ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ , потоки фотонов или частиц, взаимод. к-рых со средой приводит к ионизации ее или . Различают фотонное (электромагнитное) и корпускулярное ионизирующие излучения. К фотонному ионизирующему излучению относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и др. ядерных р-циях (гл. обр. g -излучение) и при торможении заряженных частиц в электрич. или магн. поле - тормозное рентгеновское излучение, . К корпускулярному ионизирующему излучению относят потоки a - и b -частиц, ускоренных и , осколков тяжелых ядер и др. Заряженные частицы ионизируют или среды непосредственно при столкновении с ними (первичная ионизация). Если выбиваемые при этом обладают достаточной кинетич. энергией, они также могут ионизировать или среды при столкновениях (вторичная ионизация); такие наз. d -электронами. Фотонное излучение может ионизировать среду как непосредственно (прямая ионизация), так и через генерированные в среде (косвенная ионизация); вклад каждого из этих путей ионизации определяется энергией квантов и атомным составом среды. Потоки ионизируют среду лишь косвенно, преим. ядрами отдачи. Пространственно-временное распределение заряженных частиц или квантов, составляющих ионизирующее излучение, наз. его полем. Осн. характеристики ионизирующих излучений: поток ионизирующего излучения Ф n = dN/dt, где dN - число частиц, падающих на данную пов-сть за интервал времени dt; плотность потока j n = dФ n /dS, где dФ n - поток, приходящийся на площадь поперечного сечения dS поглощающего объема; поток энергии Ф = dE/dt, где dE - суммарная энергия излучения (за исключением энергии массы покоя); энергетический спектр ионизирующего излучения - распределение составляющих его частиц и фотонов по энергиям. Кол-во энергии, переданной ионизирующим излучением единице массы среды, наз. поглощенной излучения (см. ). Все виды ионизирующих излучений характеризуются т. наз. (ЛПЭ) - энергией, переданной среде ионизирующей частицей в заданной окрестности ее траектории на единицу длины. ЛПЭ может принимать значения от 0,2 (высокоэнергетич. фотоны и ) до 10 4 эВ/нм (осколки тяжелых ядер).
Взаимодействие излучения со средой. При прохождении ионизирующего излучения в среде возможны упругое рассеяние частиц, составляющих излучение, и неупругие процессы. При упругом рассеянии кинетич. энергия относит. движения частиц остается постоянной, но меняется направление их движения, т.е. поток ионизирующего излучения рассеивается; при неупругих процессах кинетич. энергия ионизирующего излучения расходуется на ионизацию и возбуждение частиц среды. Для потока характерны упругое рассеяние на ядрах среды и неупругие процессы -ионизация и возбуждение и при взаимод. с их электронными оболочками (ионизационные потери) и генерация тормозного излучения при взаимод. с (радиационные потери). Если энергия не превышает 10 МэВ, во всех средах преобладают ионизац. потери. Для потока ускоренных ионизац. потери доминируют при всех энергиях. Энергия, передаваемая заряженной частицей данному в-ву на единице длины ее пути, наз. тормозной способностью в-ва s m = dE/dl (dE - энергия, теряемая частицей при прохождении элементарного пути dl). Значение s m снижается с увеличением энергии заряженных частиц и растет с повышением ат. номера элемента, из к-рого состоит в-во среды. Глубина проникновения заряженных частиц в в-во характеризуется пробегом R; в для Не 2+ с энергией 5,3 МэВ R составляет 39 мкм, для с энергией 5 МэВ -2,5 см. Для фотонного ионизирующего излучения имеют место упругое рассеяние (классич. рассеяние) и неупругие процессы, основные из к-рых - фотоэффект, эффект Комптона и образование - . При фотоэффекте фотон поглощается среды с испусканием , причем энергия фотона за вычетом энергии связи в передается освобожденному . Вероятность фотоэффекта с К-оболочки пропорциональна Z 5 (Z - aт. номер элемента) и быстро убывает с ростом энергии фотона (кривая 1 на рис. 1). В случае эффекта Комптона происходит рассеяние фотона на одном из атомных ; при этом уменьшается энергия фотона, изменяется направление его движения и происходит ионизация среды. Вероятность комптоновского рассеяния пропорциональна Z и зависит от энергии фотонов (кривые 2 и 3 на рис. 1). При энергии фотона выше 1,022 МэВ вблизи ядра становится возможным образование - . Вероятность этого процесса пропорциональна Z 2 и увеличивается с ростом энергии фотона (кривая 4 на рис. 1). При энергии фотона до 0,1 МэВ преобладает классич. рассеяние и фотоэффект, при энергии от 0,1 до 10 МэВ - эффект Комптона, при энергии выше 20 МэВ - образование . Ослабление фотонного ионизирующего излучения слоем в-ва происходит по экспоненц. закону и характеризуется линейным коэф. ослабления m , к-рый показывает, на какой толщине слоя в-ва интенсивность падающего пучка ослабляется в е раз. Обычно измеряют ослабление потока излучения и вводят массовый коэф. ослабления m / r (r - плотность в-ва): Ф n = Ф 0 n е -(m/r) . r x , где х - толщина слоя в-вa, Ф 0 n и Ф n - падающий и прошедший потоки соответственно. При прохождении потока фотонов через среду часть их рассеивается, часть поглощается, поэтому различают массовые коэф. ослабления и поглощения; второй коэф. численно меньше первого. Каждый вид взаимод. излучения со средой характеризуется своими массовыми коэф., зависящими от энергии фотонов и ат. номера элемента, из к-рого состоит в-во среды. Нейтронное излучение взаимод. только с среды. По энергии (в сравнении со средней энергией теплового движения kT, где k - , Т - абс. т-ра) подразделяют на холодные (Е < kT), тепловые (Е ~ kT), медленные (kT < E < 10 3 эВ), промежуточные (10 3 . 10 5 эВ) и быстрые (E > 5 . 10 5 эВ). в в-ве испытывают упругое и неупругое рассеяние. При достаточной энергии могут выбивать частично ионизир. из среды (т. наз. ядра отдачи). При захвате могут происходить , последствием к-рых является испускание g -квантов, a - и b -частиц, осколков и др. Ослабление потока происходит по экспоненциальному закону Ф n = Ф 0 n е - N sa , где N - число данного вида в единице объема, s - т. наз. сечение захвата. Значение s убывает обратно пропорционально скорости , но на этой зависимости имеются максимумы (резонансные области захвата), в к-рых сечение характеристично для каждого и может принимать значения от 2 . 10 - 33 м 2 для 15 N до 3,6 . 10 - 22 м 2 для 135 Хе.

Рис. 1. Зависимость массового коэффициента ослабления m/r g -излучения в от энергии квантов: 1 - фотоэффект; 2 и 3 - ионизационная и рассеивательная составляющие эффекта Комптона соответственно; 4 - эффект рождения электрон-позитрон.

Глубину проникновения фотонного и нейтронного ионизирующих излучений в среду характеризуют слоем половинного ослабления D 1/2 , уменьшающим поток излучения вдвое. В случае D 1/2 = 9 см для направленного потока g -излучения 60 Со с энергией 1,25 МэВ и D 1/2 =8 см для направленного потока со средней энергией 6 МэВ. . взаимод. любого ионизирующего излучения с частицами среды продолжается не более 10 - 15 с. За это время возможна перестройка электронной подсистемы среды (ядерная подсистема остается неизменной). В среде появляются продукты взаимод.: однозарядные в основном и , разл. энергий, двухзарядные , синглетные и триплетные , т. наз. сверхвозбужденные состояния (), имеющие энергию выше первого I 1 частиц среды. В газовой фазе кол-во превышает кол-во образовавшихся , в конденсир. фазе - наоборот. Ионизация и возбуждение частиц среды могут происходить с любого электронного энергетич. уровня, но процесс тем вероятнее, чем меньше энергия связи в и среды. Эффективность взаимод. ионизирующего излучения со средой характеризуют средней энергией W - энергией, расходуемой на образование одной , причем W превышает I 1 в 1,5-2,5 раза. Осн. доля энергии ионизирующего излучения передается вторичными d -электронами. Мгновенное распределение первичных и вторичных по энергиям в среде - т. наз. спектр деградации излучения - позволяет рассчитать все процессы взаимод. по их сечениям в системе и найти состав и вероятность образования разл. ионизированных и . В случае взаимод. ионизирующего излучения с (напр., р-ром) распределение энергии излучения между компонентами происходит пропорционально электронной доле e этих компонентов - отношению числа , принадлежащих данному компоненту, к общему числу всех системы в единице массы (или объема). Переданная в-ву энергия ионизирующего излучения распределяется неравномерно вдоль траектории ионизирующих частиц, поэтому пространств. распределение продуктов взаимод. также неоднородно. Степень неоднородности тем выше, чем больше ЛПЭ излучения. Это приводит к неодинаковым конечным эффектам при взаимод. со средой ионизирующих излучений с различным ЛПЭ (см. Радиационно-химические ). Источники ионизирующих излучений различаются видом и энергетич. спектром излучения, конструкцией, геометрией расположения облучающих элементов, мощностью поглощенной и ее распределением в облучаемом объекте. Выделяют след. группы: изотопные источники, ядерные реакторы, ускорители заряженных частиц, рентгеновские установки. Среди изотопных источников наиб. распространены гамма-установки с долгоживущими 60 Со и l37 Cs.

Рис. 2. Схема гамма-изотопного источника для облучения : a - вид сверху, б - вид сбоку; 1 - камера для облучения; 2 - помещение для загрузки 5; 3 - источник излучения в рабочем положении; 4 - он же в положении хранения; 6 - транспортная линия для ; 7 - пульт управления; 8 - бетонная защита; 9 - зубцы защитного лабиринта; 10 - система подъема источников из хранилища 11; 12 - пультовая; 13 - система дозиметрич. контроля.

На рис. 2 представлена схема гамма-установки для облучения объектов большого размера. В рабочей камере 1 расположены излучающие элементы, к-рые могут находиться в рабочем положении 3 или в хранилище 4 (при таком положении помещение 1 доступно для людей). Объекты для облучения погружаются в 5 и по транспортной линии 6 доставляются дистанционно к облучателю 3. Все помещения находятся под дозиметрич. контролем 13. Ионизирующее излучение ядерных реакторов состоит из g -излучения, быстрых и тепловых , осколков . Ускорители заряженных частиц - устройства, ускоряющие или в электрич. поле (магн. поле м. б. использовано для управления потоком заряженных частиц). Различают два осн. конструкционных типа ускорителей: линейные, в к-рых заряженные частицы движутся прямолинейно, и циклические, в к-рых движение идет по круговой траектории. По типу ускоряющего электрич. поля ускорители делят на высоковольтные, в к-рых направление электрич. поля во время ускорения не меняется, и резонансные, в к-рых непрерывное ускорение достигается за счет того, что заряженная частица находится в ускоряющей фазе переменного высокочастотного электрич. поля. В циклич. ускорителях (циклотрон, синхротрон, синхрофазотрон и др.) требуемая энергия достигается при многократном прохождении ускоряемой частицы по окружности аппарата, в линейных (линейный индукц. ускоритель, линейный резонансный ускоритель и др.) - за счет приложения высокочастотного электрич. поля к линейной периодич. системе . Осн. элементы ускорителя - высоковольтный генератор, источник заряженных частиц (ионный источник) и система, в к-рой производится ускорение. В резонансных ускорителях процесс накопления частицей энергии происходит за определенное время, зависящее от требуемой энергии и типа ускоряемых частиц, поэтому они работают в импульсном режиме. Нек-рые типы высоковольтных ускорителей (напр., каскадный ускоритель) могут использоваться в режиме постоянного потока ускоренных частиц. Большинство типов ускорителей применяют для ускорения как

Ионизирующее излучение – вид радиации, которая у всех ассоциируется исключительно со взрывами атомных бомб и авариями на АЭС.

Однако на деле ионизирующее излучение окружает человека и представляет собой естественный радиационный фон: оно образуется в бытовых приборах, на электрических вышках и т.д. При воздействии с источниками происходит облучение человека данным излучением.

Стоит ли бояться серьезных последствий – лучевой болезни или поражения органов?

Сила действия излучения зависит от продолжительности контакта с источником и его радиоактивности. Бытовые приборы, создающие незначительный «шум», не опасны для человека.

Но некоторые типы источников могут нанести серьезный вред организму. Чтобы предотвратить негативное воздействие, нужно знать базовую информацию: что такое ионизирующее излучение и откуда оно исходит, а также как влияет на человека.

Ионизирующее излучение возникает при распаде радиоактивных изотопов.

Таких изотопов множество, они используются в электронике, атомной промышленности, добыче энергии:

  1. уран-238;
  2. торий-234;
  3. уран-235 и т.д.

Изотопы радиоактивного характера естественным образом распадаются с течением времени. Скорость распада зависит от вида изотопа и исчисляется в периоде полураспада.

По истечению определенного срока времени (у одних элементов этом могут быть несколько секунд, у других – сотни лет) количество радиоактивных атомов снижается ровно вдвое.

Энергия, которая высвобождается при распаде и уничтожении ядер, высвобождается в виде ионизирующего излучения. Оно проникает в различные структуры, выбивая из них ионы.

Ионизирующие волны основаны на гамма-излучении, измеряются в гамма-квантах. Во время передачи энергии не выделяются никакие частицы: атомы, молекулы, нейтроны, протоны, электроны или ядра. Воздействие ионизирующего излучения чисто волновое.

Проникающая способность излучения

Все виды разнятся по проникающей способности, то есть способность быстро преодолевать расстояния и проходить сквозь различные физические преграды.

Наименьшим показателем отличается альфа-излучение, а в основе ионизирующего излучения лежат гамма-лучи – самые проникающие из трех типов волн. При этом альфа-излучение оказывает самое отрицательное действие.

Что отличает гамма-излучение?

Оно опасно из-за следующих характеристик:

  • распространяется со скоростью света;
  • проходит через мягкие ткани, дерево, бумагу, гипсокартон;
  • останавливается только толстым слоем бетона и металлическим листом.

Для задержки волн, которыми распространяется данное излучение, на АЭС ставят специальные коробы. Благодаря им радиации не может ионизировать живые организмы, то есть нарушать молекулярную структуру людей.

Снаружи коробы состоят из толстого бетона, внутренняя часть обита листом чистого свинца. Свинец и бетон отражают лучи или задерживают их в своей структуре, не позволяя распространиться и нанести вред живому окружению.

Виды источников радиации

Мнение, что радиация возникает только в результате жизнедеятельности человека, ошибочно. Слабый радиационный фон есть почти у всех живых объектов и у самой планеты соответственно. Поэтому избежать ионизирующего излучения очень сложно.

На основе природы возникновения все источники делятся на природные и антропогенные. Наиболее опасны антропогенные, такие, как выброс отходов в атмосферу и водоемы, аварийная ситуация или действие электроприбора.

Опасность последнего источника спорна: считается, что небольшие излучающие устройства не создают серьезной угрозы для человека.

Действие индивидуально: кто-то может почувствовать ухудшение самочувствия на фоне слабого излучения, другой же индивид окажется абсолютно не подвержен естественному фону.

Природные источники радиации

Основную опасность для человека представляют минеральные породы. В их полостях скапливается наибольшее количество незаметного для человеческих рецепторов радиоактивного газа – радона.

Он естественным образом выделяется из земной коры и плохо регистрируется проверочными приборами. При поставке строительных материалов возможен контакт с радиоактивными породами, и как результат – процесс ионизации организма.

Опасаться следует:

  1. гранита;
  2. пемзы;
  3. мрамора;
  4. фосфогипса;
  5. глинозема.

Это наиболее пористые материалы, которые лучше всего задерживают в себе радон. Данный газ выделяется из строительных материалов или грунта.

Он легче воздуха, поэтому поднимается на большую высоту. Если вместо открытого неба над землей обнаружено препятствие (навес, крыша помещения), газ будет скапливаться.

Большая насыщенность воздуха его элементами приводит к облучению людей, компенсировать которое можно только выведением радона из жилых зон.

Чтобы избавиться от радона, требуется начать простое проветривание. Нужно стараться не вдыхать воздух в том помещении, где произошло заражение.

Регистрация возникновения скопившегося радона осуществляется только при помощи специализированных симптомов. Без них сделать вывод о скоплении радона можно только на основе не специфичных реакций человеческого организма (головная боль, тошнота, рвота, головокружение, потемнение в глазах, слабость и жжение).

При обнаружении радона вызывается бригада МЧС, которая устраняет радиацию и проверяет эффективность проведенных процедур.

Источники антропогенного происхождения

Другое название созданных человеком источников – техногенные. Основной очаг излучения – АЭС, расположенные по всему миру. Нахождение в зонах станций без защитной одежды влечет за собой начало серьезных заболеваний и летальный исход.

На расстоянии нескольких километров от АЭС риск сводится к нулю. При правильной изоляции все ионизирующие излучения остаются внутри станции, и можно находиться в непосредственной близости от рабочей зоны, при этом не получая никакой дозы облучения.

Во всех сферах жизнедеятельности можно столкнуться с источником излучения, даже не проживая в городе близ АЭС.

Искусственная ионизирующая радиация повсеместно используется в различных отраслях:

  • медицине;
  • промышленности;
  • сельском хозяйстве;
  • наукоемких отраслях.

Однако получить облучение от аппаратов, которые изготавливаются для данных отраслей, невозможно.

Единственное, что допустимо – минимальное проникновение ионных волн, которое не наносит вреда при малой продолжительности воздействия.

Радиоактивные осадки

Серьезная проблема современности, связанная с недавними трагедиями на АЭС – распространение радиоактивных дождей. Выбросы в атмосферу радиации заканчиваются накоплением изотопов в атмосферной жидкости – облаках. При переизбытке жидкости начинаются осадки, которые представляют серьезную угрозу для сельскохозяйственных культур и человека.

Жидкость впитывается в земли сельскохозяйственных угодий, где произрастает рис, чай, кукуруза, тростник. Данные культуры характерны для восточной части планеты, где наиболее актуальна проблема радиоактивных дождей.

Ионное излучение оказывает меньшее воздействие на другие части света, потому что осадки не доходят до Европы и островных государств в области Великобритании. Однако в США и Австралии дожди иногда проявляются радиационные свойства, поэтому при покупке овощей и фруктов оттуда нужно проявлять осторожность.

Радиоактивные осадки могут выпадать над водоемами, и тогда жидкость по каналам водоочистки и водопроводным системам может попасть в жилые дома. Очистные сооружения не обладают достаточной для снижения радиации аппаратурой. Всегда есть риск, что принимаемая вода – ионная.

Как обезопасить себя от радиации

Прибор, который измеряет, есть ли в фоне продукта ионные излучения, находится в свободном доступе. Его можно приобрести за небольшие деньги и использовать для проверки покупок. Название проверочного устройства – дозиметр.

Вряд ли домохозяйка будет проверять покупки прямо в магазине. Обычно мешает стеснение перед посторонними. Но хотя бы дома те продукты, что поступили из подверженных радиоактивным дождям зон, нужно проверять. Достаточно поднести счетчик к предмету, и он покажет уровень испускания опасных волн.

Влияние ионизирующего излучения на человеческий организм

Научно доказано, что радиация оказывает на человека отрицательное действие. Это было выяснено и на реальном опыте: к сожалению, аварии на Чернобыльской АЭС, в Хиросиме и т.д. доказали биологическую и излучения.

Влияние радиации основано на полученной «дозе» — количестве переданной энергии. Радионуклид (испускающий волны элементы) может оказывать влияние как изнутри, так и снаружи организма.

Полученная доза измеряется в условных единицах – Греях. Нужно учитывать, что доза может быть равной, а вот влияние радиации – разным. Это связано с тем, что различные излучения вызывают разные по силе реакции (самая выраженная у альфа-частиц).

Также на силу воздействия влияет и то, на какую часть организма пришлось попадание волн. Наиболее подвержены структурным изменениям половые органы и легкие, меньше – щитовидная железа.

Результат биохимического воздействия

Радиация влияет на структуру клеток организма, вызывая биохимические изменения: нарушения в циркуляции химических веществ и в функциях организма. Влияние волн проявляется постепенно, а не сразу после облучения.

Если человек попал под допустимую дозу (150 бэр), то отрицательные эффекты не будут выражены. При большем облучении ионизационный эффект увеличивается.

Естественное излучение равно примерно в 44 бэр в год, максимум – 175. Максимальное число лишь немного выходит за рамки нормы и не вызывает отрицательных изменений в организме, кроме головных болей или слабой тошноты у гиперчувствительных людей.

Естественное излучение складывается на основе радиационного фона Земли, употребления зараженных продуктов, использования техники.

Если доля превышена, развиваются следующие заболевания:

  1. генетические изменения организма;
  2. нарушения половой функции;
  3. раковые образования мозга;
  4. дисфункции щитовидной железы;
  5. рак легких и дыхательной системы;
  6. лучевая болезнь.

Лучевая болезнь является крайней стадией всех связанных с радионуклидами заболеваний и проявляется лишь у тех, кто попал в зону аварии.

Тест 8 класс

В — 1

1. В состав ионизирующего излучения входят:

а) ультрафиолетовые лучи;

б) альфа-излучение;

в) бета-излучение;

г) тепловое излучение;

д) электромагнитное излучение;

е) гамма-излучение.

2. За счет чего в основном образуется естественный радиацион-ный фон? Назовите правильный ответ:

а) за счет радиации Солнца, Земли, внутренней радиоактив-ности человека, рентгеновских исследований, флюорогра-фии, радиоактивных осадков от ядерных испытаний, про-водившихся в атмосфере;

б) за счет увеличения добычи радиоактивных материалов;

в) за счет роста химически опасных производств, использо-вания радиоактивных материалов на производстве, сжига-ния угля, нефти, газа на ТЭС.

3. К радиационно-опасным объектам относятся:

4. Каковы пути проникновения радиоактивных веществ в орга-низм человека при внутреннем облучении? Назовите правиль-ные ответы:

а) через одежду и кожные покровы;

б) в результате прохождения радиоактивного облака;

в) в результате потребления загрязненных продуктов питания;

г) в результате вдыхания радиоактивной пыли и аэрозолей;

д) в результате радиоактивного загрязнения поверхности зем-ли, зданий и сооружений;

е) в результате потребления загрязненной воды.

5. Внимательно прочитайте задание и определите, какие дозы облучения людей (в рентгенах) соответствуют следующим признакам поражения:

а) через несколько часов после облучения появляется лучевая болезнь III степени, которая в большинстве случаев при-водит к смертельному исходу;

б) после однократного облучения появляется рвота, чувство усталости, в организме сокращается количество белых кро-вяных телец; серьезной потери трудоспособности не насту-пает;

в) отсутствуют признаки поражения;

г) пораженные погибают в первые дни облучения в результате молниеносной формы лучевой болезни.

6. Какое заболевание вызывает проникающая радиация у неза-щищенных людей? Назовите правильный ответ:

а) поражение центральной нервной системы;

б) поражение опорно-двигательного аппарата;

в) лучевую болезнь.

7. Определите какие из приведенных марок противогазов и респираторов необходимо использовать для защиты от радиоактивного йода? Назовите правильный ответ:

а) ГП-5;

б) ГП-7;

в) ПДФ-Д;

г) ПДФ-Ш;

д) ПДФ-2П;

е) ПДФ-2Ш;

ж) «Лепесток»;

з) Р-2, Р-2Д.

8. При движении по зараженной радиоактивными веществами местности необходимо:

а) находиться в средствах индивидуальной защиты органов дыхания и кожи;

б) периодически снимать средства индивидуальной защиты органов дыхания и кожи и отряхивать их от пыли;

в) двигаться по высокой траве и кустарнику;

г) избегать движения по высокой траве и кустарнику;

д) без надобности не садиться и не прикасаться к местным предметам;

е) принимать пищу и пить только при ясной безветренной погоде;

ж) не принимать пищу, не пить, не курить;

з) не поднимать пыль и не ставить вещи на землю. Выберите из предложенных вариантов ваши дальнейшие дейст-вия и расположите их в логической последовательности.

9. Управление ГОЧС передало сообщение об аварии на АЭС. В нём жителям района, в котором вы живете, рекомендовано покинуть свои квартиры (дома) и прийти на сборный пункт для эвакуации в безопасную зону. Родители находятся на работе. Вы располагаете временем 1,5 часа. Ваши действия и их последовательность:

а) позвонить родителям на работу и сообщить о случившемся;

б) вывесить на двери табличку об отсутствии в квартире жи-телей и следовать на сборный пункт;

г) выключить газ, электричество, погасить огонь в печи;

д) переодеться в чистую одежду;

е) освободить холодильник от продуктов, вынести скоропор-тящиеся продукты и мусор в мусоросборник;

з) использовать намоченный носовой платок в качестве сред-ства защиты органов дыхания при следовании на сборный пункт

Тест 8 класс

Аварии с выбросом радиоактивных веществ

В — 2

1. Самым опасным излучением для человека является:

а) альфа-излучение;

б) бета-излучение;

в) гамма-излучение.

2. Объект с ядерным реактором, завод, использующий ядерное топливо или перерабатывающий ядерный материал, а также его место хранения и транспортное средство, перевозящее ядерный материал или источникионизирующего излучения, при аварии на котором или разрушении которого может про-изойти облучение людей, животных и растений, а также ра-диоактивное загрязнение окружающей природной среды, это:

а) объект экономики особой опасности;

б) экологически опасный объект;

в) радиационно-опасный объект;

г) объект повышенной опасности.

3. Из предложенных вариантов ответов выберите те, которые характеризуют специфические свойства радиоактивных веществ

:а) стелются по земле на небольшой высоте и таким образом могут распространяться на несколько десятков километров;

б) не имеют запаха, цвета, вкусовых качеств или других внешних признаков;

в) способны вызвать поражение не только при непосредствен-ном соприкосновении с ними, но и на расстоянии (до со-тен метров) от источника загрязнения;

г) моментально распространяются в атмосфере независимо от скорости и направления ветра;

д) имеют специфический запах сероводорода;

е) поражающие свойства радиоактивных веществ не могут быть уничтожены химически и (или) каким-либо другим способом, так как радиоактивный распад не зависит от внешних факторов, а определяется периодом полураспада данного вещества.

4. Ткань, орган и часть тела, воздействие на который в условиях неравномерного облучения организма может причинить наибольший ущерб здоровью данного лица или его потомства, называют критическим. В порядке убывания радиочувствительности критические органы относятся к I, II или III группам. Определите, какие из приведенных критических органов относятся к I, II и III группам:

а) мышцы, щитовидная железа, жировая ткань, печень, поч-ки, селезенка, желудочно-кишечный тракт, легкие, хрус-талики глаз;

б) кожный покров, костная ткань, кисти, предплечья, голени и стопы;

в) половые органы и красный костный мозг;

5. Какую цель преследует проведение йодной профилактики? Не допустить:

а) возникновения лучевой болезни;

б) внутреннего облучения;

в) поражения щитовидной железы.

6. Тяжелую степень лучевой болезни вызывает доза облучения:

а) 450 бэр.;

б) 10 бэр.;

в) 0,5 бэр.

7. Что необходимо сделать при оповещении об аварии на радиационно- опасном объекте? Определите из предложенных вари-антов последовательность ваших действий:

а) надеть средства индивидуальной защиты;

б) освободить от продуктов питания холодильник и вынести скоропортящиеся продукты и мусор; в) включить радиоприемник, телевизор и выслушать сообщение;

г) следовать на сборный эвакуационный пункт;

д) взять необходимые продукты питания, вещи и документы;

е) вывесить на двери табличку: «В квартире жильцов нет»;

ж) выключить газ, электричество, погасить огонь в печи.

8. При проживании в районе с повышенным радиационным фоном и радиоактивным загрязнением местности, сложив-шимся в результате аварии на АЭС, вам по необходимости приходится выходить на улицу (открытую местность). Какие санитарно-гиенические мероприятия вы должны выполнить при возвращении в дом (квартиру)? Ваши действия и их последовательность:

а) перед входом в дом снять одежду и выбить (вытряхнуть) из нее пыль;

б) обувь ополоснуть в специальной емкости с водой, протереть влажной тканью и оставить у порога;

в) воду из емкости вылить в канализацию;

г) войдя в помещение, верхнюю одежду повесить в плотно закрывающийся шкаф;

д) верхнюю одежду повесить в специально отведенном месте у входа в дом (на улице);

е) вымыть руки и лицо;

ж) принять душ с мылом.

9. К радиационно-опасным объектам относятся:

а) взрывоопасные производства на промышленных предприя-тиях;

б) производства, связанные с применением, хранением и пере-работкой легковоспламеняющихся и горючих жидкостей;

в) предприятия по производству ядерного топлива;

г) атомные электростанции; д) предприятия цветной и черной металлургии;

е) хранилища твердых и жидких радиоактивных отходов;

ж) транспортные ядерные энергетические установки;

з) предприятия нефтеперерабатывающей промышленности;

и) предприятия угольной промышленности;

к) научно — исследовательские организации, имеющие ядер-ные установки и стенды;

л) системы ядерного оружия, склады с ядерными боеприпа-сами и заводы по их производству.

Ответы к тестам

Проф. Давыдов А.В.

1. Общие сведения и терминология.

Ионизирующее излучение (ionizing radiation) - это поток элементарных частиц или квантов электромагнитного излучения, который создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе, и прохождение которого через вещество приводит к ионизации и возбуждению атомов или молекул среды.

Ионизацию среды могут производить только заряженные частицы - электроны, протоны и другие элементарные частицы и ядра химических элементов. Процесс ионизации заключается в том, что заряженная частица, кинетическая энергия которых достаточна для ионизации атомов, при своем движении в среде взаимодействует с электрическим полем атомов и теряет часть своей энергии на выбивание электронов с электронных оболочек атомов. Нейтральные частицы и электромагнитное излучение не производят ионизацию, но ионизируют среду косвенно, через различные процессы передачи своей энергии среде с порождением вторичного излучения в виде заряженных частиц (электронов, протонов), которые и производят ионизацию среды.

Ионизирующие излучения разделяют на фотонные и корпускулярные.

Фотонное ионизирующее излучение - это все виды электромагнитного излучения, возникающее при изменении энергетического состояния атомных ядер, электронов атомов или аннигиляции частиц - ультрафиолетовое и характеристическое рентгеновское излучение, излучения, возникающие при радиоактивном распаде и других ядерных реакциях и при торможении заряженных частиц в электрическом или магнитном поле.

Корпускулярное ионизирующее излучение - потоки альфa- и бета-частиц, протонов, ускоренных ионов и электронов, нейтронов и др. Корпускулярное излучение потока заряженных частиц относится к классу непосредственно ионизирующего излучения. Корпускулярное излучение потока незаряженных частиц называют косвенно ионизирующим излучением.

Источник ионизирующего излучения (ionizing radiation source) - объект, содержащий радиоактивный материал (радионуклид), или техническое устройство, испускающее или способное в определенных условиях испускать ионизирующее излучение. Предназначен для получения (генерации, индуцирования) потока ионизирующих частиц с определенными свойствами.

Источники излучений применяются в таких приборах, как медицинские гамма- терапевтические аппараты, гамма-дефектоскопы, плотномеры, толщиномеры, нейтрализаторы статического электричества, радиоизотопные релейные приборы, измерители зольности угля, сигнализаторы обледенения, дозиметрическая аппаратура со встроенными источниками и т.п.

По физической основе генерации излучения разделяют радионуклидные источники на основе естественных и искусственных радиоактивных изотопов, и физико-технические источники (нейтронные и рентгеновские трубки, ускорители заряженных частиц и пр.).

Для радионуклидных источников различают открытые и закрытые источники излучения.

Открытый источник ионизирующего излучения (unsealed source) - при использовании которого возможно поступление содержащихся в нём радиоактивных веществ в окружающую среду.

Закрытый источник ионизирующего излучения (sealed source) - в котором радиоактивный материал заключён в оболочку (ампула или защитное покрытие), предотвращающую контакт персонала с радиоактивным материалом и его поступление в окружающую среду свыше допустимых уровней в условиях применения и износа, на которые он рассчитан.

По видам излучения выделяют источники гамма-излучения, источники заряженных частиц и источники нейтронов. Для радионуклидных источников такое разделение не является абсолютным, т.к. при ядерных реакциях, индуцирующих излучение, основной вид излучения источника может сопровождаться существенным вкладом сопутствующих видов излучения.

По назначению выделяют калибровочные (образцовые), контрольные (рабочие) и промышленные (технологические) источники.

Промышленные источники излучения применяют в различных производственных процессах и установках производственного назначения (ядерные методы каротажа, бесконтактные методы контроля технологических процессов, методы анализа вещества, дефектоскопия и т.п.).

Контрольные источники используются для проверки и настройки ядерно-физических приборов и установок (спектрометров, радиометров, дозиметров и пр.) путем контроля за стабильностью и повторяемостью показаний приборов в определенной геометрии положения источника относительно детектора излучения.

Калибровочные источники используются при калибровке и метрологической поверке ядерно-физической аппаратуры.

Технические характеристики источников излучения:

  1. 1. Вид излучения (для радионуклидных - основной по назначению).
  2. 2. Геометрия источника (форма и размеры). Геометрически источники могут быть точечными и протяженными. Протяженные источники могут быть линейными, поверхностными или объемными.
  3. 3. Активность (количество распадов в единицу времени) и ее распределение по источнику для радионуклидных источников. Мощность или плотность потока излучения для физико-технических источников.
  4. 4. Энергетический состав. Энергетический спектр источников может быть моноэнергетическим (испускаются частицы одной фиксированной энергии), дискретным (испускаются моноэнергетические частицы нескольких энергий) или непрерывным (испускаются частицы разных энергий в пределах некоторого энергетического диапазона).
  5. 5. Угловое распределение излучения. Среди многообразия угловых распределений излучений источников для решения большинства практических задач обычно задаются изотропное, косинусоидальное или мононаправленное.

ГОСТ Р 51873-2002 - Источники ионизирующего излучения радионуклидные закрытые. Общие технические требования. Введен в действие в 2003 г. Стандарт распространяется на закрытые радионуклидные источники альфа-, бета-, гамма-, рентгеновского и нейтронного излучений. Не распространяется на образцовые и контрольные источники, а также на источники, активность радионуклидов в которых не превышает минимально значимой, установленной «Нормами радиационной безопасности».

Согласно стандарту источники должны быть герметичными, с установленными классами прочности, допустимых климатических и механических воздействий по ГОСТ 25926 (но не ниже диапазона от -50 до +50 о С и влажности не менее 98% при +40 о С). Срок службы источника должен быть не менее:

  • — двух периодов полураспада - для источников с периодом полураспада менее 0,5 года;
  • — одного периода полураспада (но не менее 1 года) - с периодом полураспада от 0,5 до 5 лет;
  • — 5 лет - для источников гамма- и нейтронного излучений с периодом полураспада 5 и более лет. Для источников альфа-, бета- и рентгеновского излучений с периодом полураспада 5 и более лет срок службы устанавливают в нормативном документе на конкретный тип источника.

Источники относятся к невосстанавливаемым промышленным изделиям и не подлежат ремонту. При сохранении радиационных параметров в пределах, удовлетворяющих пользователя, сохранении герметичности и отсутствии дефектов допускается продление срока эксплуатации источника. Порядок продления устанавливают органы государственного управления использованием атомной энергией.

Единицы измерения радиоактивности и доз облучения.

Мерой радиоактивности радионуклида является его активность, которая измеряется в Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Несистемная единица - Кюри (Ки), активность 1 г радия (Ra). 1 Кюри = 3.7*10 10 Бк.

Доза ионизирующего излучения (radiation dose) - количество энергии ионизирующего излучения, которое воспринимается некоторой средой за определенный промежуток времени.

Поглощённая доза - энергия, поглощённая единицей массы облучаемого вещества. За единицу поглощённой дозы облучения принимается грей (Гр) = 1 джоуль на килограмм (Дж/кг).

Поглощённая доза различных видов излучения вызывает в единице массы биологической ткани различное биологическое действие. Эквивалентная доза равна произведению поглощённой дозы на средний коэффициент качества излучения по сравнению с гамма-излучением. Значения коэффициента: рентгеновское излучение, электроны, позитроны, бета-излучение -1, нейтроны тепловые - 3, протоны, нейтроны быстрые - 10, альфа-частицы и ядра отдачи - 20. В качестве единицы измерения эквивалентной дозы принят зиверт (Зв) - доза любого излучения, поглощённая 1 кг биологической ткани и приносящая такой же биологический вред, как и поглощённая доза фотонного излучения в 1 Гр. Внесистемная единица - бэр. 1 Зв = 100 бэр.

Экспозиционная доза (Д эксп) служит для характеристики фотонного излучения и определяет меру ионизации воздуха под действием этих лучей. Она равна дозе излучения, при которой в 1 кг атмосферного воздуха возникают ионы, несущие заряд электричества в 1 кулон (Кл). Д эксп = Кл/кг. Внесистемная единица - рентген (Р). 1 Р = 2,58 · 10 -4 Кл/кг.

Основные радионуклиды мониторинга среды. Ниже в таблице приведены краткие данные по ядерно-физическим характеристикам радионуклидов, содержание которых в окружающей среде, в строительных материалах, в рабочих и бытовых помещениях и, особенно, в пищевых продуктах сельского хозяйства может быть значимым по радиационной опасности для здоровья человека.

Название

полураспада

кванты, МэВ

Бета-частицы

226 Ra Þ 206 Pb

232 Th Þ 208 Pb

Ряд урана

Ряд тория

1.4 10 10 год

Много, до 2.45

Много, до 2.62

Много, до 3

Много, до 3

Естественные

Стронций-Иттрий

30 год, 3 сут.

Техногенные

Церий-Празеодим

Рутений-Родий

285 сут, 17 мин.

372 сут, 30 сек.

Продукты

Особого внимания заслуживает Радон-222, продукт распада Ra-226. Он является инертным газом, и выделяется из любых сред и объектов (почвы, строительные материалы и пр.), которые практически всегда содержат уран и продукты его распада. Средняя концентрация радона на уровне земли вне помещений составляет 8 Бк/м 3 . Период полураспада радона составляет 3.824 суток, и он может накапливаться в закрытых и плохо вентилируемых помещениях.

Основную часть облучения население Земли получает от естественных источников радиации. Это природные радионуклиды и космические лучи. Полная доза, обусловленная естественными источниками радиации, составляет в среднем около 2,4 мЗв в год.

2. Источники заряженных частиц.

Известны десятки элементарных заряженных частиц, но время жизни большинства из них не превышает микросекунд. К элементарным заряженным частицам, участвующим в ядерных реакциях, относят бета-частицы (электроны и позитроны), протоны и альфа-частицы (ядра гелия 4 Не, заряд +2, масса 4).

Взаимодействие заряженных частиц с веществом. Заряженные частицы относятся к малопроникающим видам ионизирующего излучения. При своем движении в веществе они взаимодействуют с элект-рическими полями атомов среды. В результате взаимодей-ствия электроны атомов среды получает до-полнительную энергию и переходит на более удаленные от ядра энергетические уровни (процесс возбуждения) или совсем покидает атомы (процесс ионизации). При прохождении вблизи атомного ядра частицы испытывает торможение в его электрическом поле, которое сопровождается испусканием тормоз-ного гамма-излучения.

Длина пробега частицы в веществе зависит от ее заряда, массы, началь-ной кинетической энергии, и от свойств среды. Пробег увеличивается с возрастанием энер-гии частицы и уменьшением плотности среды. Массивные частицы обладают меньшими ско-ростями, чем легкие, взаимо-действуют с атомами более эффективно и быстрее теряют свою энергию.

Пробег бета-частиц в воздухе - до нескольких метров в зависимости от энергии. От потока бета-частиц с максималь-ной энергией 2 МэВ полностью защищает слой алюминия толщиной 3,5 мм, железа - 1,2 мм, свинца - 0,8 мм. Одежда поглощает до 50 % бета-частиц. При внешнем облучении организма на глубину более 1 мм проникает 20—25 % бета-частиц.

Альфа-частицы, имеющие большую массу, при столкновениях с электронами атомных обо-лочек испытывают очень небольшие отклонения от своего перво-начального направления и движутся почти прямолинейно. Про-беги альфа-частиц в веществе очень малы. Например, у альфа-частицы с энергией 4 МэВ длина пробега в воздухе примерно 2,5 см, в воде или в мягких тканях животных и человека - сотые доли миллиметра.

Источники бета-излучения.

Бета-излучение (beta radiation) - корпускулярное ионизирующее излучение, поток электронов или позитронов, возникающий при бета-распаде атомных ядер с выбросом из ядра электрона или позитрона со скоростью, близкой к скорости света.

Бета-распад радионуклидов сопровождается излучением нейтрино, при этом разделение энергия распада между электроном и нейтрино имеет случайный характер. Это приводит к тому, что энергетическое распределение излучаемых бета-частиц является непрерывным от 0 до определенной для каждого изотопа максимальной энергии Е мах, мода распределения сдвинута в область низких энергий, а среднее значение энергии частиц порядка (0,25-0,45)Е мах. Пример энергетического распределения бета-излучения приведен на рис. 1.

Рис 1. Пример распределения бета-излучения по энергии

Чем меньше период полураспада радионуклида, тем больше максимальная энергия излучаемых бета-частиц. Интервал значений Е мах для различных радионуклидов простирается от десятка кэВ до десятка МэВ, но периоды полураспада нуклидов в последнем случае очень малы, что затрудняет их использование для технологических целей.

Характеристика проникающей способности излучения обычно дается по средней величине поглощения энергии излучения при прохождении излучения через слой вещества с поверхностной плотностью 1 г/см 2 . Поглощение энергии бета-частиц при прохождении через вещество составляет порядка 2 МэВ на 1 г/см 2 , и защита от излучения радионуклидных источников не представляет проблем. Слой свинца толщиной 1 мм практически полностью поглощает излучение с энергией до 2,5 МэВ.

Источники бета-излучения (дисковые и точечные) изготавливаются в тонкослойном варианте на специальных подложках, от материала которых существенно зависит коэффициент отражения бета-частиц от подложки (увеличивается с увеличением атомного номера материала, и может достигать десятков процентов для тяжелых металлов). Толщина активного слоя и наличие на активном слое защитного покрытия зависит от назначения источника и энергии излучения. При спектрометрических измерениях поглощение энергии частиц в активном слое и защитном покрытии не должно превышать 2-3%. Диапазон активности источников от 0,3 до 20 ГБк.

Мощные источники изготавливаются в виде герметических капсул из титана или нержавеющей стали, имеющих специальное выходное окно для бета-излучения. Так, изотопная установка «СИРИУС-3200» на смеси изотопов Sr-Y с активностью 3200 Ки обеспечивает выходную плотность потока электронов до 10 8 электр·см -2 ·с -1 .

В таблице 1 приведены наиболее распространенные радионуклидные источники бета-частиц.

Таблица 1. Радионуклидные источники бета-частиц.

Бета-распад для большинства радионуклидов сопровождается сильным гамма-излучением. Это объясняется тем, что конечное ядро распада образуется в возбужденном состоянии, энергия которого снимается испусканием гамма-квантов. Кроме того, при торможении бета-частиц в плотной среде возникает тормозное гамма-излучение, а перестройка электронной оболочки нового атома сопровождается появлением характеристического рентгеновского излучения.

Промышленные физико-технические источники заряженных частиц - ускорители электронов (микротроны, бетатроны линейные волновые ускорители) используются для получения высокоэнергетических потоков электронов (более 3-5 МэВ).

В отличие от изотопных источников с непрерывным спектром электронов, ускорители дают пучок электронов фиксированной энергии, причём поток и энергия электронов могут варьироваться в широких интервалах.

Рис 2. Ускоритель ЭЛВ-8 (Новосибирск)

В России используются промышленные ускорители серии ЭЛВ с энергией (0.2-2.5) МэВ, мощностью до 400 кВт, и серии ИЛУ с энергией (0.7-5) МэВ, мощностью до 50 кВт. Машины рассчитаны на непрерывную работу в промышленных условиях, снабжены разнообразными системами развертки пучка электронов для облучения различных продуктов. Они применяются для радиационно-химических технологий, используемых при производстве кабельной продукции с термостойкой изоляцией, полимерных труб горячего водоснабжения, термоусаживаемых труб, хладостойких полимеров, полимерных рулонных композитных материалов и т.п. Импульсный ускоритель РИУС-5 создает ток электронов в импульсах (0.02-2) мкс до 100 кА при энергии электронов до 14 МэВ. Малогабаритные импульсные бетатроны типа МИБ используются для радиографического контроля качества материалов и изделий в нестационарных условиях.

Источники альфа-излучения.

Альфа-излучение - это корпускулярное ионизирующее излучение, представляет собой поток альфа-частиц (ядер атомов гелия) с энергией до 10 МэВ, начальная скорость около 20 тыс. км/с. Эти частицы испускаются при распаде радионуклидов с большим атомным номером, в основном это трансурановые элементы с атомными номерами более 92. Их ионизирующая способность огромна, а проникающая способность незначительна. Длина пробега в воздухе составляет 3—11 см (примерно равна энергии частиц в МэВ), в жидких и твердых средах — сотые доли миллиметра. Слой вещества с поверхностной плотностью 0,01 г/см 2 полностью поглощает излучение с энергией до 10 МэВ. Внешнее альфа-излучение поглощается в роговом слое кожи человека.

В радионуклидных источниках альфа-излучения используется альфа-распад нестабильных ядер как естественных изотопов, так и тяжелых искусственных изотопов. Основной диапазон энергий альфа-частиц при распаде от 4 до 8 МэВ. Энергетическое распределение излучения дискретно и представлено альфа-частицами нескольких групп энергий. Выход альфа-частиц с максимальной энергией обычно максимален, ширина энергетических линий излучения очень мала. Для изготовления радионуклидных альфа-источников используются изотопы с максимальным выходом альфа-частиц и с минимальным сопутствующим гамма-излучением. Изготавливаются источники в тонкослойном варианте на металлических подложках.

Таблица 2. Радионуклидные источники альфа-частиц.

Практически чистые альфа-излучатели (например, полоний-210) являются великолепными источниками энергии. Удельная мощность излучателя на базе Ро-210 составляет более 1200 Ватт на кубический сантиметр. Полоний-210 послужил в качестве обогревателя «Лунохода-2», поддерживая температурные условия, необходимые для работы аппаратуры. В качестве источников энергии полоний-210 широко задействован в качестве источников питания удалённых маяков. Применяется он также для удаления статического электричества на текстильных фабриках, ионизации воздуха для лучшего горения топлива в мартеновских печах, и даже для удаления пыли с фотоплёнок.

Выпускаются и низкоактивные источники, используемые в качестве эталонов излучения для калибровки радиометров, дозиметров и прочей измерительной аппаратуры. Образцовые источники альфа-излучения изготавливаются на базе изотопов уран-234 и 238, плутоний-239.

К физико-техническим источникам пучков ионов гелия, протонов или тяжелых ионов относится циклотрон. Это ускоритель протонов (или ионов), в котором частота ускоряющего электрического поля и магнитное поле постоянны во времени. Частицы движутся в циклотроне по плоской развертывающейся спирали. Максимальная энергия ускоренных протонов 20 МэВ.

3. Источники электромагнитного (фотонного) излучения.

Источники гамма-излучения.

Гамма-излучение (gamma radiation) - коротковолновое электромагнитное излучение с длиной волны менее 0,1 нм, которое возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и при других превращениях элементарных частиц. В виду того, что ядра имеют только определенные разрешенные уровни энергетического состояния, спектр гамма-излучения дискретен и состоит, как правило, из нескольких групп энергий в диапазоне от нескольких кэВ до десятка МэВ. Для радионуклидов с большими атомными номерами количество энергетических групп гамма-квантов может достигать нескольких десятков, но они резко различаются по вероятности выхода и количество квантовых линий с наибольшим выходом обычно невелико.

Поток гамма-квантов обладает волновыми и корпускулярными свойствами и распространяется со скоростью света. Высокая проникающая способность гамма-излучения объясняется отсутствием электрического заряда и значительным запасом энергии. Интенсивность облучения гамма-лучами снижается обратно пропорционально квадрату расстояния от точечного источника.

Гамма-кванты взаимодействуют в основном с электронными оболочками атомов, передавая часть своей энергии электронам в процессе фотоэффекта и эффекта Комптона. При фотоэффекте фотон поглощается атомом среды с испусканием электрона , причем энергия фотона за вычетом энергии связи электрона в атоме передается освобожденному электрону . Вероятность фотоэффекта максимальна в области энергий квантов менее 200 кэВ, и быстро убывает с ростом энергии фотона. В случае эффекта Комптона на выбивание электрона с атомной оболочки расходуется только часть энергии фотона, а сам фотон изменяет направление движения. Комптоновское рассеяние преобладает в области энергий (0.2-5) МэВ и пропорционально атомному номеру среды. При энергии фотона выше 1,022 МэВ вблизи атомного ядра становится возможным образование пар электрон - позитрон , вероятность этого процесса увеличивается с ростом энергии фотона.

Пути пробега гамма-квантов в воздухе измеря-ются сотнями метров, в твердом веществе — десятками сантимет-ров. Проникающая способность гамма-излуче-ния увеличивается с ростом энергии гамма-квантов и умень-шается с увеличением плотности среды. Ослабление фотонного ионизирующего излучения слоем вещества происходит по экспоненциальному закону. Для энергии излучения 1 МэВ толщина слоя десятикратного ослабления составляет порядка 30 г/см 2 (2,5 см свинца, 4 см железа или 12-15 см бетона).

Радионуклидные источники гамма-квантов - естественные и искусственные бета-активные изотопы (таблица 3), дешевые и удобные в эксплуатации. При бета-распаде нуклидов ядро - продукт распада, образуется в возбужденном состоянии. Переход возбужденного ядра в основное состояние происходит с испусканием одного или нескольких следующих друг за другом гамма-квантов, снимающих энергию возбуждения. Радионуклидные источники представляют собой герметичные ампулы из нержавеющей стали или алюминия, заполненные активным изотопом. Энергия гамма-квантов радионуклидных источников не превышает 3 МэВ.

Таблица 3. Радионуклидные источники гамма-излучения.

Название

полураспада

Энергия линий

излучения, кэВ

Выход квантов

Кобальт-60

Стронций-85

Сурьма-124

Иридий-192

120; 136; 265; (280; 400)

610; 640-1450; 1690; 2080

100; 35; 50; 6.5

В настоящее время мощные источники гамма-излучения нашли применение в медицине (радиотерапия, стерилизация инструментов и материалов), в геологии и горной промышленности (плотнометрия, рудосортировка), в радиационной химии (радиационно-химическая модификация материалов, синтез полимеров), и во многих других отраслях промышленного производства и строительства (дефектоскопия, массометрия, толщинометрия материалов и многое другое).

В радиологических отделениях онкологических диспансеров эксплуатируются закрытые радионуклидные источники с суммарной активностью до 5*10 14 Бк. Переносные гамма-дефектоскопы типа "Гаммарид" и "Стапель-5М" на основе иридия-192 имеют источники с активностью от 85 до 120 Бк.

Физико-технические источники излучения представляют собой ускорители электронов, которые используются для генерации гамма-излучения. В этих ускорителях электронный поток разгоняется до энергий в несколько МэВ и направляется на мишень (цирконий, барий, висмут и др.), в которой возникает мощный поток гамма-квантов тормозного излучения с непрерывным спектром от нуля до максимальной энергии электронов.

Для создания мощных импульсных потоков тормозного гамма-излучения используются установки ЛИУ-10, ЛИУ-15, УИН-10, РИУС-5. Импульсный ускоритель РИУС-5 создает ток электронов в импульсах (0.02-2) мкс до 100 кА при энергии электронов до 14 МэВ, что позволяет создавать мощность дозы тормозного излучения до 10 13 Р/с со средней энергией гамма-квантов порядка 2 МэВ.

Малогабаритные импульсные бетатроны типа МИБ используются для радиографического контроля качества материалов и изделий в нестационарных условиях: на монтажных и строительных площадках, при контроле сварных соединений и запорной арматуры нефте- и газопроводов, контроле опор мостов и других ответственных строительных конструкций, а также контроле литья и сварных соединений больших толщин. Максимальная энергия тормозного излучения установок до 7.5 МэВ, максимальная толщина просвечивания материалов до 300 мм.

Источники рентгеновского излучения.

Рентгеновское излучение по своим физическим свойствам аналогично гамма-излучению, но природа его совсем другая. Это низкоэнергетическое (не более 100 кэВ) электромагнитное излучение. Оно возникает при возбуждении атомов элементов потоком электронов, альфа-частиц или гамма-квантов, при котором происходит выброс электронов с электронных оболочек атома. Восстановление электронных оболочек атома сопровождается излучением рентгеновских квантов и имеет линейчатый спектр энергий связи электронов с ядром на электронных оболочках.

Рентгеновское излучение сопровождает также бета-распад радионуклидов, при котором ядро элемента увеличивает свой заряд на +1, и происходит перестройка его электронной оболочки. Этот процесс позволяет создавать достаточно мощные и дешевые радионуклидные источники рентгеновского излучения (таблица 4). Естественно, что такие источники одновременно являются источниками определенного бета- и гамма-излучения. Для изготовления источников используются радионуклиды с минимальной энергией излучаемых бета-частиц и гамма-квантов.

Таблица 4. Радионуклидные источники квантов низких энергий.

Защита от рентгеновского излучения существенно проще защиты от гамма-излучения. Слой свинца 1 мм обеспечивает десятикратное ослабление излучения с энергией 100 кэВ.

Физико-технические источники рентгеновского излучения - рентгеновские трубки, в которых под воздействием потока электронов, разогнанных до нескольких десятков кэВ, в мишени (аноде трубки) возбуждается излучение.

Рентгеновская трубка состоит из стеклянного вакуумного баллона с впаянными электродами - катодом, нагреваемым до высокой температуры, и анодом. Электроны, испускаемые катодом, ускоряются в пространстве между электродами сильным электрическим полем (до 500 кВ для мощных трубок) и бомбардируют анод. При ударе электронов об анод их кинетическая энергия частично преобразуется в энергию характеристического и тормозного излучения. КПД рентгеновских трубок обычно не превышает 3%. Поскольку большая часть кинетической энергии электронов превращается в тепло, анод выполняется из металла с высокой теплопроводностью, а на его поверхность (под 45 о к потоку электронов) в зоне фокусировки потока наносится мишень из материала с большим атомным номером, например вольфрама. Для мощных рентгеновских трубок применяется принудительное охлаждение анода (водой или специальным раствором). Удельная мощность, рассеиваемая анодом в современных трубках, от 10 до 10 4 Вт/мм 2 .

Рис 3. Спектр излучения рентгеновской трубки

Типовой спектр излучения рентгеновской трубки приведен на рис. 3. Он состоит из непрерывного спектра тормозного излучения электронного пучка и характеристических линий рентгеновского излучения (острые пики) при возбуждении внутренних электронных оболочек атомов мишени.

4. Источники нейтронов.

Нейтронное излучение - это поток нейтральных частиц, имеющих массу, примерно равную массе протона. Эти частицы вылетают из ядер атомов при некоторых ядерных реакциях, в частности, при реакциях деления ядер урана и плутония. Вследствие того, что нейтроны не имеют электрического заряда, нейтронное излучение взаимодействует только с атомными ядрами среды и обладает достаточно большой проникающей способностью. В зависимости от кинетической энергии (в сравнении со средней энергией теплового движения E t ≈ 0.025 эВ) нейтроны условно подразделяют на тепловые (Е ~ E t), медленные (E t < E < 1 кэВ), промежуточные (1 < E < 500 кэВ) и быстрые (E > 500 кэВ).

Процесс ослабления нейтронного излучения при прохождении через вещество складывается из процессов замедления быстрых и промежуточных нейтронов, диффузии тепловых нейтронов и их захвата ядрами среды.

В процессах замедления быстрых и промежуточных нейтронов основную роль играет передача нейтронами энергии ядрам среды при прямых столкновениях с ними (неупругое и упругое рассеяние). При неупругом рассеянии часть энергии нейтронов расходуется на возбуждение ядра, которое снимается гамма-излучением. При упругом рассеянии чем меньше масса ядра и больше угол рассеяния, тем большую часть своей энергии передает нейтрон ядру. Вероятность упругого рассеяния практически постоянна до энергий 200 кэВ, и уменьшается в 3-5 раз по мере роста энергии нейтронов.

Радиационный захват нейтронов возможен на любых ядрах, за исключением ядер гелия. При захвате образуется возбужденное ядро, которое переходит в основное состояние с испусканием гамма-излучения, характерного для каждого нуклида, что широко используется для нейтронно-активационного анализа химического состава сред с высочайшей степенью точности (до 10 -8 %). На легких ядрах наблюдаются ядерные реакции с вылетом протонов и альфа-частиц. Тяжелые ядра при захвате нейтронов делятся на два более легких ядра с освобождением энергии до 200 МэВ, из которых порядка 160 МэВ передается осколкам деления. Вероятность захвата имеет индивидуальную для нуклидов зависимость от энергии нейтронов, с резонансными пиками и спадом к области высоких энергий. Захват нейтронов преобладает для медленных и тепловых нейтронов.

Защита от нейтронов выполняется из смеси (слоев) тяжелых элементов (железо, свинец для неупругого рассеяния), легких водородо- и углеродосодержащих веществ (вода, парафин, графит - упругое рассеяние), и элементов захвата тепловых нейтронов (водород, бор). При среднем соотношении 1:4 тяжелых и легких элементов ослабление потока нейтронов в 10:100:1000 раз достигается в слоях примерно 20:32:40 см.

Из всех видов внешних воздействий на человека нейтронное излучение наиболее опасно, т.к. интенсивно замедляется и поглощается водородосодержащей средой организма и вызывает ядерные реакции в его внутренних органах.

Радионуклидные источники нейтронов (таблица 5) выполняются на основе возбуждения в определенных химических элементах ядерных реакций типа (a,n) - поглощение альфа-частицы Þ испускание нейтрона, или (g,n) - поглощение гамма-кванта Þ испускание нейтрона. Они представляют собой, как правило, однородную спрессованную смесь элемента-излучателя альфа-частиц или гамма-квантов и элемента-мишени, в котором возбуждается ядерная реакция. В качестве альфа-излучателей используются полоний, радий, плутоний, америций, кюрий, в качестве гамма-излучателей - сурьма, иттрий, радий, мезоторий. Элементы - мишени для альфа-излучателей - бериллий, бор, для гамма-излучателей - бериллий, дейтерий. Смесь элементов запаивается в ампулы из нержавеющей стали.

Наиболее известными ампульными источниками являются радиево-бериллиевый и полониево-бериллиевый. Полоний-210 - практически чистый альфа-излучатель. Распад полония сопровождается гамма-излучением слабой интенсивности. Основной недостаток - небольшой срок службы, определяемый периодом полураспада полония.

В калифорниевом нейтронном источнике используется спонтанная ядерная реакция с выбросом нейтрона из ядра, которая сопровождается сильным гамма-излучением. При каждом делении ядра выделяется четыре нейтрона. 1 г источника в секунду выделяет 2,4*10 12 нейтронов, что соответствует нейтронному потоку среднего ядерного реактора. Источники имеют постоянный поток нейтронов (не требуется мониторинг), “точечность” излучения, длительный ресурс (более трех лет), сравнительно низкую стоимость.

Источники тепловых нейтронов выполняются аналогично и дополнительно содержат графитовый чехол-замедлитель.

Таблица 5. Радионуклидные источники нейтронов.

Название

Период полу-

распада, лет

энергия, МэВ

n/3.7 10 10 Бк

Полоний, бериллий

Плутоний-239, бериллий

Плутоний-238, бериллий

Радий, бериллий

Америций, бериллий

Актиний, бериллий

Полоний, бор

Сурьма, бериллий

Иттрий, бериллий

Мезоторий, бериллий

Радий, бериллий

Иттрий, дейтерий

Мезоторий, дейтерий

Радий, дейтерий

Калифорний

Энергетические спектры альфа-нейтронных источников непрерывны, от тепловых до 6-8 МэВ, гамма-нейтронных - приблизительно моноэнергетические, десятки или сотни кэВ. Выход гамма-нейтронных источников на 1-2 порядка меньше, чем альфа-нейтронных, и сопровождается сильным гамма-излучением. У альфа-нейтронных источников сопровождающее гамма-излучение, как правило, низкоэнергетическое и достаточно слабое, за исключением источников с радием (излучение радия и продуктов его распада) и америцием (низкоэнергетическое излучение америция).

Альфа-нейтронные источники обычно ограничены по применению интервалом 5-10 лет, что вызвано возможностью разгерметизации ампулы при накоплении в ней гелия и повышении внутреннего давления.

Физико-техническим источником нейтронов является нейтронная трубка. Она представляет собой малогабаритный электростатический ускоритель заряженных частиц - дейтонов (ядер атомов дейтерия 2 НºD), которые разгоняются до энергии более 100 кэВ, и направляются на тонкие мишени из дейтерия или трития (3 НºT), в которых индуцируются ядерные реакции:

d + D Þ 3 He + n + 3.3 МэВ, d + T Þ 4 He + n + 14.6 МэВ.

Большую часть выделяющейся энергии уносит нейтрон. Распределение энергии нейтронов достаточно узкое и практически моноэнергетическое по углам вылета. Выход нейтронов порядка 10 8 на 1 микрокулон дейтонов. Работают нейтронные трубки, как правило, в импульсном режиме, при этом мощность выхода может превышать 10 12 n/с.

Портативные нейтронные генераторы практически не обладают радиационной опасностью в выключенном состоянии, имеют возможность регулирования режима излучения нейтронов. К недостаткам генераторов относятся ограниченный ресурс работы (100-300 часов) и нестабильность выхода нейтронов от импульса к импульсу (до 50 %).

5. Инвентаризация и утилизация источников

Радионуклидные источники ионизирующего излучения представляют собой потенциальную опасность для населения по следующим причинам:

1. Они распространены по многим организациям, и не везде осуществляется штатный жизненный цикл источников (приобретение - учёт - контроль - использование - захоронение).

2. Источники ионизирующего излучения не могут быть обеспечены надёжной охраной.

3. Конструкция источников ионизирующего излучения такова, что при небрежном или неумелом обращении они могут нанести вред здоровью человека.

В России на базе ФГУП Всероссийского научно-исследовательского института химической технологии (ВНИИХТ) Росатома создан Центр государственного учета и контроля радиоактивных веществ и отходов. В 2000-2001 гг., согласно решению Правительства РФ, проведена Государственная инвентаризация радиоактивных материалов, радиоактивных отходов и источников ионизирующих излучений. Созданы и функционируют региональные ведомственные информационно аналитические центры. Они производят сбор, обработку и анализ информации об образовании, перемещении, переработке и хранению РВ.

Масштабы и сфера использования радионуклидных источников имеют тенденцию к увеличению, и проблема безопасности обращения с источниками на всех этапах их жизнедеятельного цикла была и будет оставаться одной из важных. В России действует уголовная ответственность за незаконное приобретение, хранение, использование, передачу или разрушение радиоактивных материалов.

Высокоактивные источники утилизируются на "ПО "Маяк". Низкоактивные источники захораниваются на региональных предприятиях НПО "Радон".

Радиофобия. Паническую боязнь любого ионизирующего из-лучения в любом количестве называют радиофобией. Неразумно выбегать из комнаты, в которой ра-ботает счетчик Гейгера и регистрирует естественный радиоак-тивный фон. Нужно понимать, что через каждый см 2 вашей кожи внутрь человека ежесекундно проходит порядка 10 ионизирующих частиц, а в теле человека происходит примерно 10 5 распадов в минуту.

Радиофобия в настоящее время распространилась на телеви-зор, как источник рентгеновского излучения, и на самолет, выносящий человека в верхние слои ат-мосферы, где более высок уровень космического излучения. Те-левизор действительно является источником рентгеновского излу-чения, но при ежедневном просмотре телевизионных программ по три-четыре часа в день за год будет получена доза в 100—200 раз меньше естественного фона. Полет в современном самолете на расстояние 2000 км обусловливает получение примерно одной сотой долю среднего значения естествен-ного облучения в год. На Земле имеются области, где уровень радиации в сотни раз превосходит средний (до 250 мЗв), однако неблагоприятных влияний на здоровье живущих там людей не отмечено.

Уменьшение дозы излучения при необходимости работы с источником ионизирующего излучения может быть осуществлено тремя путями: увеличением расстояния от источника, уменьше-нием времени пребывания около источника, установкой экрана, поглощающего излучение. При удалении от точечного источника доза излучения убывает обратно пропорционально квадрату расстояния.

Задача (для разогрева):

Расскажу я вам, дружочки,
Как выращивать грибочки:
Нужно в поле утром рано
Сдвинуть два куска урана...

Вопрос: Какова должна быть общая масса кусков урана, чтобы произошел ядерный взрыв?

Ответ (для того, чтобы увидеть ответ - нужно выделить текст) : Для урана-235 критическая масса составляет примерно 500 кг., если взять шарик такой массы, то диаметр такого шара будет равен 17 см.

Радиация, что это?

Радиация (в переводе с английского "radiation") - это излучение, которое применяется не только в отношении радиоактивности, но и для ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Таким образом, в отношении радиоактивности необходимо использовать принятое МКРЗ (Международной комиссией по радиационной защите) и правилами радиационной безопасности словосочетание "ионизирующее излучение".

Ионизирующее излучение, что это?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое вызывает ионизацию (образование ионов обоих знаков) вещества (среды). Вероятность и количество образованных пар ионов зависит от энергии ионизирующего излучения.

Радиоактивность, что это?

Радиоактивность – излучение возбужденных ядер или самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц или γ -кванта (ов). Трансформация обычных нейтральных атомов в возбужденное состояние происходит под воздействием внешней энергии различного рода. Далее возбужденное ядро стремится снять избыточную энергию путем излучения (вылет альфа-частицы, электронов, протонов, гамма-квантов (фотонов), нейтронов), до достижения стабильного состояния. Многие тяжелые ядра (трансурановый ряд в таблице Менделеева - торий, уран, нептуний, плутоний и др.) изначально находятся в нестабильном состоянии. Они способны спонтанно распадаться. Этот процесс также сопровождается излучением. Такие ядра называются естественными радионуклидами.

На этой анимации наглядно показано явление радиоактивности.

Камера Вильсона (пластиковый бокс охлажденный до -30 °C) наполнена паром изопропилового спирта. Жюльен Саймонпоместил в нее 0,3-cm³ кусок радиоактивного урана (минерала уранинит). Минерал излучает α-частицы и бета-частицы, так как он содержит U-235 и U-238. На пути движения α и бета частиц находятся молекулы изопропилового спирта.

Поскольку частицы заряжены (альфа – положительно, бета – отрицательно), то они могут отрывать электрон от молекулы спирта (альфа частица) или добавить электроны молекулам спирта бета частицы). Это, в свою очередь, дает молекулам заряд, который затем привлекает незаряженные молекулы вокруг них. Когда молекулы собираются в кучу, то получаются заметные белые облака, что прекрасно видно на анимации. Так мы легко можем проследить пути выбрасываемых частиц.

α-частицы создают прямые, густые облака, в то время как бета-частицы создают длинные.

Изотопы, что это?

Изотопы – это разнообразие атомов одного и того же химического элемента, располагающие разными массовыми числами, но включающие одинаковый электрический заряд атомных ядер и, следовательно, занимающие в периодической системе элементов Д.И. Менделеева единое место. Например: 131 55 Cs, 134 m 55 Cs, 134 55 Cs, 135 55 Cs, 136 55 Cs, 137 55 Cs. Т.е. заряд в большей степени определяет химические свойства элемента.

Существуют изотопы устойчивые (стабильные) и неустойчивые (радиоактивные изотопы) – спонтанно распадающиеся. Известно около 250 стабильных и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить 206 Pb, являющийся конечным продуктом распада естественного радионуклида 238 U, который в свою очередь появился на нашей Земле в начале образования мантии и не связан с техногенным загрязнением.

Какие виды ионизирующего излучения существуют?

Основными видами ионизирующего излучения, с которыми чаще всего приходится сталкиваться, являются:

  • альфа-излучение;
  • бета-излучение;
  • гамма-излучение;
  • рентгеновское излучение.

Конечно, имеются и другие виды излучения (нейтронное, позитронное и др.), но с ними мы встречаемся в повседневной жизни заметно реже. Каждый вид излучения обладает своими ядерно-физическими характеристиками и как следствие – различным биологическим воздействии на организм человека. Радиоактивный распад может сопровождаться одним из видов излучения или сразу несколькими.

Источники радиоактивности бывают природными или искусственными. Природные источники ионизирующего излучения - это радиоактивные элементы, находящиеся в земной коре и образующие природный радиационный фон вместе с космическим излучением.

Искусственные источники радиоактивности, как правило, образуются в ядерных реакторах или ускорителях на основе ядерных реакций. Источниками искусственных ионизирующих излучений могут быть и разнообразные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Альфа-излучение (α -излучение) - корпускулярное ионизирующее излучение, состоящее из альфа-частиц (ядер гелия). Образуются при радиоактивном распаде и ядерных превращениях. Ядра гелия обладают достаточно большими массой и энергией до 10 МэВ (Мегаэлектрон-Вольт). 1 эВ = 1,6∙10 -19 Дж. Имея несущественный пробег в воздухе (до 50 см) представляют высокую опасность для биологических тканей при попадании на кожу, слизистые оболочки глаз и дыхательных путей, при попадании внутрь организма в виде пыли или газа (радон-220 и 222). Токсичность альфа-излучения, обуславливается колоссально высокой плотностью ионизации из-за высокой энергии и массы.

Бета-излучение (β -излучение) - корпускулярное электронное или позитронное ионизирующее излучение соответствующего знака с непрерывным энергетическим спектром. Характеризуется максимальной энергией спектра Е β max , или средней энергией спектра. Пробег электронов (бета-частиц) в воздухе достигает нескольких метров (в зависимости от энергии), в биологических тканях пробег бета-частицы составляет несколько сантиметров. Бета-излучение, как и альфа-излучение, представляет опасность при контактном облучении (поверхностном загрязнении), например, при попадании внутрь организма, на слизистые оболочки и кожные покровы.

Гамма-излучение (γ –излучение или гамма кванты) – коротковолновое электромагнитное (фотонное) излучение с длиной волны

Рентгеновское излучение - по своим физическим свойствам подобно гамма-излучению, но имеющее ряд особенностей. Оно появляется в рентгеновской трубке вследствие резкой остановки электронов на керамической мишени-аноде (то место, куда ударяются электроны, изготавливают, как правило, из меди или молибдена) после ускорения в трубке (непрерывный спектр - тормозное излучение) и при выбивании электронов из внутренних электронных оболочек атома мишени (линейчатый спектр). Энергия рентгеновского излучения небольшая – от долей единиц эВ до 250 кэВ. Рентгеновское излучение можно получить, используя ускорители заряженных частиц, - синхротронное излучение с непрерывным спектром, имеющим верхнюю границу.

Прохождение радиации и ионизирующих излучений через препятствия:

Чувствительность человеческого организма к воздействию радиации и ионизирующих излучений на него:

Что такое источник излучения?

Источник ионизирующего излучения (ИИИ) - объект, который включает в себя радиоактивное вещество или техническое устройство, которое создает или в определенных случаях способно создавать ионизирующее излучение. Различают закрытые и открытые источники излучения.

Что такое радионуклиды?

Радионуклиды – ядра, подверженные спонтанному радиоактивному распаду.

Что такое период полураспада?

Период полураспада – период времени, в течение которого число ядер данного радионуклида в результате радиоактивного распада снижается в два раза. Эта величина используется в законе радиоактивного распада.

В каких единицах измеряется радиоактивность?

Активность радионуклида в соответствии с системой измерений СИ измеряется в Беккерелях (Бк) – по имени французского физика, открывшего радиоактивность в 1896г.), Анри Беккереля. Один Бк равен 1 ядерному превращению в секунду. Мощность радиоактивного источника измеряется соответственно в Бк/с. Отношение активности радионуклида в образце к массе образца называется удельная активность радионуклида и измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма) ?

Что же мы видим на дисплее современных дозиметров, измеряющих ИИ? МКРЗ предложила для оценки облучения человека измерять дозу на глубине d, равной 10 мм. Измеряемая величина дозы на этой глубине получила название амбиентный эквивалент дозы, измеряемая в зивертах (Зв). Фактически это расчетная величина, где поглощенная доза умножена на взвешивающий коэффициент для данного вида излучения и коэффициент, характеризующий чувствительность различных органов и тканей к конкретному виду излучения.

Эквивалентная доза (или часто употребляемое понятие «доза») – равна произведению поглощенной дозы на коэффициент качества воздействия ионизирующего излучения (например: коэффициент качества воздействия гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр (мкбэр) и т.д., 1 бэр = 0,01 Дж/кг. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1 Зв = 1 Дж/кг = 100 бэр.

1 мбэр = 1*10 -3 бэр; 1 мкбэр = 1*10 -6 бэр;

Поглощенная доза - количество энергии ионизирующего излучения, которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1 Гр=100 рад=1 Дж/кг

Мощность эквивалентной дозы (или мощность дозы) – это отношение эквивалентной дозы на промежуток времени ее измерения (экспозиции), единица измерения бэр/час, Зв/час, мкЗв/с и т.д.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как плотности потока частиц с единицы площади, в единицу времени - a-частиц*мин/см 2 , β-частиц*мин/см 2 .

Что вокруг нас радиоактивно?

Почти все что нас окружает, даже сам человек. Естественная радиоактивность в какой-то мере является натуральной средой обитания человека, если она не превышает естественных уровней. На планете есть участки с повышенным относительно среднего уровня радиационного фона. Однако в большинстве случаев, каких-либо весомых отклонений в состоянии здоровья населения при этом не наблюдается, так как эта территория является их естественной средой обитания. Примером такого участка территории является, например, штат Керала в Индии.

Для истинной оценки, возникающих иногда в печати пугающих цифр, следует отличать:

  • естественную, природную радиоактивность;
  • техногенную, т.е. изменение радиоактивности среды обитания под влиянием человека (добыча ископаемых, выбросы и сбросы промышленных предприятий, аварийные ситуации и много другое).

Как правило, устранить элементы природной радиоактивности почти невозможно. Как можно избавиться от 40 К, 226 Ra, 232 Th, 238 U,которые повсюду распространены в земной коре и находятся практически во всем, что нас окружает, и даже в нас самих?

Из всех природных радионуклидов наибольшую опасность для здоровья человека представляют продукты распада природного урана (U-238) - радий (Ra-226) и радиоактивный газ радон (Ra-222). Главными «поставщиками» радия-226 в окружающую природную среду являются предприятия, занимающиеся добычей и переработкой различных ископаемых материалов: добыча и переработка урановых руд; нефти и газа; угольная промышленность; производство строительных материалов; предприятия энергетической промышленности и др.

Радий-226 хорошо подвержен выщелачиванию из минералов содержащих уран. Этим его свойством объясняется наличие крупных количеств радия в некоторых видах подземных вод (некоторые из них, обогащенные газом радоном применяются в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах варьируется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л.

Значительной составляющей природной радиоактивности является продукт распада радия-226 - радон-222.

Радон – инертный, радиоактивный газ, без цвета и запаха с периодом полураспада 3.82 дня. Альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому большей частью концентрируется в погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д.

Считается, что до 70% действия радиации на население связано с радоном в жилых зданиях.

Главным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, гранит, мрамор, глина, шлаки, и др.);
  • почва под зданиями.

Более подробно о радоне и прибораз для его измерения: РАДИОМЕТРЫ РАДОНА И ТОРОНА .

Профессиональные радиометры радона стоят неподъемные деньги, для бытового использования - рекомендуем Вам обратить внимание на бытовой радиометр радона и торона производства Германия: Radon Scout Home .

Что такое "черные пески" и какую опасность они представляют?


«Черные пески» (цвет варьируется от светло-желтого до красно-бурого, коричневого, встречаются разновидности белого, зеленоватого оттенка и черные) представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO 4 , которые заменяются торием. Монацит насчитывает до 50-60% окисей редкоземельных элементов: окиси иттрия Y 2 O 3 до 5%, окиси тория ThO 2 до 5-10%, иногда до 28%. Попадается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород содержащих монацит, он собирается в россыпях, которые представляют собой крупные месторождения.

Россыпи монацитовых песков существующие на суше, как правило, не вносят особенного изменения в получившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области), на Урале (Красноуфимск) и др. областях создают ряд проблем, связанных с возможностью облучения.

Например, из-за морского прибоя за осенне-весенний период на побережье, в следствии естественной флотации, набирается существенное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк/кг и более), который создает на локальных участках уровни гамма-излучения порядка 3,0 и более мкЗв/час. Естественно, отдыхать на таких участках небезопасно, поэтому ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются некоторые участки побережья.

Средства измерения радиации и радиоактивности.


Для измерения уровней радиации и содержания радионуклидов в разных объектах применяются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, применяются дозиметры и поисковые дозиметры-радиометры разных типов;
  • для определения вида радионуклида и его содержания в объектах окружающей среды применяются спектрометры ИИ, которые состоят из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время присутствует большое количество дозиметров различного типа для решения различных задач радиационного контроля и имеющие широкие возможности.

Вот для примера дозиметры, которые чаще всего используются в профессиональной деятельности:

  1. Дозиметр-радиометр МКС-АТ1117М (поисковый дозиметр-радиометр) – профессиональный радиометр используется для поиска и выявления источников фотонного излучения. Имеет цифровой индикатор, возможность установки порога срабатывания звукового сигнализатора, что очень облегчает работу при обследовании территорий, проверки металлолома и др. Блок детектирования выносной. В качестве детектора применяется сцинтилляционный кристалл NaI. Дозиметр является универсальным решением различных задач, комплектуется десятком различных блоков детектирования с разными техническими характеристиками. Измерительные блоки позволяют измерять альфа, бета, гамма, рентгеновское и нейтронное излучения.

    Информация о блоках детектирования и их применению:

Наименование блока детектирования

Измеряемое излучение

Основная особенность (техническая характеристика)

Область применения

БД для альфа излучения

Диапазон измерения 3,4·10 -3 - 3,4·10 3 Бк·см -2

БД для измерения плотности потока альфа-частиц с поверхности

БД для бета излучения

Диапазон измерения 1 - 5·10 5 част./(мин·см 2)

БД для измерения плотности потока бета-частиц с поверхности

БД для гамма излучения

Чувствительность

350 имп·с -1 /мкЗв·ч -1

Диапазон измерения

0,03 - 300 мкЗв/ч

Оптимальный вариант по цене, качество, технические характеристики. Имеет широкое применение в области измерения гамма-излучения. Хороший поисковый блок детектирования для нахождения источников излучения.

БД для гамма излучения

Диапазон измерения 0,05 мкЗв/ч - 10 Зв/ч

Блок детектирования имеющий очень высокий верхний порог измерения гамма-излучения.

БД для гамма излучения

Диапазо измерения 1 мЗв/ч - 100 Зв/ч Чувствительность

900 имп·с -1 /мкЗв·ч -1

Дорогой блок детектирования, обладающий высоким диапазоном измерения и отличную чувствительность. Используется для нахождения источников излучения с сильным излучением.

БД для рентгеновского излучения

Диапазон энергии

5 - 160 кэВ

Блок детектирования для рентгеновского излучения. Широко применяется в медицине и установках работающих с выделением рентгеновского излучения маленькой энергии.

БД для нейтронного излучения

Диапазон измерения

0,1 - 10 4 нейтр/(с·см 2) Чувствительность 1,5 (имп·с -1)/(нейтрон·с -1 ·см -2)

БД для альфа, бета, гамма и рентгеновского излучения

Чувствительность

6,6 имп·с -1 /мкЗв·ч -1

Универсальный блок детектирования, который позволяет измерять альфа, бета, гамма и рентгеновское излучения. Обладает небольшой стоимостью и плохой чувствительностью. Нашел широкое примирение в области аттестация рабочих мест (АРМ), где в основном требуется проводить измерение локального объекта.

2. Дозиметр-радиометр ДКС-96 – предназначен для измерения гамма и рентгеновского излучения, альфа излучения, бета излучения, нейтронного излучения.

Во многом аналогичен дозиметру-радиометру .

  • измерение дозы и мощности амбиентного эквивалента дозы (далее дозы и мощности дозы) Н*(10) и Н*(10) непрерывного и импульсного рентгеновского и гамма-излучений;
  • измерение плотности потока альфа- и бета-излучений;
  • измерение дозы Н*(10) нейтронного излучения и мощности дозы Н*(10) нейтронного излучения;
  • измерение плотности потока гамма-излучения;
  • поиск, а так же локализация радиоактивных источников и источников загрязнений;
  • измерение плотности потока и мощности экспозиционной дозы гамма-излучения в жидких средах;
  • радиационный анализ местности с учетом географических координат, используя GPS;

Двухканальный сцинтилляционный бета-гамма-спектрометр предназначен для единовременного и раздельного определения:

  • удельной активности 137 Cs, 40 K и 90 Sr в пробах различной окружающей среды;
  • удельной эффективной активности естественных радионуклидов 40 K, 226 Ra, 232 Th в строительных материалах.

Позволяет обеспечивать экспресс-анализ стандартизованных проб плавок металла на наличие радиационного излучения и загрязнения.

9. Гамма-спектрометр на основе ОЧГ детектора Спектрометры на основе коаксиальных детекторов из ОЧГ (особо чистого германия) предназначены для регистрации гамма-излучения в диапазоне энергий от 40 кэВ до З МэВ.

    Спектрометр бета и гамма излучения МКС-АТ1315

    Спектрометр со свинцовой защитой NaI ПАК

    Портативный NaI спектрометр МКС-АТ6101

    Носимый ОЧГ спектрометр Эко ПАК

    Портативный ОЧГ спектрометр Эко ПАК

    Спектрометр NaI ПАК автомобильного исполнения

    Спектрометр MKS-AT6102

    Спектрометр Эко ПАК с электромашинным охлаждением

    Ручной ППД спектрометр Эко ПАК

Ознакомиться с другими средствами измерения для измерения ионизирующего излучения, Вы можете у нас на сайте:

  • при проведении дозиметрических измерений, если подразумевается их частое проведение с целью слежения за радиационной обстановкой, необходимо строго соблюдать геометрию и методику измерения;
  • для увеличения надежности дозиметрического контроля нужно проводить несколько измерений (но не менее 3-х), затем рассчитать среднее арифметическое;
  • при замерах фона дозиметра на местности выбирают участки, удаленные на 40 м от зданий и сооружений;
  • измерения на местности проводят на двух уровнях: на высоте 0.1 (поиск) и 1.0 м (измерение для протокола – при этом следует вращать датчик с целью определения максимального значения на дисплее) от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в на высоте 1.0 м от пола, желательно в пяти точках методом «конверта». На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    Нечто необъяснимо жуткое в этой сцене, и тому есть причина. Вы видите крупнейшее скопление, вероятно, самого токсичного вещества, когда-либо созданного человеком. Это ядерная лава или кориум.

    В течение дней и недель после аварии на Чернобыльской атомной электростанции 26 апреля 1986 года просто зайти в помещение с такой же кучей радиоактивного материала - её мрачно прозвали "слоновья нога" - означало верную смерть через несколько минут. Даже десятилетие спустя, когда была сделана эта фотография, вероятно, из-за радиации фотоплёнка вела себя странно, что проявилось в характерной зернистой структуре. Человек на фотографии, Артур Корнеев, скорее всего, посещал это помещение чаще, чем кто-нибудь другой, так что подвергся, пожалуй, максимальной дозе радиации.

    Удивительно, но, по всей вероятности, он ещё жив. История, как США получили во владение уникальную фотографию человека в присутствии невероятно токсичного материала сама по себе окутана тайной - также как и причины, зачем кому-то понадобилось делать селфи рядом с горбом расплавленной радиоактивной лавы.

    Фотография впервые попала в Америку в конце 90-х, когда новое правительство получившей независимость Украины взяло под контроль ЧАЭС и открыло Чернобыльский центр по проблемам ядерной безопасности, радиоактивных отходов и радиоэкологии. Вскоре Чернобыльский центр пригласил другие страны к сотрудничеству в проектах ядерной безопасности. Министерство энергетики США распорядилось оказать помощь, направив соответствующий приказ в Pacific Northwest National Laboratories (PNNL) - многолюдный научно-исследовательский центр в Ричленде, шт. Вашингтон.

    В то время Тим Ледбеттер (Tim Ledbetter) являлся одним из новичков в ИТ-отделе PNNL, и ему поручили создать библиотеку цифровых фотографий для Проекта по ядерной безопасности Министерства энергетики, то есть для демонстрации фотографий американской публике (точнее, для той крохотной части публики, которая тогда имела доступ в интернет). Он попросил участников проекта сделать фотографии во время поездок в Украину, нанял фотографа-фрилансера, а также попросил материалы у украинских коллег в Чернобыльском центре. Среди сотен фотографий неуклюжих рукопожатий чиновников и людей в лабораторных халатах, однако, есть с десяток снимков с руинами внутри четвёртого энергоблока, где десятилетием раньше, 26 апреля 1986 года, во время испытания турбогенератора произошёл взрыв.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум .

    Кориум формировался за пределами научно-исследовательских лабораторий минимум пять раз, говорит Митчелл Фармер (Mitchell Farmer), ведущий инженер-ядерщик в Аргоннской национальной лаборатории, ещё одном учреждении Министерства энергетики США в окрестностях Чикаго. Однажды кориум сформировался на реакторе Three Mile Island в Пенсильвании в 1979 году, однажды в Чернобыле и три раза при расплавлении реактора в Фукусиме в 2011 году. В своей лаборатории Фармер создал модифицированные версии кориума, чтобы лучше понять, как избежать подобных происшествий в будущем. Исследование субстанции показало, в частности, что полив водой после формирования кориума в реальности препятствует распаду некоторых элементов и образованию более опасных изотопов.

    Из пяти случаев формирования кориума только в Чернобыле ядерная лава смогла вырваться за пределы реактора. Без системы охлаждения радиоактивная масса ползла по энергоблоку в течение недели после аварии, вбирая в себя расплавленный бетон и песок, которые перемешивались с молекулами урана (топливо) и циркония (покрытие). Эта ядовитая лава текла вниз, в итоге расплавив пол здания. Когда инспекторы наконец проникли в энергоблок через несколько месяцев после аварии, они обнаружили 11-тонный трёхметровый оползень в углу коридора парораспределения внизу. Тогда его и назвали "слоновьей ногой". В течение последующих лет "слоновью ногу" охлаждали и дробили. Но даже сегодня её остатки всё ещё теплее окружающей среды на несколько градусов, поскольку распад радиоактивных элементов продолжается.

    Ледбеттер не может вспомнить, где конкретно он добыл эти фотографии. Он составил фотобиблиотеку почти 20 лет назад, и веб-сайт, где они размещаются, до сих пор в хорошей форме; только уменьшенные копии изображений потерялись. (Ледбеттер, всё ещё работающий в PNNL, был удивлён узнать, что фотографии до сих пор доступны в онлайне). Но он точно помнит, что никого не отправлял фотографировать "слоновью ногу", так что её, скорее всего, прислал кто-то из украинских коллег.

    Фотография начала распространяться по другим сайтам, а в 2013 году на неё наткнулся Кайл Хилл (Kyle Hill), когда писал статью о "слоновьей ноге" для журнала Nautilus. Он отследил её происхождение до лаборатории PNNL. На сайте было найдено давно потерянное описание фотографии: "Артур Корнеев, зам. директора объекта Укрытие, изучает ядерную лаву "слоновью ногу", Чернобыль. Фотограф: неизвестен. Осень 1996". Ледбеттер подтвердил, что описание соответствует фотографии.

    Артур Корнеев - инспектор из Казахстана, который занимался образованием сотрудников, рассказывая и защищая их от "слоновьей ноги" с момента её образования после взрыва на ЧАЭС в 1986 году, любитель мрачно пошутить. Скорее всего, последним с ним разговаривал репортёр NY Times в 2014 году в Славутиче - городе, специально построенном для эвакуированного персонала из Припяти (ЧАЭС).

    Вероятно, снимок сделан с более длинной выдержкой, чем другие фотографии, чтобы фотограф успел появиться в кадре, что объясняет эффект движения и то, почему наголовный фонарь выглядит как молния. Зернистость фотографии, вероятно, вызвана радиацией.

    Для Корнеева это конкретное посещение энергоблока было одним из нескольких сотен опасных походов к ядру с момента его первого дня работы в последующие дни после взрыва. Его первым заданием было выявлять топливные отложения и помогать замерять уровни радиации ("слоновья нога" изначально "светилась" более чем на 10 000 рентген в час, что убивает человека на расстоянии метра менее чем за две минуты). Вскоре после этого он возглавил операцию по очистке, когда с пути иногда приходилось убирать цельные куски ядерного топлива. Более 30 человек погибло от острой лучевой болезни во время очистки энергоблока. Несмотря на невероятную дозу полученного облучения, сам Корнеев продолжал возвращаться в спешно построенный бетонный саркофаг снова и снова, часто с журналистами, чтобы оградить их от опасности.

    В 2001 году он привёл репортёра Associated Press к ядру, где уровень радиации был 800 рентген в час. В 2009 году известный беллетрист Марсель Теру написал статью для Travel + Leisure о своём походе в саркофаг и о сумасшедшем провожатом без противогаза, который издевался над страхами Теру и говорил, что это "чистая психология". Хотя Теру именовал его как Виктора Корнеева, по всей вероятности человеком был Артур, поскольку он опускал такие же чёрные шутки через несколько лет с журналистом NY Times.

    Его нынешнее занятие неизвестно. Когда Times нашло Корнеева полтора года назад, он помогал в строительстве свода для саркофага - проекта стоимостью $1,5 млрд, который должен быть закончен в 2017 году. Планируется, что свод полностью закроет Убежище и предотвратит утечку изотопов. В свои 60 с чем-то лет Корнеев выглядел болезненно, страдал от катаракт, и ему запретили посещение саркофага после многократного облучения в предыдущие десятилетия.

    Впрочем, чувство юмора Корнеева осталось неизменным . Похоже, он ничуть не жалеет о работе своей жизни: "Советская радиация, - шутит он, - лучшая радиация в мире" .