Выборочное среднее квадратическое отклонение, размах выборки. 7. 2.

Контрольные вопросы

1. Запишите формулы для нахождения выборочного среднего по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

2. Запишите формулы для нахождения выборочного среднего квадратического отклонения по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

3. Назовите числовые характеристики выборки, которые описывают:

1) центр распределения,

2) рассеивание значений случайной величины вокруг центра,

3) симметричность распределения,

4) островершинность распределения?

Часть 2. статистические оценки параметров распределения генеральной совокупности

Тема 1. точечные оценки параметров генеральной совокупности

1. Оценка параметра и ее свойства

Изучаемая генеральная совокупность может быть очень большой. Поэтому ее изучают с помощью выборочного метода. Для выборки из генеральной совокупности вычисляют выборочную среднюю, выборочную дисперсию, и интересующие нас параметры . Например, для нормального распределения – это параметры и https://pandia.ru/text/78/148/images/image101_3.gif" width="16" height="20">.

Как оценить параметры генеральной совокупности, зная значения выборочных параметров?

Статистическая оценка

параметров распределения

Доверительный

Несмещенная Точечная Интервальная интервал

Эффективная оценка оценка

Состоятельная Доверительная

вероятность

* среднее арифметическое * размах варьирования

* медиана * выборочная дисперсия

* мода * выборочное среднее

квадратическое отклонение

Статистическое оценивание параметров распределения

Естественно возникает задача: как оценить (найти приближенное значение) параметра (параметров), которым определяется распределение?

Если генеральную совокупность описывает параметр https://pandia.ru/text/78/148/images/image104_4.gif" width="25" height="20">, которая вычислена по выборке. Например, выборочное среднее оценивает генеральную среднюю ; выборочная дисперсия оценивает генеральную дисперсию ..gif" width="25" height="28 src=">, а параметры – греческими , .

Если статистическая оценка параметра характеризуется одним числом, она называется точечной .

Для каждой конкретной выборки точечная статистическая оценка – это число, т. е. точка на числовой оси.

Статистическая оценка является случайной величиной и меняется в зависимости от выборки.

Для одной и той же неизвестной величины https://pandia.ru/text/78/148/images/image083_3.gif" width="15 height=25" height="25">, выборочная медиана , полусумма крайних элементов.

В силу многообразия оценок, применяемых для оценивания одной и той же неизвестной величины, возникает задача выбора лучшей оценки параметра в определенном смысле..gif" width="25" height="20"> должна быть несмещенной , т. е. ее математическое ожидание должно быть равно оцениваемому параметру.

2..gif" width="24" height="28 src="> представляет собой несмещенную оценку математического ожидания генеральной совокупности .

Выборочная дисперсия https://pandia.ru/text/78/148/images/image112_3.gif" width="20 height=19" height="19">.

Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия , где - поправочный коэффициент.

При больших значения и будут мало отличаться, поэтому «исправление» выборочной дисперсии производят при малых (). В целях повышения надежности полученной оценки следует увеличивать объем выборки.

Пример 1. При обследовании 50 членов семей получен дискретный вариационный ряд.

Определите средний размер (среднее число членов) семьи.

Охарактеризуйте изменчивость размера семьи.

Объясните полученные результаты, сделайте выводы.

Решение

1. В данной задаче изучаемый признак является дискретным , так как размер семей не может отличаться друг от друга менее чем на одного человека. Рассчитаем среднее число членов семьи:

https://pandia.ru/text/78/148/images/image117_3.gif" width="209" height="60">:

https://pandia.ru/text/78/148/images/image119_3.gif" width="39 height=28" height="28">).

Найдем среднее квадратическое отклонение размера семьи: . Среднее квадратическое отклонение размера семьи - 2 человека.

Найдем коэффициент вариации размера семьи по формуле . Коэффициент вариации составляет 38%. Так как коэффициент вариации больше 35%, можно сделать вывод о том, что изучаемая совокупность семей является неоднородной , чем объясняется высокая изменчивость размера семьи в данной совокупности.

Тестовые задания

1. Точечная оценка параметра распределения признака, вычисленная по выборке, характеризуется:

1) одним числом 2) средним значением признака

3) точкой на прямой 4) результатами выборки

2. В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 11, 13, 15. Тогда оценка дисперсии измерений равна:

1) 4; 2) 13; 3) 8; 4) 3.

3. Отметьте правильные ответы. Качество точечной оценки параметра распределения признака характеризуется:

1) несмещенностью; 2) эффективностью;

3) состоятельностью; 4) случайностью.

4. Отметьте правильный ответ. Несмещенная оценка математического ожидания признака:

1) https://pandia.ru/text/78/148/images/image123_2.gif" width="93 height=60" height="60">;

3) https://pandia.ru/text/78/148/images/image125_2.gif" width="115" height="60">.

5. Оценка генеральной средней признака:

1) выборочное среднее значение 2) среднее значение признака

3) наибольшее значение признака 4) математическое ожидание

6. Несмещенная оценка дисперсии признака:

1) https://pandia.ru/text/78/148/images/image127_3.gif" width="176" height="60 src=">;

3) https://pandia.ru/text/78/148/images/image129_3.gif" width="144 height=60" height="60">.

7. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 5, 6, 9, 12 . Оценка математического ожидания равна:

1) 8,25; 2) 8,5 ; 3) 7; 4) 8.

8. Математическое ожидание оценки параметра равно:

1) параметру; 2) выборочному среднему значению;

3) выборочной дисперсии; 4) нулю.

9. Несмещенная и состоятельная оценка генеральной дисперсии:

1) выборочная дисперсия; 2) исправленная выборочная дисперсия;

3) размах признака; 4) приближенное значение дисперсии.

Ответы . 1 . 1). 2. 1). 3 . 1, 2, 3. 4. 2).

5. 1). 6. 1). 7. 4). 8. 1). 9. 2).

контрольные вопросы

1. Дайте определение точечной статистической оценки.

2. Какая оценка параметра распределения называется точечной?

3..gif" width="25" height="28 src=">?

5. Какая числовая характеристика выборки является несмещенной для математического ожидания?

6. Какая числовая характеристика выборки является несмещенной для дисперсии?

Тема 2. интервальные оценки параметров генеральной совокупности

1. Доверительная вероятность и доверительный интервал

Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра.

Оценка параметра при разных выборках одного и того же объема будет принимать разные значения. Поэтому в ряде задач требуется найти не только подходящее значение параметра, но и определить его точность и надежность .

Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность.

Доверительный интервал – интервал значений, в пределах которого, как можно надеяться, находится параметр генеральной совокупности.

Наша надежда выражается доверительной вероятностью вероятность, с которой доверительный интервал «захватит» истинное значение параметра генеральной совокупности. Чем выше доверительная вероятность, тем шире доверительный интервал. Значение доверительной вероятности выбирает сам исследователь. Обычно это 0,9; 0,95; 0,99.

Если статистическая оценка параметра закона распределения случайной величины https://pandia.ru/text/78/148/images/image131_3.gif" width="53" height="24 src=">, в который попадает оцениваемый параметр с заданной надежностью (вероятностью), называется доверительным интервалом , а вероятность - доверительной вероятностью или уровнем надежности. Число называется уровнем значимости .

Вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин . Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок. При увеличении объема выборки, скажем, до 100 или более, качество оценки улучшается и без предположения нормальности выборки.

Например, если среднее выборки равно 23, а нижняя и верхняя границы доверительного интервала с уровнем p =.95 равны 19 и 27 соответственно, то можно заключить, что с вероятностью 95% интервал с границами 19 и 27 накрывает среднее популяции. Если мы установим больший уровень доверия, то интервал станет шире, поэтому возрастает вероятность, с которой он "накрывает" неизвестное среднее популяции, и наоборот.

Доверительный интервал применяется в случае сравнительно небольшого объема выборки , когда предполагается, что надежность точечной оценки может быть невысокой.

Доверительный интервал симметричен относительно оценки истинного значения параметра и имеет вид , где - предельная ошибка выборки (наибольшее отклонение выборочного значения параметра от его истинного значения)..gif" width="15" height="20">.

Для доверительного интервала половина его длины называется точностью интервального оценивания .

Если выполняется соотношение , то число называется точностью , а число - надежностью оценки генеральной числовой характеристики https://pandia.ru/text/78/148/images/image141_3.gif" width="115" height="25 src="> - выборка объема из генеральной совокупности объема ; - выборочное среднее; - выборочное среднее квадратическое отклонение.

Доверительный интервал уровня надежности https://pandia.ru/text/78/148/images/image105_2.gif" width="17" height="20 src="> имеет вид

,

где - предельная ошибка выборки , которая зависит от объема выборки , доверительной вероятности и равна половине доверительного интервала.

Https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - исправленное выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image147_2.gif" width="37" height="20 src=">) степеней свободы и доверительной вероятности .

Интервальной оценкой с надежностью генеральной средней https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image151_1.gif" width="39" height="24">, при котором ; - объем выборки.

Выводы . Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится "истинное" (неизвестное) среднее значение признака.

Хорошо известно, например, что чем «неопределенней» прогноз погоды (т. е. шире доверительный интервал), тем вероятнее он будет верным.

Пример. Найти доверительный интервал с надежностью 0,95 для оценки математического ожидания нормально распределенной случайной величины, если известны ее среднее квадратическое отклонение https://pandia.ru/text/78/148/images/image154_1.gif" width="61 height=28" height="28"> и объем выборки .

Воспользуемся формулой https://pandia.ru/text/78/148/images/image150_1.gif" width="11" height="17 src="> найдем по таблице значений функции Лапласа , с учетом того, что , т. е. ..gif" width="59 height=23" height="23">. Получим доверительный интервал:

https://pandia.ru/text/78/148/images/image162_1.gif" width="135" height="24 src=">.

Тестовые задания

1. Длина доверительного интервала уменьшается с увеличением:

1) выборочных значений 2) объема выборки

3) доверительной вероятности 4) выборочного среднего

2. Длина доверительного интервала с увеличением объема выборки:

1) уменьшается; 2) увеличивается;

3) не изменяется; 4) колеблется.

3. Длина доверительного интервала с увеличением доверительной вероятности:

1) изменяется, 2) уменьшается,

3) увеличивается, 4) постоянна.

4. Отметьте два правильных ответа..gif" width="19" height="20 src="> в формуле доверительного интервала означают:

1) оценка параметра; 2) доверительный интервал;

3) объем выборки; 4) доверительная вероятность.

Ответы. 1. 2). 2. 1 3. 2). 4. 4) и 3).

контрольные Вопросы

1. Что понимается под термином «интервальная оценка параметра распределения»?

2. Дайте определение доверительного интервала.

3. Что такое точность оценки и надежность оценки?

4. Что называется доверительной вероятностью? Какие значения она принимает?

5. Как изменится длина доверительного интервала, если увеличить: 1) объем выборки, 2) доверительную вероятность? Ответ обоснуйте.

6. Запишите формулу для нахождения доверительного интервала математического ожидания нормально распределенной случайной величины, если генеральная дисперсия: 1) известна; 2) неизвестна.

Часть 3. проверка статистических гипотез

Тема 1. Основные понятия теории принятия статистического решения

1. Нулевая и альтернативная статистические гипотезы

Статистической гипотезой называется такое предположение о виде или свойствах генерального или выборочного распределений, которое можно проверить статистическими методами на основе имеющейся выборк и.

Сущность проверки статистической гипотезы заключается в том, чтобы установить:

· согласуются ли экспериментальные данные и выдвинутая гипотеза;

· допустимо ли отнести расхождение между гипотезой и результатом статистического анализа экспериментальных данных за счет случайных причин.

· о законе распределения генеральной совокупности (например, гипотеза о том, что количество ошибок внимания у младших школьников имеет равномерное распределение);

· о числовых значениях параметров случайной величины (например, гипотеза о том, что среднее количество правильных ответов студентов контрольной группы на десять тестовых вопросов по теме равно восьми);

· об однородности выборок (т. е. принадлежности их одной и той же генеральной совокупности);

· о виде модели , описывающей статистическую зависимость между несколькими признаками (например, предположение о том, что связь между успешностью обучения математики и показателем невербального интеллекта учащихся линейная, прямо пропорциональная).

После получения точечной оценки желательно иметь данные о надежности такой оценки. Понятно, что величина является лишь приближенным значением параметра q. Вычисленная точечная оценка может быть близка к оцениваемому параметру, а может и очень сильно отличаться от него. Точечная оценка не несет информации о точности процедуры оценивания. Особенно важно иметь сведения о надежности оценок для небольших выборок. В таких случаях следует пользоваться интервальными оценками.

Задачу интервального оценивания в самом общем виде можно сформулировать следующим образом: по данным выборки построить числовой интервал, относительно которого с заранее выбранной вероятностью можно сказать, что внутри этого интервала находится оцениваемый параметр. Здесь существует несколько подходов. Наиболее распространенным методом интервального оценивания является метод доверительных интервалов .

Доверительным интервалом для параметра q называется интервал , содержащий неизвестное значение параметра генеральной совокупности с заданной вероятностью g, т.е.

.

Число g называется доверительной вероятностью , а число a=1–g – уровнем надежности . Доверительная вероятность задается априорно и определяется конкретными условиями. Обычно используется g=0,9; 0,95; 0,99 (соответственно, a=0,1; 0,05; 0,01).

Длина доверительного интервала, характеризующая точность интервальной оценки, зависит от объема выборки n и доверительной вероятности g. При увеличении величины n длина доверительного интервала уменьшается, а с приближением вероятности g к единице – увеличивается.

Часто доверительный интервал строят симметричным относительно точечной оценки, т.е. в виде

, (3.15)

Здесь число D называется предельной (или стандартной ) ошибкой выборки . Однако симметричные интервалы не всегда удается построить, более того, иногда приходится ограничиваться односторонними доверительными интервалами:

или .

Поскольку в эконометрических задачах часто приходится строить доверительные интервалы параметров случайных величин, имеющих нормальное распределение , приведем схемы их нахождения.



3.4.2. Доверительный интервал оценки генеральной
средней при известной генеральной дисперсии

Пусть количественный признак X генеральной совокупности имеет нормальное распределение с заданной дисперсией s 2 и неизвестным математическим ожиданием a . Для оценки параметра a извлечена выборка X 1 , X 2 , …, X n , состоящей из n независимых нормальной распределенных случайных величин с параметрами a и s, причем s известно, а величину a оценивают по выборке:

.

Оценим точность этого приближенного равенства. Для этого зададим вероятность g и попробуем найти такое число D, чтобы выполнялось соотношение

.

Далее воспользуемся свойствами нормального распределения. Известно, что сумма нормально распределенных величин также имеет нормальное распределение. Поэтому средняя величина имеет нормальное распределение, математическое ожидание и дисперсия которой равны

Следовательно,

.

Воспользуемся теперь формулой нахождения вероятностей отклонения нормально распределенной случайной величины от математического ожидания:

,

где F(x ) – функция Лапласа. Заменяя X на и s на , получим

,

где . Из последнее равенства находим, что предельная ошибка выборки будет равна

.

Приняв во внимание, что доверительная вероятность задана и равна g, получим окончательный результат.

Интервальная оценка генеральной средней (математического ожидания) имеет вид

, (3.17)

или более кратко

где число t g определяется из равенства .

Приведем значения t g для широко распространенных значений доверительной вероятности:

, , .

Обсудим, как влияет на точность оценивания параметра a объем выборки n , величина среднего квадратичного отклонения s, а также значение доверительной вероятности g.

а) При увеличении n точность оценки увеличивается. К сожалению, увеличение точности (т.е. уменьшение длины доверительного интервала) пропорционально , а не 1/n , т.е. происходит гораздо медленнее, чем рост числа наблюдений. Например, если мы хотим увеличить точность выводов в 10 раз чисто статистическими средствами, то мы должны увеличить объем выборки в 100 раз.

б) Чем больше s, тем ниже точность. Зависимость точности от этого параметра носит линейный характер.

в) Чем выше доверительная вероятность g, тем больше значение параметра t g , т.е. тем ниже точность. При этом между g и t g существует нелинейная связь. С увеличением g значение t g резко увеличивается ( при ). Поэтому с большой уверенностью (с высокой доверительной вероятностью) мы можем гарантировать лишь относительно невысокую точность. (Доверительный интервал окажется широким.) И наоборот: когда мы указываем для неизвестного параметра a относительно узкие пределы, мы рискуем совершить ошибку – с относительно высокой вероятностью.

Отметим, что величина

называется средней ошибкой выборки . Для бесповторной выборки эта формула примет вид

. (3.20)

Тогда предельная ошибка выборки D будет представлять собой t -кратную среднюю ошибку:

Пример 3.7. На основе продолжительных наблюдений за весом X пакетов орешков, заполняемых автоматически, установлено, что среднее квадратичное отклонение веса пакетов равно s=10 г . Взвешено 25 пакетов, при этом их средний вес составил . В каком интервале с надежностью 95% лежит истинное значение среднего веса пакетов?

.

Для определения 95%-го доверительного интервала вычислим предельную ошибку выборки

Следовательно 95%-й доверительный интервал для истинное значение среднего веса пакетов будет иметь вид

,

На первый взгляд может показаться, что полученный результат представляет только теоретический результат, поскольку среднее квадратичное отклонение s, как правило, тоже неизвестно и вычисляется по выборочным данным. Однако если выборка достаточно большая, то полученный результат вполне приемлем для практического использования, поскольку функция распределения будет мало отличаться от нормальной, а оценка дисперсии s 2 будет достаточно близка к истинному значению s 2 . Более того, полученный результат часто используют и в том случае, когда распределение генеральной совокупности отличается нормального. Это обусловлено тем, что сумма независимых случайных величин, в силу центральной предельной теоремы, при больших выборках имеет распределение, близкое к нормальному. â

Пример 3.8. Предположим, что в результате выборочного обследования жилищных условий жителей города на основе собственно-случайной повторной выборки, получен следующий вариационный ряд:

Таблица 3.5

Построить 95%-доверительный интервал для изучаемого признака.

Решение. Рассчитаем выборочную среднюю величину и дисперсию изучаемого признака.

Таблица 3.6

Общая площадь жилищ, приходящаяся на 1 чел., м 2 Число жителей, n i Середина интервала, x i
До 5,0 2,5 20,0 50,0
5,0–10,0 7,5 712,5 5343,8
10,0–15,0 12,5 2550,0 31875,0
15,0–20,0 17,5 4725,0 82687,5
20,0–25,0 22,5 4725,0 106312,5
25,0–30,0 27,5 3575,0 98312,5
30,0 и более 32,5 2697,5 87668,8
Итого 19005,0 412250,0

; ; .

Средняя ошибка выборки составит

.

Определим предельную ошибку выборки с вероятностью 0,95 ():

Установим границы генеральной средней

.

Таким образом, на основании проведенного выборочного обследования с вероятностью 0,95 можно заключить, что средний размер общей площади, приходящейся на 1 чел., в целом по городу лежит в пределах от 18,6 до 19,4 м 2 . â

3.4.3. Доверительный интервал оценки генеральной
средней при неизвестной генеральной дисперсии

Выше была решена задача построения интервальной оценки для математического ожидания нормального распределения, когда его дисперсия известна. Однако на практике дисперсия обычно тоже неизвестна и ее вычисляют по той же самой выборке, что и математическое ожидание. Это приводит к необходимости использования другой формулы при определении доверительного интервала для математического ожидания случайной величины, имеющей нормальное распределение. Такая постановка задачи особенно актуальна при малых объемах выборки.

Пусть количественный признак X генеральной совокупности имеет нормальное распределение N (a ,s), причем оба параметра a и s неизвестны. По данным выборки X 1 , X 2 , …, X n , вычислим среднее арифметическое и исправленную дисперсию:

, .

Для нахождения доверительного интервала в этом случае строится статистика

имеющая распределение Стьюдента с числом степеней свободы n=n–1 независимо от значений параметров a и s. Выбрав доверительную вероятность g и зная объем выборки n, можно найти такое число t, что будет выполняться равенство

,

.

Отсюда находим

интервальную оценку для генеральной средней (математического ожидания) при неизвестном s:

, (3.22)

или более кратко

Число t (коэффициент Стьюдента ) находится из таблиц для распределения Стьюдента. Отметим, что он является функцией двух аргументов: доверительной вероятности g и числа степеней свободы k =n –1, т.е. t=t (g,n).

Следует быть очень внимательным при использовании таблиц для распределения Стьюдента. Во-первых, обычно в таблицах вместо доверительной вероятности g используют уровень надежности a=1–g. Во-вторых, очень часто в таблицах приводятся значения т.н. одностороннего критерия Стьюдента

Или .

В этом случае в таблицах следует брать значения , если в таблице используется уровень надежности, или , если в таблице используется доверительная вероятность.

Несмотря на кажущееся сходство формул (3.17) и (3.22), между ними имеется существенное различие, заключающееся в том, что коэффициент Стьюдента t зависит не только от доверительной вероятности, но и от объема выборки. Особенно это различие заметно при малых выборках. (Напомним, что при больших выборках различие между распределением Стьюдента и нормальным распределением практически исчезает.) В этом случае использование нормального распределения приводит к неоправданному сужению доверительного интервала, т.е. к неоправданному повышению точности. Например, если n =5 и g=0,99, то, пользуясь распределением Стьюдента, получим t =4,6, а используя нормальное распределение, – t =2,58, т.е. доверительный интервал в последнем случае почти в два раза уже, чем интервал при использовании распределения Стьюдента.

Пример 3.9. Аналитик фондового рынка оценивает среднюю доходность определенных акций. Случайная выборка 15 дней показала, что средняя (годовая) доходность со средним квадратичным отклонением . Предполагая, что доходность акций подчиняется нормальному закону распределения, постройте 95%-доверительный интервал для средней доходности интересующего аналитика вида акций.

Решение. Поскольку объем выборки n =15, то необходимо применить распределение Стьюдента с степенями свободы. По таблицам для распределения Стьюдента находим

.

Используя это значение, строим 95%-доверительный интервал:

.

Следовательно, аналитик может быть на 95% уверен, что средняя годовая доходность по акциям находится между 8,44% и 12,3%. â

Доверительные интервалы.

Вычисление доверительного интервала базируется на средней ошибке соответствующего параметра. Доверительный интервал показывает, в каких пределах с вероятностью (1-a) находится истинное значение оцениваемого параметра. Здесь a – уровень значимости, (1-a) называют также доверительной вероятностью.

В первой главе мы показали, что, например, для среднего арифметического, истинное среднее по сово­купности примерно в 95% случаев лежит в пределах 2 средних ошибок среднего. Таким образом, границы 95% доверительного интервала для среднего будет отстоять от выборочного среднего на удвоенную среднюю ошибку среднего, т.е. мы умножаем среднюю ошибку среднего на некий коэффициент, зависящий от доверительной вероятности. Для среднего и разности средних берётся коэффициент Стьюдента (критическое значение критерия Стьюдента), для доли и разности долей критическое значение критерия z. Произведение коэффициента на среднюю ошибку можно назвать предельной ошибкой данного параметра, т.е. максимальную, которую мы можем получить при его оценке.

Доверительный интервал для среднего арифметического : .

Здесь - выборочное среднее;

Средняя ошибка среднего арифметического;

s – выборочное среднее квадратическое отклонение;

n

f = n -1 (коэффициент Стьюдента).

Доверительный интервал для разности средних арифметических :

Здесь - разность выборочных средних;

- средняя ошибка разности средних арифметических;

s 1 ,s 2 – выборочные средние квадратические отклонения;

n 1 ,n 2

Критическое значение критерия Стьюдента при заданных уровне значимости a и числе степеней свободы f=n 1 +n 2 -2 (коэффициент Стьюдента).

Доверительный интервал для доли :

.

Здесь d – выборочная доля;

– средняя ошибка доли;

n – объём выборки (численность группы);

Доверительный интервал для разности долей :

Здесь - разность выборочных долей;

– средняя ошибка разности средних арифметических;

n 1 ,n 2 – объёмы выборок (численности групп);

Критическое значение критерия z при заданном уровне значимости a ( , , ).

Вычисляя доверительные интервалы для разности показателей, мы, во-первых, непосредственно видим возможные значения эффекта, а не только его точечную оценку. Во-вторых, можем сделать вывод о принятии или опровержении нулевой гипотезы и, в-третьих, можем сделать вывод о мощности критерия.

При проверке гипотез с помощью доверительных интервалов надо придерживаться следующего правила:

Если 100(1-a)-процентный доверительный интервал разности средних не содержит нуля, то различия статистически значимы на уровне значимости a; напротив, если этот интервал содержит ноль, то различия статистически не значимы.

Действительно, если этот интервал содержит ноль, то, значит, сравниваемый показатель может оказаться как больше, так и меньше в одной из групп, по сравнению с другой, т.е. наблюдаемые различия случайны.

По месту, где находится ноль внутри доверительного интервала, можно судить о мощности критерия. Если ноль близок к нижней или верхней границе интервала, то возможно при большей численности сравниваемых групп, различия достигли бы статистической значимости. Если ноль близок к середине интервала, то, значит, равновероятно и увеличение и уменьшение показателя в экспериментальной группе, и, вероятно, различий действительно нет.

Примеры:

Сравнить операционную летальность при применении двух разных видов анестезии: с применением первого вида анестезии оперировалось 61 человек, умерло 8, с применением второго – 67 человек, умерло 10.

d 1 = 8/61 = 0,131; d 2 = 10/67 = 0,149; d1-d2 = - 0,018.

Разность летальностей сравниваемых методов будет находиться в интервале (-0,018 - 0,122; -0,018 + 0,122) или (-0,14 ; 0,104) с вероятностью 100(1-a) = 95%. Интервал содержит ноль, т.е. гипотезу об одинаковой летальности при двух разных видах анестезии отвергнуть нельзя.

Таким образом, летальность может и уменьшится до 14% и увеличиться до 10,4% с вероятностью 95%, т.е. ноль находится примерно по середине интервала, поэтому можно утверждать, что, скорее всего, действительно не отличаются по летальности эти два метода.

В рассмотренном ранее примере сравнивалось среднее время нажатия при теппинг-тесте в четырёх группах студентов, отличающихся по экзаменационной оценке. Вычислим доверительные интервалы среднего времени нажатия для студентов, сдавших экзамен на 2 и на 5 и доверительный интервал для разности этих средних.

Коэффициенты Стьюдента находим по таблицам распределения Стьюдента (см. приложение): для первой группы: = t(0,05;48) = 2,011; для второй группы: = t(0,05;61) = 2,000. Таким образом, доверительные интервалы для первой группы: = (162,19-2,011*2,18 ; 162,19+2,011*2,18) = (157,8 ; 166,6) , для второй группы (156,55-2,000*1,88 ; 156,55+2,000*1,88) = (152,8 ; 160,3). Итак, для сдавших экзамен на 2, среднее время нажатия лежит в пределах от 157,8 мс до 166,6 мс с вероятностью 95%, для сдавших экзамен на 5 – от 152,8 мс до 160,3 мс с вероятностью 95%.

Проверять нулевую гипотезу можно и по доверительным интервалам для средних, а не только для разности средних. Например, как в нашем случае, если доверительные интервалы для средних перекрываются, то нулевую гипотезу отвергнуть нельзя. Для того чтобы отвергнуть гипотезу на выбранном уровне значимости, соответствующие доверительные интервалы не должны перекрываться.

Найдём доверительный интервал для разности среднего времени нажатия в группах сдавших экзамен на 2 и на 5. Разность средних: 162,19 – 156,55 = 5,64. Коэффициент Стьюдента: = t(0,05;49+62-2) = t(0,05;109) = 1,982. Групповые средние квадратические отклонения будут равны: ; . Вычисляем среднюю ошибку разности средних: . Доверительный интервал: =(5,64-1,982*2,87 ; 5,64+1,982*2,87) = (-0,044 ; 11,33).

Итак, разница среднего времени нажатия в группах, сдавших экзамен на 2 и на 5, будет находиться в интервале от -0,044 мс до 11,33 мс. В этот интервал входит ноль, т.е. среднее время нажатия у отлично сдавших экзамен, может и увеличиться и уменьшится по сравнению с неудовлетворительно сдавшими, т.е. нулевую гипотезу отвергнуть нельзя. Но ноль находится очень близко к нижней границе, время нажатия гораздо вероятнее всё-таки уменьшается у отлично сдавших. Таким образом, можно сделать вывод, что различия в среднем времени нажатия между сдавшими на 2 и на 5 всё-таки есть, просто мы не смогли их обнаружить при данном изменении среднего времени, разбросе среднего времени и объёмах выборок.



Мощность критерия – это вероятность отвергнуть неверную нулевую гипотезу, т.е. найти различия там, где они действительно есть.

Мощность критерия определяется исходя из уровня значимости, величины различий между группами, разброса значений в группах и объёма выборок.

Для критерия Стьюдента и дисперсионного анализа можно воспользоваться диаграммами чувствительности.

Мощность критерия можно использовать при предварительном определении необходимой численности групп.

Доверительный интервал показывает, в каких пределах с заданной вероятностью находится истинное значение оцениваемого параметра.

С помощью доверительных интервалов можно проверять статистические гипотезы и делать выводы о чувствительности критериев.

ЛИТЕРАТУРА.

Гланц С. – Глава 6,7.

Реброва О.Ю. – с.112-114, с.171-173, с.234-238.

Сидоренко Е. В. – с.32-33.

Вопросы для самопроверки студентов.

1. Что такое мощность критерия?

2. В каких случаях необходимо оценить мощность критериев?

3. Способы расчёта мощности.

6. Как проверить статистическую гипотезу с помощью доверительного интервала?

7. Что можно сказать о мощности критерия при расчёте доверительного интервала?

Задачи.

1. Введение

2. Основная часть

2.1.1Понятие о доверительных интервалах

2.1.2 Доверительный интервал для математического ожидания нормальной случайной величины при известной дисперсии

2.1.3 Доверительный интервал для математического ожидания нормальной случайной величины при неизвестной дисперсии

2.1.4 Доверительный интервал для дисперсии нормальной случайной величины

2.2 Генеральная совокупность

2.2.1 Построение доверительного интервала для генеральной средней по малой выборке

2.2.2 Построение доверительного интервала для генеральной доли по малой выборке

2.2.3 Построение доверительного интервала для генеральной дисперсии

3. Заключение

Список литературы

1. В ве д е ние

На практике мы всегда имеем дело с ограниченным числом измерений, и задача, которая всегда стоит перед оператором, состоит в том, как оценить точность измерений, т.е. найти его меру приближения к истинному значению на основании группы результатов наблюдения.

В результате отдельных измерений мы получаем некоторые строго фиксированные результаты (точки) измеряемой величины. Их значения являются случайными с некоторым распределением. Случайная погрешность измерения образуется под влиянием большого числа факторов, сопутствующих процессу измерения. Важно зафиксировать отклонения и, при использовании полученных результатов, использовать подход, который будет учитывать такие флуктуации. Подходящим решением является введение понятий доверительного интервала и доверительной вероятности.

2. Основная часть

2.1. 1 Понятие о доверительных интервалах .

После получения точечной оценки и * желательно иметь данные о надежности такой оценки. Особенно важно иметь сведения о точности оценок для небольших выборок (поскольку с возрастанием объема п выборки несмещенность и состоятельность основных оценок гарантируется утверждениями математической статистики). Поэтому точечная оценка может быть дополнена интервальной оценкой -- интервалом (и 1 , и 2), внутри которого с наперед заданной вероятностью г находится точное значение оцениваемого параметра и. Задачу определения такого интервала называют интервальным оцениванием, а сам интервал -- доверительным интервалом. При этом г называют доверительной вероятностью или надежностью, с которой оцениваемый параметр и попадает в интервал (и 1, и 2).

Зачастую для определения доверительного интервала заранее выбирают число б = 1 -- г, 0< б < 1, называемое уровнем значимости, и находят два числа и 1 и и 2 , зависящих от точечной оценки и * , такие, что

Р (и 1 < и < и 2) = 1- б = г. (1)

В этом случае говорят, что интервал (и 1, и 2) накрывает неизвестный параметр и с вероятностью (1 - б), или в 100(1 - б)% случаев. Границы интервала и 1 и и 2 называются доверительными, и они обычно находятся из условия Р (и < и 1) = Р(и > и 2) = б/2 (рис. 1) .

Рисунок 1 - Распределение параметра и

Длина доверительного интервала, характеризующая точность интервальной оценки, зависит от объема выборки п и надежности г (уровня значимости г= 1 - б). При увеличении величины п длина доверительного интервала уменьшается, а с приближением надежности г к единице -- увеличивается. Выбор б (или г = 1 - б) определяется конкретными условиями. Обычно используется б=0,1; 0,05; 0,01, что соответствует 90, 95, 99%-м доверительным интервалам.

Общая схема построения доверительного интервала:

1. Из генеральной совокупности с известным распределением f (x , и) случайной величины X извлекается выборка объема п, по которой находится точечная оценка и * параметра и.

2. Строится случайная величина Y(и), связанная с параметром и и имеющая известную плотность вероятности f (у, и).

3. Задается уровень значимости б.

4. Используя плотность вероятности случайной величины Y, определяют два числа с 1 и с 2 такие, что

Значения с 1 и с 2 выбираются как правило, из условий

Неравенство с 1 < Y (и) < с 2 преобразуется в равносильное и*- д < и < и + д такое, что Р (и*- д < и < и*+ д) = 1 - б .

Полученный интервал (и *- д < и < и *+ д), накрывающий неизвестный параметр и с вероятностью 1 - б, и является интервальной оценкой параметра и.

Интервальная оценка также носит случайный характер, так как она напрямую связана с результатами выборки. Однако она позволяет сделать следующий вывод. Если построен доверительный интервал, который с надежностью г = 1 - б накрывает неизвестный параметр, и его границы рассчитываются по К выборкам одинакового объема п, то в (1- б)К случаях построенные интервалы накроют истинное значение исследуемого параметра.

Поскольку в эконометрических задачах часто приходится находить доверительные интервалы параметров случайных величин, имеющих нормальное распределение, приведем схемы их определения.

2. 1. 2

нормальной случайной величины при известной дисперсии .

Пусть количественный признак X генеральной совокупности имеет нормальное распределение с заданной дисперсией у 2 и неизвестным математическим ожиданием M(Х~N(т , у)). Построим доверительный интервал для т.

1. Пусть для оценки т извлечена выборка х 1 , х 2 , ..., х п объема n . Тогда

2. Составим случайную величину. Нетрудно показать, что случайная величина u имеет стандартизированное нормальное распределение, т.е. u ~ N (0, 1) ().

3. Зададим уровень значимости б.

4. Применяя формулу нахождения вероятности отклонения нормальной величины от математического ожидания, имеем:

Это означает, что доверительный интервал накрывает неизвестный параметр т с надежностью 1- б. Точность оценки определяется величиной .

Отметим, что число определяется по таблице значений функции Лапласа из равенства (рис.2) .

Рисунок 2 - Стандартизированное нормальное распределение случайной величины

Пример 1 . На основе продолжительных наблюдений за весом X пакетов орешков, заполняемых автоматически, установлено, что стандартное отклонение веса пакетов у = 10 г. Взвешено 25 пакетов, при этом их средний вес составил = 244 г. В каком интервале с надежностью 95 % лежит истинное значение среднего веса пакетов?

Логично считать, что случайная величина X имеет нормальный закон распределения: Х~N(m , 10). Для определения 95%-го доверительного интервала найдем критическую точку = u 0,025 из приложения 1 по соотношению

Тогда по формуле (3) построим доверительный интервал:

2.1.3 Доверительный интервал для математического ожидания

нормальной случайной величины при неизвестной дисперсии .

В реальности истинное значение дисперсии исследуемой случайной величины, скорее всего, известно не будет. Это приводит к необходимости использования другой формулы при определении доверительного интервала для математического ожидания случайной величины, имеющей нормальное распределение.

Пусть X ~ N(m , у 2), причем т и у 2 -- неизвестны. Необходимо построить доверительный интервал, накрывающий с надежностью г = 1 - б истинное значение параметра т.

Для этого из генеральной совокупности случайной величины X извлекается выборка объема п: х 1 , х 2 , ..., х п .

1. В качестве точечной оценки математического ожидания т используется выборочное среднее, а в качестве оценки, дисперсии у 2 -- исправленная выборочная дисперсия , которой соответствует стандартное отклонение.

2. Для нахождения доверительного интервала строится статистика , имеющая в этом случае распределение Стьюдента с числом степеней свободы v = п - 1 независимо от значений параметров т и у 2 .

4. Применяется следующая формула расчета вероятности

где -- критическая точка распределения Стьюдента, которая находится по соответствующей таблице . Тогда

Это означает, что интервал накрывает неизвестный параметр m с надежностью 1 - б.

Пример 2 . Найти доверительный интервал для оценки неизвестного математического ожидания нормально распределенного признака, если известны:у = 2; = 5,4; n = 10; г = 0,95.

Решение.

2Ф(t) = 0,95, Ф(t) = 0,5*0,95=0,475.

Найдя t = 1,96, получим.

Доверительный интервал

(- д; + д) = (5,4- 1,24; 5,4+1,24)=(4,16; 6,64).

Пример 3 . Найти минимальный объем выборки, при котором с надежностью 0,95 точность оценки математического ожидания нормально распределенного признака по выборочной средней будет равна 0,2, если среднее квадратическое отклонение равно2.

Решение.

Дано: г = 0,95; д = 0,2; у = 2. Найти n.

Из формулы находим. Из условия2Ф(t) = 0,95 находим t = 1,96. Тогда.

Пример 4 . По заданным значениям характеристик нормально распределенного признака найти доверительный интервал для оценки неизвестного математического ожидания:

г = 0,95, n =12, S = 1,5. = 16,8.

Решение.

По даннымг и n находим t = 2,20, тогда.

Доверительный интервал: (16,8 - 0,95; 16,8 + 0,95) = (15,85; 17,75).

2.1.4 Доверительный интервал для дисперсии нормальной

случайной величины .

Пусть X ~ N(т, у 2), причем т и у 2 -- неизвестны. Пусть для оценки у 2 извлечена выборка объема п: : х 1 , х 2 , ..., х п .

1. В качестве точечной оценки дисперсии D (X ) используется исправленная выборочная дисперсия которой соответствует стандартное отклонение.

2. При нахождении доверительного интервала для дисперсии в этом случае вводится статистика, имеющая -распределение с числом степеней свободы v = п - 1 независимо от значения параметра у 2 .

3. Задается требуемый уровень значимости б.

4. Тогда, используя таблицу критических точек распределения, нетрудно указать критические точки, для которых будет выполняться следующее равенство:

Подставив вместо соответствующее значение, получим

Неравенство может быть преобразовано в следующее:

Таким образом, доверительный интервал () накрывает неизвестный параметр с надежностью 1- б . А доверительный интервал () с надежностью 1 - б накрывает неизвестный параметр .

2.2 Генеральная совокупность .

Генеральной совокупностью называется множество всех возможных значений или реализаций исследуемой случайной величины при данном реальном комплексе условий.

Выборкой называют часть генеральной совокупности, отобранную для изучения.

Изучение всей генеральной совокупности во многих случаях либо невозможно, либо нецелесообразно в силу больших материальных затрат, поэтому на практике часто приходится иметь дело с выборками небольшого объема п <10- 20. В этом случае используемый обычно метод построения интервальной оценки для генеральной средней (среднего арифметического генеральной совокупности) и генеральной доли (доли элементов, обладающих необходимым признаком) неприменим в силу двух обстоятельств:

1) необоснованным становится вывод о нормальном законе распределения выборочных средней и доли w , так как он основан на центральной предельной теореме при больших п;

2) необоснованной становится замена неизвестных генеральной дисперсии у 2 и доли р их точечными оценками (или) или w , так как в силу закона больших чисел (состоятельности оценок) эта замена возможна лишь при больших п .

2.2.1

средней по малой выборке.

Задача построения доверительного интервала для генеральной средней может быть решена, если в генеральной совокупности рассматриваемый признак имеет нормальное распределение.

Теорема. Если признак (случайная величина) X имеет нормальный закон распределения с параметрами, x 2 = 2 , т.е. , то выборочная средняя при любом n имеет нормальный закон распределения

Если в случае больших выборок из любых генеральных совокупностей нормальность распределения обусловливалась суммированием большого числа одинаково распределенных случайных величин / n (теорема Ляпунова), то в случае малых выборок, полученных из нормальной генеральной совокупности, нормальность распределения вытекает из того, что распределение суммы (композиция) любого числа нормально распределенных случайных величин имеет нормальное распределение. Формулы числовых характеристик для получены ранее.

Таким образом, если бы была известна генеральная дисперсия, то доверительный интервал можно было бы построить аналогично изложенному выше и при малых n . Заметим, что в этом случае нормированное отклонение выборочной средней имеет стандартное нормальное распределение N(0; 1), т.е. нормальное распределение с математическим ожиданием, равным нулю, и дисперсией, равной единице.

Действительно, используя свойства математического ожидания и дисперсии, получим, что

Однако на практике почти всегда генеральная дисперсия (как и оцениваемая генеральная средняя) неизвестна. Если заменить ее «наилучшей» оценкой по выборке, а именно «исправленной» выборочной дисперсией, то большой интерес представляет распределение выборочной характеристики (статистики) или с учетом малой выборки, распределение статистики.

Представим статистику t в виде:

Числитель выражения (8) имеет стандартное нормальное распределение N (0; 1). Можно показать, что случайная величина имеет - распределение с н = n - 1 степенями свободы. Следовательно, статистика t имеет t- распределение Стьюдента с н =п - 1 степенями свободы. Указанное распределение не зависит от неизвестных параметров распределения случайной величины X, а зависит лишь от числа н, называемого числом степеней свободы.

Выше отмечено, что t - распределение Стьюдента напоминает нормальное распределение, и действительно при н >? как угодно близко приближается к нему.

Число степеней свободы к определяется как общее число n наблюдений (вариантов) случайной величины X минус число уравнений l, связывающих эти наблюдения, т.е. н = п - l.

Так, например, для распределения статистики число степеней свободы н = п - 1, ибо одна степень свободы «теряется» при определении выборочной средней (и наблюдений связаны одним уравнением).

3ная t - распределение Стьюдента, можно найти такое критическое значение что вероятность того, что статистика не превзойдет величину (по абсолютной величине), равна:

Функция, где - плотность вероятности t - распределения Стьюдента при числе степеней свободы н табулирована. Эта функция аналогична функции Лапласа Ф(t ), но в отличие от нее является функцией двух переменных -- t и н = п - 1. При н >? функция неограниченно приближается к функции Лапласа Ф(t) .

Формула доверительной вероятности для малой выборки может быть представлена в равносильном виде:

- предельная ошибка малой выборки. Доверительный интервал для генеральной средней, как и ранее, находится по формуле:

Пример 5 . Для контроля срока службы электроламп из большой партии было отобрано 17 электроламп. В результате испытаний оказалось, что средний срок службы отобранных ламп равен 980 ч, а среднее квадратическое отклонение их срока службы -- 18 ч. Необходимо определить: а) вероятность того, что средний срок службы ламп во всей партии отличается от среднего срока службы отобранных для испытаний ламп не более чем на 8 ч (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключен средний срок службы ламп во всей партии.

Решение.

Имеем по условию п = 20, = 980(ч), S = 18 ч.

а) Зная предельную ошибку малой выборки = 8 (ч), найдем из соотношения (9):

Теперь искомая доверительная вероятность

А находится по таблице значений при числе степеней свободы = 16.

Итак, вероятность того, что расхождение средних сроков службы электроламп в выборке и во всей партии не превысит 8 ч (по абсолютной величине), равна 0,906.

б) Учитывая, что = 0,95 и t 0,95;16 =2,12, по (11)найдем предельную ошибку малой выборки (ч). Теперь по (12)искомый доверительный интервал или (ч), т.е. с надежностью 0,95 средний срок службы электроламп в партии заключен от 970,5 до 989,5 ч.

2.2.2 Построение доверительного интервала для генеральной доли

по малой выборке.

Если доля признака в генеральной совокупности равна р то вероятность того, что в повторной выборке объема п т элементов обладают этим признаком, определяется по формуле Бернулли: , где q = 1 - р , т.е. распределение повторной выборки описывается биномиальным распределением. Так как при р? 0,5 биномиальное распределение несимметрично, то в качестве доверительного интервала для р берут такой интервал (p 1 , p 2 ), что вероятность попадания левее р 1 и правее p 2 одна и та же и равна (1 - г)/2:

где - фактическое число элементов выборки, обладающих признаком.

Рисунок 3 - Генеральная доля для г=0,9

Решение таких уравнений можно упростить, если использовать специальные графики, позволяющие при данном объеме выборки п и заданной доверительной вероятности г определить границы доверительного интервала для генеральной доли р. В качестве примера на рисунке 3 приведены такие графики для г = 0,9.

Пример 6 . Опрос случайно отобранных 15 жителей города показал, что 6 из них будут поддерживать действующего мэра на предстоящих выборах. Найти границы, в которых с надежностью 0,9 заключена доля граждан города, которые будут поддерживать на предстоящих выборах действующего мэра.

Решение.

Выборочная доля жителей, поддерживающих мэра, w = т/п = 6/15 = 0,4 . По рисунку 3 для г = 0,9 находим при w = 0,4 и для п = 15 по нижнему графику p 1 =0,23, а по верхнему -- р 2 = 0,60, т.е. доля жителей города, поддерживающих мэра, с надежностью 0,9 заключена в границах от 0,23 до 0,60. Очевидно, что более точный ответ на вопрос задачи может быть получен при увеличении объема выборки п.

2.2.3 Построение доверительного интервала для генеральной

дисперсии.

Пусть распределение признака (случайной величины) X в генеральной совокупности является нормальным N (, 2). Предположим, что математическое ожидание М(Х) = (генеральная средняя) известно. Тогда выборочная дисперсия повторной выборки X 1 , X 2 , …, X n :

ее неследует путать с выборочной дисперсией

и «исправленной» выборочной дисперсией

если S характеризует вариацию значений признака относительно генеральной средней, то и -- относительно выборочной средней .

Рассмотрим статистику

Учитывая, M (X i ) = , D (X i )= у 2 , (i = 1, 2, …, n ) нетрудно показать, что М (t ) = 0 и.

Выше отмечено, что распределение суммы квадратов п независимых случайных величин, каждая из которых имеет стандартное нормальное распределение N (0;l), представляет распределение 2 с н = п степенями свободы.

Таким образом, статистика имеет распределение 2 с н = п степенями свободы.

Распределение 2 не зависит от неизвестных параметров случайной величины X , а зависит лишь от числа степеней свободы н .

Плотность вероятности распределения имеет сложный вид и интегрирование ее является весьма трудоемким процессом. Составлены таблицы для вычисления вероятности того, что случайная величина, имеющая 2 - распределение с н степенями свободы, превысит некоторое критическое значение, т.е.

В практике выборочного наблюдения математическое ожидание, как правило, неизвестно, и приходится иметь дело не с, а с S 2 или. Если Х 1 , X 2 ,..., X n -- повторная выборка из нормально распределенной генеральной совокупности, то, как уже сказано выше, случайная величина (или) имеет распределение 2 с н = п --1 степенями свободы. Поэтому для заданной доверительной вероятности г можно записать:

(графически это площадьпод кривой распределения и рис. 4).

Рисунок 4 - Кривая распределения 2

Очевидно, что значения и определяются неоднозначно при одном и том же значении заштрихованной площади. Обычно и выбирают таким образом, чтобы вероятности событий < и > были одинаковы, т. е.

Преобразовавдвойное неравенство в равенстве (13)к равносильному виду, получим формулу доверительной вероятности для генеральной дисперсии:

а для среднеквадратического отклонения:

. (15)

При использовании таблиц вероятностей необходимо учесть, что поэтому условие

равносильно условию.

Таким образом, значения и находим из равенств:

Пример 7. На основании выборочных наблюдений производительности труда 20 работниц было установлено, что среднее квадратическое отклонение суточной выработки составляет 15 м ткани в час. Предполагая, что производительность труда работницы имеет нормальное распределение, найти границы, в которых с надежностью 0,9 заключены генеральные дисперсия и среднее квадратическое отклонение суточной выработки работниц.

Решение.

Имеем г = 0,9; (1 - г)/2 = 0,05; (1 +г)/2 = 0,95.

При числе степеней свободы н = n - 1=20 - 1=19 в соответствии с (16)и (17)определим и для вероятностей 0,95 и 0,05, т.е. = 10,1 и = 30,1. Тогда доверительный интервал для у 2 по (14)можно записать в виде:

или и для у по (15):

или 12,2 < у <21,1(м/ч).

Итак, с надежностью 0,9 дисперсия суточной выработки работниц заключена в границах от 149,5 до 445,6, а ее среднее квадратическое отклонение -- от 12,2 до 21,1 метров ткани в час.

Таблицы составлены при числе степеней свободы н от 1 до 30. При н > 30 можно считать, что случайная величина имеет стандартное нормальное распределение N (0; l). Поэтому для определения и следует записать, что

откуда и, после преобразований,

Таким образом, при расчете доверительного интервала надо полагать, .

Пример 8 . Решить задачу, приведенную в примере 7, при п = 100 работницам.

Решение.

При Ф(t ) = 0,9 t = 1,645, поэтому

3. Заключение

В данной курсовой работе рассмотрено понятие доверительного интервала и его разновидности в метрологии.

Провести бесконечное число измерений для получения верного результата в реальной жизни невозможно, поэтому важно дать объективное представление результатов ограниченного числа измерений, чему и призван помочь изучаемый подход.

Цель любого оценивания состоит в получении наиболее точного значения исследуемой характеристики. Доверительный интервал позволяет с определенной точностью получить распределение параметра, что дает хорошее представление об исследуемом объекте.

Список литературы

1. Беляев Ю.К., Носко В.П. Основные понятия и задачи математической статистики. - М.: Изд- во МГУ, ЧеРо, 1998. С. 114

2. Бородич С.А. Вводный курс эконометрики: Учебное пособие. - Мн.: БГУ, 2000. С. 46-48, 60-70

3. Крамер Г. Математические методы статистики.- М.: Госиноиздат, 1948. С. 118-130

4. Крамер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. - М.: ЮНИТИ- ДАНА, 2002. С. 140-144

5. Мешалкин Л.Д. Сборник задач по теории вероятностей. - М.: Изд- во МГУ, 1963. С. 30-33

6. Тутубалин В.Н. Теория вероятностей и случайных процессов. Основы математического аппарата и прикладные аспекты. - М.: Изд- во МГУ, 1992.

7. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере. - М.: Инфра- М Финансы и статистика, 1995.

Рассмотрим построение доверительного интервала для оценки математического ожидания.

Пусть - выборка объемаиз генеральной совокупности объема
;- выборочное среднее;- выборочное среднее квадратическое отклонение.

Доверительный интервал уровня надежности для математического ожидания (генеральной средней) имеет вид

,

где -предельная ошибка выборки , которая зависит от объема выборки , доверительной вероятностии равна половине доверительного интервала.

генеральной средней неизвестном служит доверительный интервал:

где - выборочное среднее;-исправленное выборочное среднее квадратическое отклонение; - параметр, который находится по таблице распределения Стьюдента для (
) степеней свободы и доверительной вероятности.

Интервальной оценкой с надежностью генеральной средней в случае нормального распределения генеральной совокупности приизвестном среднем квадратическом отклонении служит доверительный интервал:

где - выборочное среднее;
- выборочное среднее квадратическое отклонение;- значение аргумента функции Лапласа
, при котором
;- объем выборки.

Выводы . Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится "истинное" (неизвестное) среднее значение признака.

Хорошо известно, например, что чем «неопределенней» прогноз погоды (т.е. шире доверительный интервал), тем вероятнее он будет верным.

Пример. Найти доверительный интервал с надежностью 0,95 для оценки математического ожидания нормально распределенной случайной величины, если известны ее среднее квадратическое отклонение
, выборочная средняя
и объем выборки
.

Воспользуемся формулой
. Значениенайдем по таблице значений функции Лапласа
, с учетом того, что
, т.е.
. Находим по таблице для значения функции
значение аргумента
. Получим доверительный интервал:

; или
.

Тестовые задания

1. Длина доверительного интервала уменьшается с увеличением:

1) выборочных значений 2) объема выборки

3) доверительной вероятности 4) выборочного среднего

2. Длина доверительного интервала с увеличением объема выборки:

1) уменьшается; 2) увеличивается;

3) не изменяется; 4) колеблется.

3. Длина доверительного интервала с увеличением доверительной вероятности:

1) изменяется, 2) уменьшается,

3) увеличивается, 4) постоянна.

4. Отметьте два правильных ответа. Символы ив формуле доверительного интервала означают:

1) оценка параметра; 2) доверительный интервал;

3) объем выборки; 4) доверительная вероятность.

Ответы. 1. 2). 2. 1 3. 2). 4. 4) и 3).

Контрольные Вопросы

    Что понимается под термином «интервальная оценка параметра распределения»?

    Дайте определение доверительного интервала.

    Что такое точность оценки и надежность оценки?

    Что называется доверительной вероятностью? Какие значения она принимает?

    Как изменится длина доверительного интервала, если увеличить: 1) объем выборки, 2) доверительную вероятность? Ответ обоснуйте.

    Запишите формулу для нахождения доверительного интервала математического ожидания нормально распределенной случайной величины, если генеральная дисперсия: 1) известна; 2) неизвестна.