива. Однако притяжение внешних электронов к ядру в атоме Ксенона экранировано большим количеством промежуточных электронных оболочек, и первый потенциал ионизации Ксенона, хотя и довольно велик (12, 13 эв), но значительно меньше, чем у других стабильных инертных газов. Поэтому Ксенон был первым инертным газом, для которого удалось получить химические соединение - XePtF 6 (канадский химик Н. Бартлетт, 1961). Дальнейшие исследования показали, что Ксенон способен проявлять валентности I, II, IV, VI и VIII. Лучше всего изучены соединения Ксенон с фтором: XeF 2 , XeF 4 , XeF 6 , XeF 8 , которые получают в специальных условиях, используя никелевую аппаратуру. Так, ХеF 4 можно синтезировать при простом пропускании смеси Хе и F 2 через нагретую никелевую трубку. Синтез XeF 2 возможен при облучении смеси Хе и F 2 ультрафиолетовым излучением. Получить же фториды XeF 6 и XeF 8 удается только при использовании высоких давлений (до 20 Мн/м 2 , или 200 ат) и повышенной температуры (300-600 °С). ХеF 4 наиболее устойчив (длительное время сохраняется при комнатной температуре), наименее устойчив XeF 8 (сохраняется при температуре ниже 77 К). При осторожном упаривании раствора XeF 4 в воде образуется весьма неустойчивый нелетучий оксид ХеО 3 - сильное взрывчатое вещество. Действием раствора Ва(ОН) 2 на XeF 6 можно получить ксенонат бария Ва 3 ХеО 6 Известны и соли, содержащие восьмивалентный Ксенон, - перксенонаты, например Na 4 ХеО 6 ·6Н 2 О. Действуя на него серной кислотой, можно получить высший оксид ХеO 4 . Известны двойные соли XeF 2· 2SbF 5 , XeF 6 ·AsF 3 и других, перхлорат ХеClО 4 - очень сильный окислитель и другие.

В промышленности Ксенон получают из воздуха. Вследствие очень низкого содержания Ксенона в атмосфере объем производства невелик.

Одно из самых важных применений Ксенона - использование его в мощных газоразрядных лампах. Кроме того, Ксенон находит применение для исследовательских и медицинских целей. Так, благодаря высокой способности Ксенона поглощать рентгеновское излучение его используют как контрастное вещество при исследовании головного мозга. Фториды Ксенона находят применение как мощные окислители и фторирующие агенты. В виде фторидов удобно хранить и транспортировать чрезвычайно агрессивный фтор.

ОПРЕДЕЛЕНИЕ

Ксенон - пятьдесят четвертый элемент Периодической таблицы. Обозначение - Xe от латинского «xenon». Расположен в пятом периоде, VIIIA группе. Относится к группе инертных (благородных газов). Заряд ядра равен 54.

Ксенон представляет собой бесцветный газ. Содержание его в воздухе составляет 8×10 -6 % (об.). Он плохо растворяется в воде, лучше — в органических растворителях. Образует сольват состава 4Хе×3С 6 Н 5 ОН.

Ксенон не реагирует с кислотами, щелочами.Реакционная способность ксенона выше, чем у криптона: он взаимодействует с сильными окислителями. Этот газ получают путем фракционной дистилляции жидкого воздуха при глубоком охлаждении.

Атомная и молекулярная масса ксенона

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С). Это безразмерная величина.

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Поскольку в свободном состоянии ксенон существует в виде одноатомных молекул Хe, значения его атомной и молекулярной масс совпадают. Они равны 131,239.

Изотопы ксенона

Известно, что в природе ксенон может находиться в виде девяти стабильных изотопов 124 Хe, 126 Хe, 128 Хe, 129 Хe, 130 Хe, 131 Хe, 132 Хe, 134 Хe и 136 Хe. Их массовые числа равны 124, 126, 128, 129, 130, 131, 132, 134 и 136 соответственно. Ядро атома изотопа ксенона 124 Хe содержит пятьдесят четыре протона и пятьдесятсемьдесят нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы ксенона с массовыми числами от 110-ти до 147-ми, а также двенадцать изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 127 Хe с периодом полураспада равным 36,345 суток.

Ионы ксенона

На внешнем энергетическом уровне атома ксенона имеется восемь электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 6 .

Ксенон - первый инертный газ, для которого были получены химические соединения. В результате химического взаимодействия ксенон отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Хe 0 -1e → Хe + ;

Хe 0 -2e → Хe 2+ ;

Хe 0 -4e → Хe 4+ ;

Хe 0 -6e → Хe 6+ ;

Хe 0 -8e → Хe 8+ .

Молекула и атом ксенона

В свободном состоянии ксенон существует в виде одноатомных молекул Хе. Приведем некоторые свойства, характеризующие атом и молекулу ксенона:

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Вычислите энергию ионизации для иона ксенона Хе(1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 3).
Решение Рассчитаем энергию ионизации иона аргона Хе(1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 3):

, применение ксенона , производство ксенона , ксенон в светотехнике , ксенон в медицне

Этот газ, названный «чужим», практически перевернул с ног на голову представления химиков об инертных газах. С самого начала он проявил «странные» свойства: в отличие от других инертных газов, ксенон первым вступил в химическую реакцию, первым же образовал устойчивое соединение. И заодно сделал неуместным сам термин «инертные газы». Благодаря вновь открытому веществу ранее созданная «нулевая» группа периодической системы перестала существовать.

В поисках «чужого»

После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м 3 воздуха 9,3 л аргона и всего лишь 0,08 мл ксенона.

Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон. Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха. Индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см 3 этого газа. Необычайная для того времени тонкость эксперимента!

Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. Любопытно, что с точки зрения химика ксенон на самом деле оказался «чужим» среди инертных газов. Он первым вступил в химическую реакцию, первым образовал устойчивое соединение. И потому сделал неуместным сам термин «инертные газы».

Синтез первых соединений ксенона поставил перед химиками вопрос о месте инертных газов в периодической системе. Прежде благородные газы были выделены в отдельную нулевую группу, что вполне отвечало представлению об их валентности. Но, когда ксенон вступил в химическую реакцию, когда стал известен его высший фторид, в котором валентность ксенона равна восьми (а это вполне согласуется со строением его электронной оболочки), инертные газы решили перенести в VIII группу. Нулевая группа перестала существовать.

Свойства ксенона

Ксенон, как и все инертные газы VIII группы таблицы Менделеева, состоит из одноатомных молекул, не имеет ни запаха, ни цвета, не горит и не поддерживает горение, не взрывоопасен, слабо растворяется в воде и очень быстро выделяется из организма через легкие.

Как инертный газ он благороден, никакой биотрансформации в организме не подвергается, не вступает ни в какие химические реакции. Инертность Хе обусловлена насыщенностью внешней электронной оболочки, электронные конфигурации его предельно замкнуты и максимально прочны. Порядковый номер Хе — 54, молекулярный вес —131,29. Плотность при 0 °С и 1 Ата составляет 5,89 кг/м 3 , что в 4 раза выше, чем у воздуха и в З,2 раза выше, чем у N 2 О.

Ксенон в природе

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные виды ксенона, например, 133 Xe и 135 Xe , получаются как результат нейтронного облучения ядерного топлива в реакторах.

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли, хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Получение ксенона

Основным источником промышленного производства ксенона является воздух, где в 1000 м 3 содержится 86 см 3 ксенона. В России и странах СНГ уровень годового промышленного производства чистого ксенона составляет около 1500 м 3 .

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1-0,2% криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. Как заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон.

Основными поставщиками сырья (криптон-ксенонового концентрата) являются крупные промышленные центры металлургической промышленности России. Для получения чистого ксенона используется криптон-ксеноновый концентрат, который подвергается криогенной ректификации на газоразделительных установках, обеспечивающих получение ксенона высокой чистоты (99,999%). Из-за своей малой распространенности ксенон гораздо дороже более легких инертных газов.

Ксенон на практике

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев. Ксенон используют для наполнения ламп накаливания , мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).

Радиоактивные изотопы (127 Xe , 133 Xe , 137 Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. Фториды ксенона используют для пассивации металлов .

Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов .

С конца XX века ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее — не вызывает химических последствий — как инертный газ). Первые диссертации о технике ксенонового наркоза в России появились в 1993 г. В качестве лечебного наркоза ксенон эффективно применяется для снятия острых абстинентных состояний и лечения наркомании, а также психических и соматических расстройств.

Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива , а также в качестве компонентов газовых смесей для лазеров.

В изотопе ксенон-129 возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией .