Стивена Хокинга была одна из первых научно-популярных книг, прочитанных мною, и я ее возненавидела. Возненавидела, потому что не понимала. Фрустрация от этой книги стала одной из основных причин, почему я стала физиком - ну, по крайней мере, я знаю, кого винить в этом.

Оригинальный пост не может похвастаться идеальной структурой повествования, которую я не стал изменять. Но проблема очень важна и актуальна, и за ее обсуждение и объяснение Сабине можно простить погрешности стиля.

Я перестала ненавидеть эту книгу - надо признать, с подачи Хокинга возгорелся интерес общей публики к фундаментальным вопросам физики (связанным с черными дырами). Но время от времени я все еще хочу ударить чертову книгу. Не потому что я не понимаю ее, но потому что она убедила так много людей, что они понимают ее.

В этой книге Хокинг нарисовал изящную картинку испарения черных дыр, которая теперь используется повсеместно. В его представлении черные дыры испаряются, потому что пары виртуальных частиц, возникающих вблизи горизонта, разрываются приливными силами. Одна из частиц оказывается за горизонтом событий, и падает в черную дыру, а вторая улетает вовне. В результате черная дыра постоянно излучает частицы на горизонте событий. Это просто, это интуитивно, и это совершенно неверно.

Такое объяснение - простая иллюстрация, не более. В реальности - вы не будете удивлены - ситуация более сложная.

Пары частиц - насколько вообще имеет смысл говорить о частицах в квантовой физике - не локализованы в пространстве. Они «размазаны» по области пространства, сравнимой с радиусом черной дыры (прим. пер. сродни тому, как электрон движется не по определенной орбите вокруг ядра атома, находясь к какой-то ее точке, а «размазан» вокруг ядра. ). Пары частиц возникают не как точки, но как облака, размытые всюду вокруг черной дыры, и они разделяются только на расстояниях, сравнимых с радиусом черной дыры. Картинка, которую нарисовал Хокинг для не-специалистов не подкрепляется никакой математикой. В ней есть элемент истины, но не стоит ее принимать слишком серьезно - это может стать источником многих заблуждений.

То, что объяснение Хокинга не точно, не является чем-то новым - с начала 70х было известно, что излучение Хокинга возникает не на самом горизонте. Уже в учебнике Биррела и Девиса (1984) ясно написано, что если если предположить возникновение излучения на горизонте и рассмотреть процесс излучения в обратном направлении по времени: отследить частицы, приближающиеся к горизонту событий издалека и увеличивающие при этом частоту ("синее смещение "), это не даст корректного описания области вблизи горизонта событий. Правильным подходом будет другой: частицы из пары Хокинга при рождении «размазываются» и смешиваются друг с другом, так что говорить о них как о «частицах» можно только в локальном смысле (имеется в виду локальная с точки зрения ОТО система координат, прим.пер. ). Более того, нужно честно считать наблюдаемые величины, такие как тензор момента-импульса.

Предположение о возникновении пар на некотором отдалении от горизонта событий было необходимо для решения загадки, которыми были озадачены физики в 70-80е. Температура излучения черной дыры очень мала, если смотреть издалека. Но чтобы это излучение вообще могло убежать от притяжения ЧД, оно должно изначально обладать огромной энергией вблизи горизонта. А тогда наблюдатель, падающий в черную дыру, обратился бы в пепел, проходя через область с такой энергией. Это в свою очередь нарушает принцип эквивалентности , согласно которому наблюдатель, падающий в черную дыру вообще не должен заметить ничего необычного при пересечении горизонта.

Чтобы разрешить эту проблему, нужно учесть, что нельзя рассматривать излучение как приходящее от самого горизонта. Если честно посчитать тензор энергии-импульса вблизи горизонта, окажется, что он достаточно мал, и остается таковым и при пересечении горизонта. На самом деле он насколько мал, что падающий наблюдатель сможет заметить разницу с плоским пространством только на расстояниях, сравнимых с радиусом черной дыры (что также является размером кривизны пространства-времени). Тогда все сходится, и никакого нарушения принципа эквивалентности не возникает.

[Я знаю, все это звучит похоже на проблему фаервола , которую я обсуждала ранее, но это несколько иной эффект. (прим.пер. Проблема фаервола возникает, если рассматривать запутанность между излученной частицей и упавшей в черную дыру. Чтобы удовлетворять принципам квантовой механики, эти корреляции должны разрушаться. При разрушении корреляций высвобождается огромная энергия, которая создает «огненную стену» на горизонте.) При этом возникают разные проблемы при вычислениях вблизи горизонта. Идею фаервола можно критиковать на основании того, что в оригинальной статье про фаервол тензор энергии-импульса посчитан не был. В отличие от других я не думаю , что проблема в этом.]

Настоящая, подкрепленная вычислениями, причина излучения частиц черными дырами заключается в том, что для разных наблюдателей понятие частицы отличается.

Мы привыкли, что частица либо находится у нас, либо не находится. Однако, это справедливо только пока мы равномерно движемся друг относительно друга. Если наблюдатель (мы) ускоряется, самое определение частицы для него изменяется. То, что выглядит пустым вакуумом для наблюдателя при равномерном движении, оказывается наполненным частицами при ускорении. Этот эффект назван в честь Билла Унру , кто предложил его практически одновременно с гипотезой излучения черных дыр Хокингом. Сам эффект слишком мал для привычных нам ускорений, и мы никогда не замечаем его.

Эффект Унру близко связан с эффектом испарения черных дыр Хокинга. При возникновении черных дыр материя, коллапсирующая в черную дыру, создает динамическое пространство-время, которое приводит к ускорению между наблюдателями в прошлом и будущем. В результате пространство-время вокруг коллапсирующей материи, которое не содержало частиц до возникновения черной дыры, оказывается наполненным тепловым излучением на поздних стадиях коллапса. То есть, излучение Хокинга - тот же самый вакуум, изначально окружавший коллапсирующее вещество, (прим.пер. ровно как в эффекте Унру вакуум наполняется излучением при ускорении наблюдателя ).

Это и является источником излучения черных дыр: само определение частицы зависит от наблюдателя. Не столь просто, как картинка Хокинга, но гораздо точнее.

Картинка с парами частица-античастица на горизонте, предложенная Хокингом, стала столь потрясающе популярной, что теперь даже некоторые физики верят, что именно так все и происходит (Прим.пер. До поста Сабины я и сам к своему стыду думал именно так ). Тот факт, что синее смещение излучения при рассмотрении его распространения обратно во времени от бесконечности к горизонту дает настолько огромную энергию на горизонте, оказался затерян в литературе. К сожалению, непонимание связи между потоком частиц Хокинга вдалеке от ЧД и вблизи горизонта событий приводит к неверному заключению, что этот поток гораздо сильнее, чем он есть на самом деле. Например, это привело Mersini-Houghton к ошибкам при выводе доказательства, что черные дыры вообще не существуют.

(Прим.пер. Дальше статья сокращена для удобства чтения, в оригинальном посте обсуждается книга «Spooky action at a distance» и расчеты , где вычисляется точное расстояние, на котором возникает излучение Хокинга - в несколькое радиусов ЧД - и в подробностях обсуждается источник эффекта )

Если книга Хокинга и научила меня одной вещи, так это тому, что прилипчивые визуальные метафоры может быть проклятием в той же мере, как и благом.

Вторая редакция

Цитата из Википедии.
«Изучая поведение квантовых полей вблизи чёрной дыры, Хокинг предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры.

Как происходит испарение.
У границы черной дыры физический вакуум находится в условно напряженном состоянии, вследствие чего он квантовым образом поляризуется (так решил Хокинг). Из ТО ничего подобного не следует. ТО Эйнштейна, вообще, несовместима с квантовыми представлениями. А квантовая теория, в свою очередь, не может оперировать безразмерными материальными точками, которыми манипулирует ТО.

Здесь требуется пояснение. Содружество релятивистов и некоторой части квантовиков, решившее примирить две несовместимые теории, пришло к следующему соглашению. Физический вакуум – это неисчерпаемое хранилище энергии в неизвестной нам форме. Это хранилище они образно назвали бушующим океаном (естественно четырехмерным, чтобы никто не мучился, пытаясь его представить). Наша Вселенная – является всего лишь пеной на поверхности этого бушующего океана. В результате этого бушевания, в нашем измерении происходит спонтанное рождение пар частица-античастица. Но это излучение мы не можем обнаружить в силу его скоротечности, т.е. оно для нас виртуальное. Дело в том, что каждая пара, еще не возникнув, уже аннигилирует . Случайные сбои в процессе моментальной аннигиляции, называемые флуктуациями этого бушевания, мы и наблюдаем как реальное рождение пары, что в обычных условиях происходит чрезвычайно редко. А вот в зоне горизонта событий ЧД, это уже обычное событие.

Каждая пара частиц характеризуется скоростью и направлением разлета частиц. И то, и другое – случайные величины. Ну вот, добрались до сути фокуса Хокинга: на поверхности горизонта событий направление разлета рожденных частиц перестает быть случайным, т.е. становится поляризованным, а именно, ортогональным к поверхности ЧД.

Однако у Хокинга по поводу полной поляризации вакуума подробностей нет, это всего лишь наши догадки. Можно мыслить поляризованное испарение и как изотропное рождение пар, но тогда испарение будет возможно только для пар, случайно оказавшихся ортогональными к горизонту событий. В этом случае возникает проблема с определением допустимых отклонений, т.к. в идеальном представлении, вероятность абсолютного совпадения направлений стремится к нулю.

Если подходящая для испарения пара рождается на поверхности ЧД (а поверхность эта, у Хокинга, бесконечно тонкая, хотя у других авторов - пенообразная), то неизбежно одна из частиц этой пары оказывается внутри ЧД, а вторая снаружи. У частицы, которая снаружи, появляется шанс покинуть ЧД. Но, как говорится, не каждая птица сможет перелететь Днепр. Чтобы покинуть ЧД частица снаружи должна иметь скорость, практически равную скорости света. Экспериментально, спонтанное рождении пар таких частиц еще не обнаружено. Но сделаем Хокингу уступку, пусть невозможное в природе, для него, станет возможным.

Итак, пусть с поверхности ЧД происходит (стартует) корпускулярное излучение. Рассмотрим процесс излучения с учетом начальных условий. Выберем самый простейший вариант ЧД, т.е. ЧД Шварцшильда. Как известно, такая ЧД имеет всего один первичный параметр, а именно, массу Mчд. В общем случае ЧД может иметь еще заряд Q и момент инерции MчдR, где R=0! Вся масса ЧД по определению (в соответствии с постулатом ТО Эйнштейна) сосредоточена в центре ЧД в одной безразмерной точке, называемой точкой сингулярности. При этом масса ЧД вполне конкретна и конечна. Ещё один размер ЧД, уже конечный, определяется условной границей, называемой «горизонтом событий». Горизонт событий материально никак не обозначен, есть только косвенный признак: ни один объект Вселенной, включая фотоны и нейтрино, не может покинуть область ЧД, ограниченную горизонтом событий.

Вернемся к нашему анализу. В исходном состоянии имеем стационарную ЧД с массой Мчд. Затем на условной поверхности ЧД происходит рождение пары. Это происходит за счет неизбывной энергии вакуумного океана, т.е. не за счет ЧД. Однако в этом случае подпорка для теории ЧД не получается. Надо, чтобы рождение пары происходило за счет ЧД. Раз надо – пусть так и будет.

Для того, чтобы одна из частиц могла покинуть ЧД, энергия каждой частицы, а с нею и её масса, должна быть близка к бесконечности,
Мисп= Мч/(1-v^2/c^2)^0,5 при «v», стремящейся к «c». Здесь Mисп - стартовая масса-энергия спонтанно рожденной частицы с массой покоя Мч. Внутренняя частица поглощается ЧД, и масса ЧД увеличивается на величину Мисп.

Здесь возникает сразу два вопроса к Хокингу. Где же тут испарение (потеря массы дырой), и кто кого захватывает? Ведь, прибавочная масса Мисп может быть сколь угодно большой, а Мчд конечна, т.е. возможна ситуация Мисп > Мчд. Но это означает, что ЧД не может родить пару, энергия которой больше энергии дыры. Вопросы, естественно, риторические, поэтому продолжим.

Раз уж мы исследуем излучение ЧД, необходимо выяснить судьбу испаренной частицы. При достаточно большой начальной скорости, близкой к скорости света, эта частица отдалится от ЧД достаточно далеко, и остановится. После чего снова начнет падать на ЧД, т.к. её стартовая скорость все-таки была меньше скорости света. Во время остановки и разворота частицы, её можно «спасти» от ЧД и даже исследовать. Окажется, что это простой электрон или позитрон с энергией равной m;c^2 или 0.5 МэВ.
У испаренной частицы нет возможности самостоятельно покинуть ЧД, т.к. частиц, рождающихся с необходимыми для этого параметрами, не существует. Таким образом, испарение частиц Черной Дырой невозможно в принципе.
Однако последнее утверждение относится только к одинокой ЧД. Если же ЧД существует в реальном космосе, то мимо неё будет пролетать множество космических объектов, которые способны уносить продукты излучения ЧД. Но эти же объекты могут являться «пищей» для ЧД.
Здесь следует напомнить читателю, что ЧД это вовсе не всё пожирающее страшилище. Представьте себе, что Солнце вдруг превратилось в ЧД. Станет темно, не будет магнитных бурь и солнечного ветра. Но все планеты будут продолжать движение по прежним орбитам. Будут прилетать и кометы. При этом часть комет, которая должна бы рванее упасть на Солнце, может в этой ситуации продлить свое существование, если траектории комет не будут пересекать границу горизонта событий ЧД.
Существует другой возможный сценарий событий. Частица снаружи горизонта событий аннигилирует с другой наружной частицей. В угоду Хокингу, обяжем образовавшиеся два гамма-кванта тоже быть поляризованными. Один из гамма-квантов устремится прочь от ЧД, и в данном варианте у него это с гарантией получится, т.к. его начальная скорость точно равна скорости света, а место старта чуточку удалено от горизонта событий.
Получив полную свободу за пределами притяжения ЧД, вырвавшийся гамма-квант окажется весьма похудевшим. Степень похудения зависит от места точки аннигиляции. Излучение должно быть представлено полным спектром, т.е. от 0 до m;c^2, и не обнаружить его, просто, не возможно. В этой ситуации Хокинг нам уже не указ. Чтобы узнать, как же происходит похудение гамма-кванта в поле гравитации, придется обратиться к наследию Эйнштейна. Но там ответа нет. А самое огорчительное, что нет ответа и на вопрос, как происходит фазовый переход от фотона-частицы (гамма-кванта) к кванту худеющего радиоизлучения, длина волны которого непрерывно скачками возрастает вплоть до максимально возможной длины – длины световой секунды. Но это огорчение уже для квантовой теории.
Есть еще один вопрос, уже к неизвестным авторам квантовых фантазий о вакуумном океане. Речь о виртуальных парах частиц, которые в огромном количестве рождаются на поверхности вакуумного океана и моментально аннигилируют. Рождение и исчезновение частиц мы не успеваем заметить, по определению. Но как можно не заметить огромное количество не исчезающих гамма-квантов, являющихся результатом аннигиляции? Ответ у авторов ЧД ошеломляюще простой: излучения нет, т.к. его наличие противоречило бы закону сохранения энергии. Вот так - изучайте классику.
Таким образом, вся теория ЧД это сплошная профанация - но она старательно замаскирована математическими зарослями, вскормленными на гидропонике произвольных предположений.
Идея же с испарением ЧД является не прикрытой ложью, и её необходимо рассматривать как бесстыдное надувательство, авторы которого уверенны в своей безнаказанности под крылом правящего учения - Теории Относительности Эйнштейна.

Здесь был рассмотрен простейший случай с ЧД Шварцшильда. Если же ЧД (безразмерную точку) раскрутить, то у нее якобы появится момент инерции (отложите классику), и все станет ещё затейливее. Но писать об этом почему-то скучно.

Нижний Новгород, октябрь 2015г.

ИСТОЧНИКИ

1. Стивен Хокинг, «Теория всего. Происхождение и судьба Вселенной».
2. Стивен Хокинг, «Краткая история времени».
3. Злосчастьев К., (кафедра гравитации и теории поля, Институт Ядерных Исследований, Национальный Автономный Университет Мексики. Доктор философии в области физики), «О сингулярности, информации, энтропии, космологии и многомерной Единой теории взаимодействий в свете современной теории черных дыр».
4. Хуан Малдасена (Juan Maldacena), (Институт высших исследований, Школа естественных наук, Принстон, Нью-Джерси, США) «Черные дыры и структура пространства-времени».
5. Новиков И.Д., Фролов В.П., «Чёрные дыры во Вселенной».
6. Паули В. «Теория относительности». - 2-е изд. - М.: Наука, 1983.
7. Новиков И.Д. «Черные дыры и Вселенная». М., Молодая гвардия, 1985.
8. Чандрасекар С. «Математическая теория черных дыр». М., Мир, 1986.
9. Черепащук А.М. «Поиски черных дыр». – Успехи физических наук, 2003, т.173, № 4.

Излучение Хокинга - процесс излучения различных элементарных частиц , который был теоретически описан британским ученым Стивеном Хокингом в 1974-м году.

Задолго до публикаций работ Стивена Хокинга, возможность излучения частиц черными дырами высказывалась советским физиком-теоретиком Владимиром Грибовым в дискуссии с другим ученым - Яковом Зельдовичем.

Занимаясь исследованием поведения элементарных частиц вблизи черной дыры, в 1973-м году тридцатилетний Стивен Хокинг посетил Москву. В столице ему удалось принять участие в научном обсуждении с двумя выдающимися советскими учеными Алексеем Старобинским и Яковом Зельдовичем. Работая некоторое время над идеей Грибова, они пришли к выводу, что черные дыры могут излучать благодаря туннельному эффекту. Последний означает существование вероятности того, что частица может преодолеть любой барьер, с точки зрения квантовой физики. Заинтересовавшись данной темой, Хокинг подробно изучил вопрос и в 1974-м году опубликовал свою работу, впоследствии которой его именем было названо упомянутое излучение.

Стивен Хокинг несколько иначе описал процесс излучения частиц черной дырой. Первопричиной такого излучения являются так называемые «виртуальные частицы».

В процессе описания взаимодействий между частицами ученые пришли к мысли о том, что взаимодействия между ними происходят посредством обмена некими квантами («порции» какой-либо физической величины). Например, электромагнитное взаимодействие в атоме между электроном и протоном протекает при помощи обмена фотонами (переносчиками электромагнитного взаимодействия).

Однако тогда возникает следующая проблема. Если, рассмотреть этот электрон как свободную частицу, то он никоим образом не может просто излучить или поглотить фотон, согласно принципу сохранения энергии. То есть он не может просто потерять или приобрести какое-то количество энергии. Тогда ученые и создали так называемые «виртуальные частицы». Последние отличаются от реальных тем, что рождаются и исчезают так быстро, что зарегистрировать их невозможно. Все, что виртуальные частицы успевают сделать за короткий промежуток своей жизни – это передать импульс другим частицам, при этом, не передавая энергию.

Таким образом, даже пустое пространство, в силу неких физических флуктуаций (случайных отклонений от нормы) просто кишит этими виртуальными частицами, которые постоянно рождаются и уничтожаются.

Излучение Хокинга

В отличие от советских физиков, описание излучения Стивеном Хокингом основывается на абстрактных, виртуальных частицах, которые являются неотъемлемой частью квантовой теории поля. Британский физик-теоретик рассматривает спонтанное возникновение этих виртуальных частиц на черной дыры. В таком случае мощное гравитационное поле черной дыры способно «растащить» виртуальные частицы еще до момента их уничтожения, тем самым превратив их в реальные. Подобные процессы экспериментально наблюдаются на синхрофазотронах, где ученым удается растаскивать эти частицы, при этом затрачивая некоторое количество энергии.

С точки зрения физики, возникновение реальных частиц, имеющих массу, спин, энергию и прочие характеристики, в пустом пространстве «из ничего» противоречит закону сохранения энергии, а значит просто невозможно. Поэтому для «превращения» виртуальных частиц в реальные потребуется энергия, не меньше, чем суммарная масса этих двух частиц, согласно известному закону . Такой запас энергии затрачивает и черная дыра на то, чтобы растащить виртуальные частицы на горизонте событий.

В результате процесса растаскивания одна из частиц, находящаяся ближе к горизонту событий или даже под ним, «превращается» в реальную, и направляется в сторону черной дыры. Другая же, в обратном направлении отправляется в свободное плаванье по космическому пространству. Проведя математические подсчеты, можно убедиться в том, что даже, несмотря на полученную энергию (массу) от частицы, упавшей на поверхность черный дыры, энергия, потраченная черной дырой на процесс растаскивания - отрицательная. То есть, в конечном счете, в результате описанного процесса, черная дыра лишь утратила некоторый запас энергии, который, причем, в точности равен энергии (массе), которой обладает улетевшая «наружу» частица.

Таким образом, согласно описанной теории, черная дыра хоть и не излучает никаких частиц, но способствует такому процессу и теряет эквивалентную энергию. Следуя уже упомянутому закону Эйнштейна об эквивалентности массы и энергии, становится ясно, что черной дыре неоткуда брать энергию, кроме как из собственной массы.

Подводя итог всего вышеописанного, можно сказать, что черная дыра излучает частицу и при этом теряет некоторую массу. Последний процесс был назван как «испарение черной дыры». Исходя из теории об излучении Хокинга, можно догадаться, что спустя некоторое время, хотя и очень длительное (триллионы лет), черные дыры просто .

Интересные факты

  • Многие люди опасаются, что на Большом Адронном Коллайдере (БАК) могут образоваться черные дыры, и, вероятно, привнести угрозу в жизнь землян. Рождение черных дыр на БАК возможно только в случае существования дополнительных измерений пространства-времени и наличия мощного гравитационного взаимодействия на малых расстояниях. Однако сформированная таким образом микроскопическая черная дыра мгновенно испарится за счет излучения Хокинга.
  • На основе излучения Хокинга может работать сингулярный реактор или коллапсарный реактор – гипотетическое устройство, порождающее микроскопические черные дыры. Энергия излучения, образованного в результате их испарения, и будет основным источником энергии реактора.

Хотя Большой Адронный Коллайдер и выглядит грозно, из-за излучения Хокинга бояться его нечего

  • Опубликовав свою работу по излучению черных дыр, Стивен Хокинг поспорил с другим известным ученым – Кипом Торном. Предметом спора стала природа объекта, претендующего на звание черной дыры, под названием . Несмотря на то, что работа Хокинга основывалась на предположении о существовании черных дыр, он утверждал, что Лебедь Х-1 не является черной дырой. Примечательно, что в качестве ставок выступали подписки на журналы. Ставка Торна представлялась в виде 4-хгодовой подписки на сатирический журнал «Private eye», тогда как ставка Хокинга – годовая подписка на эротический журнал «Пентхауз». Логику своего утверждения в споре, Стивен аргументировал следующим: «даже если я окажусь не прав, утверждая о существовании черных дыр, то хоть выиграю подписку на журнал»

Возможно, величайшим открытием Стивена Хокинга, и причиной, по которой он так известен среди физиков, было то, что чёрные дыры не живут вечно.

Они излучают свою энергию на чрезвычайно долгих временных промежутках через процесс, открытый в 1974 году и известный, как излучение Хокинга. На этой неделе один из читателей задал следующий вопрос:

С момента открытия излучения Хокинга в научных публикациях оно описывается, как постепенное испарение чёрных дыр из-за спонтанного возникновения запутанных частиц рядом с горизонтом событий. Говорят, что одну частицу засасывает в ЧД, а другая улетает и становится излучением Хокинга. Из-за этого излучения ЧД постепенно теряют массу, и в результате полностью исчезают. Вопрос в том, если одна частица падает в ЧД, а вторая улетает, почему ЧД становится меньше? Не должна ли она наоборот, набирать массу?

Большой вопрос, содержащий в себе несколько неправильных представлений, часть из которых возникла по вине самого Хокинга. Давайте разбираться!

Уже более 101 года назад было найдено самое первое точное решение Общей теории относительности: пространство-время, описывающее массивную сингулярность, окружённую горизонтом событий. Открытие сделал Карл Шварцшильд, который сразу же понял, что описал ЧД: объект, настолько плотный и массивный, что даже свет не может вырваться из его гравитационного притяжения.

Довольно долго считалось, что если собрать вместе достаточно массы, запихнув её в достаточно малую область космоса, гравитационный коллапс до состояния ЧД будет необратимым, и что вне зависимости от изначальной конфигурации массы, сингулярность будет точкой, а горизонт событий – сферой. Единственный интересующий учёных параметр – размер горизонта событий – должен определяться только массой ЧД.

С поглощением ЧД всё большего количества материи, её масса растёт, и она увеличивается в размерах. Довольно долго считалось, что это будет продолжаться до тех пор, пока не останется материи для поглощения, или пока не настанет конец Вселенной.

Но кое-то изменило это предоставление. Революционное открытие того, что наша Вселенная состоит из крохотных неделимых частиц, подчиняющихся своему набору законов, квантовому набору. Частицы взаимодействуют друг с другом через различные фундаментальные взаимодействия, каждое из которых можно представить в виде набора квантовых полей.

Хотите знать, как взаимодействуют две электрически заряженные частицы, или как взаимодействуют фотоны? Всё это управляется квантовой электродинамикой, или квантовой теорией электромагнитных взаимодействий. Что насчёт частиц, отвечающих за сильные взаимодействия: за силу, держащую протоны и другие частицы в ядрах вместе? Это квантовая хромодинамика, или квантовая теория сильных взаимодействий. А что по поводу радиоактивного распада? Это квантовая теория слабых ядерных взаимодействий.

Но в этом наборе не хватает двух компонентов. Один заметить просто: в квантовом мире не учитывается гравитационное взаимодействие, поскольку у нас нет квантовой теории гравитации. А второй сложнее: три упомянутых квантовых теории обычно работают в плоском пространстве, там, где гравитационными взаимодействиями можно пренебречь. Пространство-время, соответствующее этому в ОТО, называется пространство Минковского. Но рядом с чёрной дырой пространство искривляется и превращается в пространство Шварцшильда.

И что же случается с этими квантовыми полями не в пустом и плоском пространстве, а в искривлённом пространстве рядом с ЧД? К этой проблеме Хокинг подступился в 1974 году, продемонстрировав, что присутствие этих полей в искривлённом пространстве рядом с ЧД приводит к появлению теплового излучения чёрного тела определённой температуры. Эта температура и поток тем меньше, чем более массивна ЧД, из-за того, что кривизна пространства меньше на горизонте событий у более крупной и массивной ЧД.

В популярной научной книге, «Краткая история времени» (всё ещё находящейся на первых местах в Amazon в разделах «космология» и «релятивистская физика»), Стивен Хокинг описывает вакуум пространства, состоящий из пар виртуальных частиц/античастиц, возникающих и исчезающих. По его словам, рядом с ЧД иногда одна из двух компонентов этой виртуальной пары падает за горизонт событий, а другая остаётся снаружи. В такой момент, как он пишет, внешний член пары убегает с реальной, положительной энергией, а внутренний член обладает отрицательной энергией, из-за чего масса ЧД уменьшается, что и приводит к её постепенному испарению.

Естественно, такая картина неверна. Для начала, излучение исходит не только лишь с края горизонта событий ЧД, но из всего окружающего его пространства. Но самая большая ошибка в представлении об этом процессе состоит в том, что на самом деле ЧД испускает фотоны, а не частицы и античастицы. На самом деле излучение имеет такую малую энергию, что вообще не способно произвести пары частица/античастица.

Я пытался улучшить объяснение происходящего, подчёркивая, что речь идёт о виртуальных частицах, то есть, о способе визуализации квантовых полей в природе; это не реальные частицы. Но эти свойства могут привести, и приводят к появлению реального излучения.

Но и это не совсем соответствует действительности. Это объяснение подразумевает, что неподалёку от горизонта событий излучение будет сильным, и будет казаться слабым и низкотемпературным только на большом отдалении от ЧД. На самом же деле излучение небольшое везде, и только небольшой процент излучения можно связать с самим горизонтом событий.

Реальное объяснение гораздо более сложное, и показывает, что у этой примитивной картинки есть свои ограничения. Корень проблем в том, что у разных наблюдателей получаются разные картины происходящего и восприятие частиц, и эта проблема более сложна в искривлённом пространстве, чем в плоском. Проще говоря, один наблюдатель увидит пустое пространство, но другой, ускоренно движущийся, увидит в нём частицы. Суть излучения Хокинга непрерывно связана с тем, где находится наблюдатель и что он видит, в зависимости от того, ускоренно он движется или покоится.

Создавая ЧД на том месте, где её не было, вы ускоряете частицы снаружи горизонта событий, которые в итоге попадают внутрь этого горизонта. Этот процесс и является источником этого излучения, и подсчёты Хокинга показывают, насколько невероятно сильно растянут во времени этот процесс испарения. У ЧД массой в одну солнечную испарение займёт 10 67 лет. У крупнейшей во Вселенной ЧД массой в 10 млрд солнечных это займёт 10 100 лет. При этом возраст сегодняшней вселенной составляет всего примерно 10 10 лет, и скорость испарения настолько мала, что пройдёт ещё 10 20 лет, прежде чем ЧД начнут испаряться быстрее, чем они растут из-за случайных столкновений с межзвёздными протонами, нейтронами или электронами.

Поэтому, отвечая коротко на вопрос читателя, можно сказать, что картина, нарисованная Хокингом, чрезмерно упрощена до такой степени, что становится неправильной. Более длинный ответ – к появлению излучения приводит падение в ЧД материи, а из-за чрезвычайно искривлённого пространства вокруг горизонта событий это излучение испускается так медленно, на таких длительных промежутках времени и в таких больших объёмах пространства. Для ещё более длинных и технических объяснений рекомендую обратиться (по увеличению сложности) к текстам Сабины Хоссенфелдер, Джона Баеза и Стива Гиддингса.