Электричеством или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется и энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Электричество движется со скоростью 300 000 км/ч.

Интересные факты из истории электричества

  • Невозможно назвать того, кто может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве. Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Аристотель занимался изучением некоторых угрей, которые поражали врагов электрическим разрядом. Римский писатель Плиний изучал электрические свойства смолы… Однако научные открытия и технические изобретения, открывшие путь к практическому использованию электроэнергии для нужд человека, появились гораздо позже – на рубеже XVIII и XIX веков.
  • Впервые данные о людях, получивших удары током, появляются в древнеегипетских текстах в 2750 году до нашей эры. Источниками тока были электрические рыбы, использующие электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Южноамериканский электрический угорь может генерировать напряжение до 1200 вольт при силе тока 1,2 А.
  • Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».
  • В словаре Российской Академии издания 1794 года электричество описывалось так: «Вообще это означает действие вещества весьма текучего и тонкого, свойствами своими весьма различного от всех жидких известных тел; имеющее способность сообщаться почти со всеми телами, но с иными более, с другими менее, движущееся с необъятной скоростью и производящее своим движением весьма странные явления».
  • Устройство, считающееся первой батарейкой, было найдено в Египте, оно состояло из медного цилиндра и вложенного в него железного стержня. В цилиндр заливалась жидкость, но стержень при этом не прикасался к стенкам сосуда.
  • Вероятно, одной из первых электрических цепей была живая электрическая цепь, составленная из 180 взявшихся за руки солдат Людовика XV, которые содрогались от проходившего через них разряда Лейденской банки во время опыта при дворе короля.
  • В Англии парламентом в марте 1879 года была учреждена комиссия, которая должна была положить конец нелепым слухам, распускавшимся противниками электричества – газовыми компаниями. Дознание производилось по всем правилам судебного следствия. Ответчиком было электричество.
  • В XVIII веке после нескольких печальных случаев, связанных с ударами молний в Италии, перепуганные европейцы начали крепить молниеотводы повсюду, даже появились шляпы и зонтики, снабжённые молниеотводами.
Интересные факты о первых применениях электричества

об альтернативных источниках энергии

  • Лидером по производству электроэнергии на душу населения является Исландия, причем, почти вся она (99.5%) вырабатывается из экологически чистых возобновляемых природных источников, 90% домов обогреваются за счёт горячих вод, поступающих из геотермальных источников, а в столице дороги и тротуары всегда свободны от снега и льда, поскольку они подогреваются проложенными под ними трубами с горячей водой, кстати, это единственная страна в Европе, которая полностью обеспечивает себя бананами, выращиваемыми в теплицах.
  • Солнце всего за три дня посылает на Землю столько энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 секунду - 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности.
  • В начале ХХ века электростанции использовали в качестве топлива нефть или уголь.
  • Чтобы удешевить процесс получения электричества российский инженер Роберт Классон решил использовать торф. В 1912 году на подмосковном торфяном болоте было начато строительство первой в мире электростанции, работающей на торфе. Станция «Электропередача» (сегодня ГРЭС-3 в Ногинске) была введена в строй в 1914 году.
  • Гидроэнергетика и альтернативные источники энергии становятся все актуальнее. Сжигание нефти и угля сопряжено с большими расходами, в то время как использование энергии воды, ветра и солнца не требует затрат на топливо – средства уходят лишь на строительство и ремонт.
  • Индийские ученые изобрели батарейки, в состав которых входят фрукты и овощи. Внутри батарейки содержится паста из переработанных бананов, апельсиновых корок и других овощей и фруктов, в которой размещены электроды из цинка и меди. От четырех таких батареек могут работать настенные часы, электронная игра или карманный калькулятор. Новинка рассчитана в основном на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки батареек.
  • Японские ученые разработали уникальную технологию, позволяющую не только использовать океаническую воду для производства электроэнергии, но и опреснять ее.
  • В Японии разрабатывается устройство для получения электроэнергии из крови человека. Оказывается, организм каждого из нас вырабатывает из содержащейся в крови глюкозы энергию, с помощью которой можно было бы зажечь лампочку мощностью 100 Вт. Такой нетрадиционный способ электрификации позволит ученым «заряжать» медицинские приборы, вживленные непосредственно в человеческое тело или «питать» имплантированные органы.
  • В США разрабатывается технология, которая позволит получать электричество, наступая на специальные пластмассовые вставки в обуви. Работать каблучный генератор будет просто: когда человек идет или бежит, давление его ног на вставки заставляет их сжиматься и растягиваться, и вырабатывать небольшое количество электричества. Простая ходьба даст от одного до трех ватт. Генератор можно будет соединить с аккумулятором, запасающим энергию. Ее вполне хватит для того, чтобы послушать радио или СD-плейер.
  • Первая в мире силовая установка, топливом для которой служит скорлупа орехов, была открыта в Гимпи, к северу от Брисбена, на юго-восточном побережье Австралии.
  • В Пенсильвании на одной из молочных ферм используют коровий навоз для получения энергии. Шестьсот коров, которые производят 18 тысяч галлонов навоза ежедневно, помогают ферме сэкономить 60 тысяч долларов в год. Отходы используются для производства электроэнергии, в качестве удобрения и топлива для обогрева.
  • Клуб Watt в Роттердаме (Нидерланды) использует вибрации от людей на танцполе для создания светового шоу. Колебания улавливают «пьезоэлектрические» материалы.
  • Треть производимой энергии в мире получают на атомных станциях США. Второе место по объемам производства энергии заняла Франция, она производит на своих атомных станциях три четверти всей энергии.
  • Самая большая в мире ветровая электростанция – это ветровой энергетический центр в городе Абилин, штат Техас. 400 турбин, расположенных на опорах высотой в 80 метров на территории 238 квадратных километров производят в общей сложности 735 мегаватт электроэнергии.
  • Крупные приливные электростанции действуют во Франции и Норвегии.
  • Копенгаген, столица Дании, получает основную электроэнергию от ветровых электростанций.
  • В земной коре содержится всего 2 % общего тепла планеты, но и этих 2 % достаточно для того, чтобы обеспечить человечество неиссякаемой энергией.
  • В США и на Филиппинах построены самые крупные ГеоЭС (геотермальные электростанции). Они представляют собой целые геотермальные комплексы, состоящие из десятков отдельных геотермальных станций.
  • Первая в мире крупная волновая электростанция с мощностью 2,25 МВт начала эксплуатироваться в 2008 году в районе португальского местечка Агусадора.
  • В 2014 году в США введена в эксплуатацию крупнейшая солнечная электростанция «Айвенпа» в пустыне Мохаве в Калифорнии. Ее мощность составляет 392 ГВт (один процент от вырабатываемого количества электроэнергии в США. К 2020 г. США планируют перевести почти треть добычи электроэнергии на возобновляемые источники. А Германия уже в 2014 году за счет солнечной энергии произвела электричества больше, чем за счет использования газа.
  • Недавно ученые из университета Калифорнии разработали прозрачные панели на основе относительно недорогого пластика. Батареи черпают энергию из инфракрасного света и могут заменить обычные оконные стекла.
  • Существуют электростанции, накапливающие и использующие энергию молний. Одной из первой компанией по использованию энергии из грозовых облаков стала американская компания Alternative Energy Holdings. Она предложила способ использования даровой энергии путем ее сбора и утилизации, возникающей из электрических разрядов грозовых облаков. Экспериментальная установка была запущена в 2007 году и называлась «сборщик молний».

На территории Свердловской области, в центре города Невьянске находится одна из достопримечательностей Урала-Невьянская наклонная башня. В башне очень много металла: дверные и оконные коробки отлиты из чугуна, полы и балконы выстланы чугунными плитами. Внутри башни — металлический каркас, места выхода которого скреплены на стенах чугунными шайбами,каркас является заземлением. Венчает Невьянскую башню колокольня со старинными колоколами, а на самой крыше – 40-сантиметровый шар с шипами – первый в мире громоотвод (молниеотвод — устройство воспринимающее удар молнии и отводящее ток в землю), установленный в начале XVIII века – за несколько десятилетий до того,как он был изобретен Бенджамином Франклином.

Молнии и клады

Древние греки считали, что больше всего янтаря можно найти на побережье Северного моря, хотя никогда там не были. Основываясь на мифах, а именно на побережье Северного моря сын бога солнца Гелиоса Фаэтон был поражен молнией поразившей его, они, по всей видимости, видели связь между молнией и свойствами янтаря вырабатывать статическое электричество.

Разряды молнии в землю указывали кладоискателям, что именно здесь зарыты сокровища. Понятно, что молнии бьют в курганы, содержащие большое количество металла.

На Руси место, куда попала молния, считалось лучшим для закладки колодца. Естественно - ведь вода притягивает электричество. Следовательно, вероятность близкой воды была очень высока! Но попутный вопрос – удобно ли жить в таком месте хозяевам, как они будут относиться к связке электричество, молния и магнетизм.

Люди и электричество

При дворе Людовика XV проводились опыты с электричеством и магнетизмом, при которых на площади ставили не менее 180 взявшихся за руки солдат и через них пропускали разряд от Лейденской банки(Ле́йденская ба́нка - первый электрический конденсатор, изобретённый голландским учёным Питером ван Мушенбруком и его учеником Кюнеусом в 1745 в Лейдене. Изобретение лейденской банки стимулировало изучение электричества, в частности, скорости его распространения и электропроводящих свойств некоторых материалов. Выяснилось, что металлы и вода (кроме дистиллированной) - лучшие проводники. Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру).

Весь двор с огромным любопытством наблюдал за «массовым содроганием» от прохождения тока через такую импровизированную электрическую цепь.

Скорость электрического тока почти равна скорости света. В 1746 году, когда это ещё не было известно, французский священник и физик Жан-Антуан Нолле захотел измерить скорость тока экспериментально. Он расставил 200 монахов, соединённых друг с другом железными проводами, по окружности длиной свыше полутора километров, а затем разрядил в эту цепь батарею из лейденских банок, изобретённых годом ранее. Все монахи среагировали на ток в одно мгновение, что убедило Нолле в очень высоком значении искомой величины.

В истории американских тюрем имеется два случая, когда подсудимым изменяли меру наказания со смертной казни на пожизненное заключение, но смерть от электричества все равно находила их. В 1989 году Майкл Андерсон Годвин сам себе устроил электрический стул, сидя на металлическом унитазе в своей камере и одновременно ремонтируя телевизор. Замыкание произошло, когда он перекусил проводок. В 1997 году похожее происшествие случилось с Лоуренсом Бейкером - он тоже сел на металлический унитаз, смотря телевизор в самодельных наушниках.

Магнетизм и статическое электричество

Статического электричество и магнетизм начали изучать с помощью простейшего прибора — металлический диск со стеклянной ручкой, сургучная подушка, кошка и палец. Именно с этим набором инструментов работал Александр Вольт.

Многие единицы физических величин в электротехнике носят имена учёных изучавших электричество и магнетизм. Но лишь один из них, имеющий в своей фамилии всего две буквы, был удостоен дважды такой чести. Это немец Георг Ом. Нам всем знакома единица измерения сопротивления «Ом», но, наверное, мало кто помнит, что физическую величину, обратную сопротивлению – «электропроводимость», измеряют в величинах, называющихся «мо».

При всем этом, в 1827 году Георг Ом, не сдал экзамен и не был допущен к преподаванию основ физики и магнетизма в школе, из-за очень низкого уровня знаний и полного отсутствия педагогических способностей.

Луиджи Гальвани, называли, когда-то волшебником за то, что он заставлял шевелиться трупы телят, мышей, кошек и лягушек! И именно в его честь названы химические источники тока - гальванические элементы.

Первая батарейка в 4 вольта была найдена в Египте и состояла она из медного цилиндра и вложенного в него железного стержня. В цилиндр заливалась жидкость, но стержень при этом не прикасался к стенкам сосуда.

Животные и электричество

Знаете ли вы, что в некоторых районах Африки и Южной Америки, где до сих пор нет электричества в домах, жилища освещают с помощью светлячков. Их помещают в закрытые стеклянные банки! При этом банки наполненные светлячками, дают довольно яркий свет!

Электрический угорь из Амазонки бьёт током с напряжением более 500 вольт. Местные жители перед тем, как ловить их, загоняют в реку стадо коров, чтобы угри истратили на них весь свой заряд.

Сидящая на проводе высоковольтной ЛЭП птица не страдает от тока, потому что её тело - плохой проводник тока. В местах прикосновения птичьих лап к проводу создаётся параллельное соединение, а так как провод гораздо лучше проводит электричество, по самой птице бежит очень малый ток, который не может причинить вреда. Однако стоит птице на проводе коснуться ещё какого-нибудь заземлённого предмета, например металлической части опоры, она сразу погибает, ведь тогда уже сопротивление воздуха по сравнению с сопротивлением тела слишком велико, и весь ток идёт по птице.

У рыб отряда гимнотообразных (Отряд морских лучепёрых рыб, населяют пресноводные водоёмы Южной Америки, имеют удлинённые тела и плавают с помощью анального плавника. Эти ночные рыбы способны производить электрическое поле для навигации и связи), самцы заявляют о своём превосходстве электрическим сигналом с более высокой, чем у конкурентов, частотой, позволяющие выявить доминирующего самца без проведения боя.

Электричество является одним из столпов современной цивилизации. Жизнь без электричества, конечно, возможна, ведь наши не такие уж и далёкие предки прекрасно обходились без него. «Я освещу здесь всё лампочками Эдисона и Свана!» — кричал сэр Генри Баскервиль из повести Артура Конан-Дойла «Собака Баскервилей», впервые увидев унылый замок, который ему предстояло унаследовать. А ведь на дворе был уже конец XIX века.

Электричество и связанный с ним прогресс предоставили человечеству прежде невиданные возможности. Перечислить их практически невозможно, настолько они многочисленны и глобальны. Всё, что окружает нас, так или иначе сделано при помощи электричества. Сложно обнаружить нечто не связанное с ним. Живые организмы? Но некоторые из них сами вырабатывают электричество в значительных объёмах. А японцы научились повышать урожайность грибов, подвергая их ударам токов высокого напряжения. Солнце? Оно светит само по себе, но его энергию уже перерабатывают в электричество. Теоретически, в каких-то отдельных аспектах жизни можно обойтись без электричества, но такой отказ усложни и удорожит существование. Так что электричество нужно знать и уметь его использовать.

1. Определение электрического тока как потока электронов не является абсолютно верным. В аккумуляторных электролитах, к примеру, ток — это поток ионов водорода. А в люминесцентных лампах и фотовспышках ток вместе с электронами создают и протоны, причём в строго регламентированном соотношении.

2. На электрические явления первым из учёных обратил внимание Фалес Милетский. Древнегреческий философ размышлял над тем, что янтарная палочка, если потереть её о шерсть, начинает притягивать шерстинки, но дальше размышлений дело у него не пошло. Сам термин «электричество» ввёл в обиход английский врач Уильям Гилберт, воспользовавшийся греческим словом «янтарный». Гилберт также не пошёл дальше описания явления притягивания шерстинок, пылинок и клочков бумаги у натёртой о шерсть янтарной палочке — у придворного врача королевы Елизаветы свободного времени было немного.

Фалес Милетский

Уильям Гилберт

3. Проводимость первым обнаружил Стивен Грей. Этот англичанин не только был талантливым астрономом и физиком. Он продемонстрировал пример прикладного подхода к науке. Если его коллеги ограничивались тем, что описывали явление и, как максимум, публиковали свои работы, то Грей сразу извлёк из проводимости прибыль. Он демонстрировал в цирке номер «летающий мальчик». Мальчик парил над ареной на шёлковых верёвках, его тело заряжали с помощью генератора, и к ладоням притягивались блестящие золотые лепестки. На дворе стоял галантный XVII век, и в моду быстро вошли «электрические поцелуи» — между губами двух людей, заряженных с помощью генератора, проскакивали искры.

4. Первым человеком, пострадавшим от искусственного заряда электричества, был немецкий учёный Эвальд Юрген фон Клейст. Он соорудил аккумулятор, позже названный лейденской банкой, и зарядил его. При попытке разрядить банку фон Клейст получил весьма чувствительный удар током и потерял сознание.

5. Первым учёным, погибшим при исследованиях электричества, было соратник и друг Михаила Ломоносова. Георг Рихман. Он провёл в свой дом провод от установленного на крыше железного шеста и исследовал электричество во время гроз. Одно из таких исследований закончилось печально. Видимо, гроза была особенно сильной — между Рихманом и датчиком электричества проскочила электрическая дуга, убившая учёного, стоявшего слишком близко. Попадал в такую ситуацию и знаменитый Бенджамин Франклин, однако лицу стодолларовой купюры посчастливилось выжить.

Смерть Георга Рихмана

6. Первую электрическую батарею создал итальянец Алессандро Вольта. Его батарея была сделана из серебряных монет и цинковых дисков, пары которых разделяли мокрые опилки. Итальянец создал свою батарею эмпирически — природа электричества тогда была непонятной. Вернее, учёные думали, что понимают её, но думали неверно.

7. Явление превращения проводника под действием тока в магнит открыл Ганс-Кристиан Эрстед. Шведский натурфилософ случайно поднёс провод, по которому шёл ток, к компасу и увидел отклонение стрелки. Явление произвело на Эрстеда впечатление, однако он не понял, какие возможности оно таит в себе. Плодотворно исследовал электромагнетизм Андре-Мари Ампер. Француз и получил основные плюшки в виде всеобщего признания и названной в его честь единицы силы тока.

8. Похожая история произошла и с термоэлектическим эффектом. Томас Зеебек, работавший лаборантом на одной из кафедр Берлинского университета, обнаружил, что если нагревать проводник, сделанный из двух металлов, то по нему идёт ток. Обнаружил, сообщил об этом, и забыл. А Георг Ом как раз работал над законом, который назовут его именем, и использовал работу Зеебека, и его имя, в отличие от имени берлинского лаборанта, знают все. Ом, кстати, был уволен с должности школьного учителя физики за эксперименты — министр посчитал постановку экспериментов делом, недостойным настоящего учёного. В моде тогда была философия…

9. А вот другой лаборант, на этот раз Королевского института в Лондоне, очень огорчил профессоров. 22-летний Майкл Фарадей упорно трудился над созданием электромотора своей конструкции. Хэмфри Дэви и Уильям Уолластон, пригласившие Фарадея в лаборанты, такой наглости не стерпели. Фарадей дорабатывал свои моторы уже как частное лицо.

Майкл Фарадей

10. Отец использования электричества в бытовых и промышленных нуждах — Никола Тесла. Именно этот чудаковатый учёный и инженер разработал принципы получения переменного тока, его передачи, преобразования и использования в электрических устройствах. Кое-кто считает, что Тунгусская катастрофа — это результат опыта Теслы по мгновенной передаче энергии без проводов.

Никола Тесла

11. В начале ХХ века голландец Хейке Оннес сумел получить жидкий гелий. Для этого понадобилось охладить газ до -267°С. Когда затея удалась, Оннес не бросил эксперименты. Он охладил до такой же температуры ртуть и обнаружил, что электрическое сопротивление затвердевшей металлической жидкости упало до нуля. Так была открыта сверхпроводимость.

Хейке Оннес — лауреат Нобелевской премии

12. Мощность среднего удара молнии составляет 50 млн. киловатт. Казалось бы, прорва энергии. Почему же до сих пор не делают попыток каким-либо образом использовать её? Ответ прост — разряд молнии очень короткий. И если перевести эти миллионы в киловатт-часы, которые выражают расход энергии, окажется, что выделяется всего 1 400 киловатт-часов.

13. Первая в мире коммерческая электростанция дала ток в 1882 году. 4 сентября генераторы, спроектированные и изготовленные компанией Томаса Эдисона, дали ток в несколько сотен домов в Нью-Йорке. Россия отстала совсем ненадолго — в 1886 году начала работать электростанция, расположенная прямо в Зимнем дворце. Её мощность постоянно увеличивалась, и через 7 лет от неё питались уже 30 000 ламп.

Внутри первой электростанции

14. Слава Эдисона, как гения электричества, сильно преувеличена. Безусловно, он был гениальным менеджером и крупнейшим специалистом в области исследовательских и опытных разработок. Чего стоит только его план по изобретениям, который реально выполнялся! Однако стремление постоянно что-то изобретать к указанному сроку имело и негативные стороны. Одна только «война токов» между Эдисоном и компанией «Вестингауз» с Никола Теслой стоила потребителям электроэнергии (а кто же ещё оплачивал чёрный пиар и прочие сопутствующие расходы?) сотни миллионов тех ещё, обеспеченных золотом, долларов. Зато попутно американцы получили электрический стул — Эдисон продавил казнь преступников переменным током, дабы показать его опасность.

15. В большинстве стран мира номинальное напряжение электрических сетей составляет 220 — 240 вольт. В США и ряде других стран потребителям подаётся напряжение в 120 вольт. В Японии напряжение сети составляет 100 вольт. Переход с одного напряжения на другое — дело очень дорогостоящее. До Великой Отечественной Войны в СССР было напряжение 127 вольт, потом начался постепенные переход на 220 вольт — при нём потери в сетях уменьшаются в 4 раза. Однако некоторых потребителей переводили на новое напряжение ещё в конце 1980-х годов.

16. Япония пошла своим путём и в определении частоты тока в электрической сети. С разницей в год для разных частей страны закупили у иностранных поставщиков оборудование для частоты 50 и 60 герц. Это было ещё в конце XIX века, и до сих пор в стране существуют два стандарта частоты. Впрочем, глядя на Японию, трудно сказать, что эта нестыковка в частотах как-то повлияла на развитие страны.

17. Разнобой напряжений в разных странах привёл к тому, что в мире существует минимум 13 различных типов штепселей и розеток. В конечном итоге всю эту какофонию оплачивает потребитель, покупающий переходники, подводящий к домам разные сети и, самое главное, оплачивающий потери в проводах и трансформаторах. В Интернете можно встретить много жалоб россиян, переехавших в Соединённые Штаты, на то, что в многоквартирных доходных домах в квартирах нет стиральных машин — они, как максимум, стоят в общей прачечной где-нибудь в подвале. Именно потому, что стиральным машинам нужна отдельная линия, разводить которую по квартирам дорого.

Это ещё не все типы розеток

18. Казалось бы, навсегда почившая в бозе идея о вечном двигателе ожила в идее гидроаккумулирующих электростанций (ГАЭС). Изначально здравый посыл — сглаживать суточные колебания в потреблении электроэнергии — был доведён до абсурда. ГАЭС стали проектировать и пытаться строить даже там, где суточных колебаний нет или они минимальны. Соответственно, ушлые товарищи начали заваливать политиков фееричными идеями. В Германии, например, который год рассматривается проект создания подводной ГАЭС в море. По замыслу создателей, нужно погрузить под воду огромный полый бетонный шар. Он будет самотёком заполняться водой. Когда же понадобится дополнительная электроэнергия, вода из шара будет подаваться на турбины. Как подаваться? Электрическими насосами, как же ещё.

19. Ещё пара спорных, мягко говоря, решений из области нетрадиционной энергетики. В США придумали кроссовки, вырабатывающие 3 ватта электроэнергии в час (при ходьбе, разумеется). А в Австралии работает тепловая электростанция, сжигающая ореховую скорлупу. Полторы тонны скорлупы превращаются в полтора мегаватта электроэнергии за один час.

20. Зелёная энергетика практически довела единую австралийскую энергосистему до состояния «пошла вразнос». Дефицит электроэнергии, возникший после замены мощностей ТЭС на солнечные и ветровые станции, привёл к её удорожанию. Удорожание привело к тому, что австралийцы стали устанавливать на домах солнечные панели, а рядом с домами — ветрогенераторы. Это ещё сильнее разбалансирует систему. Операторам приходится вводить новые мощности, что требует новых денег, то есть нового повышения цен. Правительство же дотирует каждый киловатт электричества, полученный «на заднем дворе», одновременно облагая непосильными поборами и требованиями традиционные электростанции.

Австралийский пейзаж

21. Все уже давно знают, что электроэнергия, получаемая от тепловых станций, «грязная» — выделяется СО 2 , парниковый эффект, глобальное потепление и т. д. При этом экологи умалчивают о том, что тот же СО 2 вырабатывается и при производстве солнечной, геотермальной, и даже ветровой энергии (для её получения нужны весьма неэкологичные вещества). Самые чистые виды энергии — атомная и водная.

22. В одном из городов Калифорнии в пожарной части непрерывно горит лампа накаливания, которую включили в 1901 году. Лампа мощностью всего в 4 ватта была создана Адольфом Шайе, пытавшемся конкурировать с Эдисоном. Угольная нить накаливания в несколько раз толще нитей накаливания современных ламп, но долговечность лампы Шайе определяется не этим фактором. Современные нити (точнее, спирали) накаливания при перегреве перегорают. Угольные нити в такой же ситуации просто выдают больше света.

Лампа-рекордсменка

23. Электрокардиограмма называется электрической совсем не потому, что её получают с помощью электрической сети. Все мышцы человеческого тела, в том числе и сердца, сокращаясь, вырабатывают электрические импульсы. Приборы их фиксируют, а врач, глядя на кардиограмму, ставит диагноз.

24. Молниеотвод, как всем известно, изобрёл Бенджамин Франклин в 1752 году. Вот только в городе Невьянск (сейчас Свердловская область) в 1725 году было закончено строительство башни высотой более 57 метров. Невьянская башня уже тогда была увенчана молниеотводом.

Лечение электричеством имеет свою историю . Первые до этого додумались римляне, которые накладывали на голову больным с головными болями электрического угря. Говорят, что после этого или все проходило, или больной уже больше не признавался, что у него болит голова

Самая старая лампочка в мире

В США в одном из пожарных отделений города Ливермор (штат Калифорния) работает самая старая лампочка в мире. Это 4-ваттная лампа ручной работы, известная под именем «Столетняя лампа». Она постоянно горит уже более 100 лет, с 1901 года. Секрет ее долголетия заключается в том, что лампочку практически никогда не выключали. Столь необычайно долгий срок жизни не просто превратил лампу в местную достопримечательность, но и позволил занять ей свое место в книге рекордов Гиннеса как самой старой и работающей лампе в мире.

Долгожительница имеет свой собственный сайт www.centennialbulb.org, на котором, в числе прочего, можно следить за ее работой через веб-камеру (снимки делаются с интервалом 10 секунд). Точная дата установки этой лампы неизвестна, но скорее всего, это произошло в середине июня 1901-го года. С тех пор лампочка мощностью в 4 Вт круглосуточно работает в одном из отделений пожарной части, выполняя функцию технической подсветки оборудования. Свою работу лампочка прекратила единственный раз на 22 минуты в 1976 году, когда из соображений пожарной безопасности ее перевели на другой объект. Транспортировка осуществлялась в сопровождении полицейского и пожарного эскорта под руководством капитана пожарной части.

Для того чтобы понять феномен долгожительства этой лампочки, нужно разобраться в ее технических характеристиках. Она была выпущена компанией ShelbyElectricCo. По чертежам главного конкурента Т. Эдисона Адольфа Шайе (Adolphe A.Chaillet). Стеклянный корпус выдувался вручную, а элементом накаливания служила угольная нить. Общую причину длительной и безотказной работы таких ламп объяснила ДебораКатц (DeboraKatz), профессор физики US NavalAcademy в городе Аннаполис, на основе комплексного исследования винтажных лампочек ShelbyElectric.

«Феномен Лампы из Ливермора можно объяснить тем, что старинные лампочки накаливания имели два принципиальных отличия от современных аналогов. Во-первых, нить накаливания в них была в восемь раз толще, чем сейчас, во-вторых, материалом для ее изготовления был полупроводник, скорее всего на основе углерода. Это очень важное отличие: когда современная спираль накаливания перегревается, она перестает проводить электричество, в то время как лампочки Shelby работали тем лучше, чем сильнее они нагревались». Таким образом, объективной предпосылкой для долгожительства лампочки в пожарной части №6 городка Ливермор была ее бесперебойная работа и отсутствие циклов включения-выключения. Но тот факт ничуть не умаляет маленького чуда существования лампы, разменявшей вторую сотню лет.

Изобретатель Томас Эдисон в 1880-х годах работал над системами электрификации американских городов, однако не мог передать постоянный ток дальше нескольких кварталов. Его конкурент Джордж Вестингауз добился больших успехов, используя переменный ток, однако Эдисон всячески препятствовал его распространению, называя его током-убийцей. В то же время специальная комиссия вела поиски устройства для наиболее “гуманной” казни, и Эдисон порекомендовал в качестве него машину Вестингауза на переменном токе. Таким образом, он поспособствовал изобретению электрического стула.

Электрогенераторы южноамериканского электрического угря могут генерировать напряжение до 1200 вольт при силе тока 1,2 А. Этого хватило бы чтобы зажечь шесть стоваттных лампочек.

Напряжение внутри молнии - порядка 100 000 000 вольт на метр.

Первая батарейка в 4 вольта была найдена в Египте и состояла она из медного цилиндра и вложенного в него железного стержня. В цилиндр заливалась жидкость, но стержень при этом не прикасался к стенкам сосуда

Электрические угри могут поразить электрическим током напряжением около 500 вольт для самообороны и во время охоты.

Крупнейший в мире источник энергии для электростанций — это уголь. Сжигание угля в топках котлов нагревает воду, а поднимающийся пар вращает турбины генераторов.

Электричество играет важную роль в здоровье человека . Мышечные клетки в сердца сокращаются и производят электроэнергию. Электрокардиограмма (ЭКГ) измеряет ритм сердца благодаря этим импульсам.

В далекие 1880-е была “война токов” между Томасом Эдисоном (который придумал постоянный ток) и Никола Тесла (который открыл переменный ток). Оба хотели, чтобы их системы широко использовались, но победил переменный ток, за простоту получения, больший КПД и меньшую опасность.

Интересно, что один из отцов-основателей США Бенджамин Франклин был не только политиком, но и ученым. Он провел обширные исследования электричества в 18 веке и изобрел громоотвод.

Древние греки считали , что больше всего янтаря находят на побережье Северного моря. Именно там Фаэтон был повержен молнией на землю. Вероятно, они видели связь между молнией и свойствами янтаря.

Словарь Академии Российской издания 1794 года так описывал когда-то “электричество”: “Вообще это означает действие вещества весьма текучего и тонкого, свойствами своими весьма различного от всех жидких известных тел; имеющее способность сообщаться почти со всеми телами, но с иными более, с другими менее, движущееся с необъятной скоростью и производящее своим движением весьма странные явления”.

В конце 30-х годов 18 века член Парижской Академии Шарль Ф. Дюфе писал: “Возможно, в конце концов, удастся найти средство для получения электричества в больших масштабах и, следовательно, усилить мощь электрического огня, который во многих из этих опытов представляется... как бы одной природы с молнией”.

В старину место разряда молнии в землю указывало грабителям скифских курганов, что именно здесь зарыты сокровища. Понятно, что молнии бьют в курганы, содержащие металлическую “начинку”.

На Руси место, куда попала молния , считалось лучшим для рытья колодца. Вероятность близкой воды была очень высока!

Не зря знаменитого Луиджи Гальвани , вовсе даже не физика, прозвали когда-то волшебником. Он заставлял шевелиться трупы телят, кошек, мышей и лягушек! В его честь названы химические источники тока — гальванические элементы.

Одна из легенд о великом физике Томасе Эдисоне связана с его религиозностью, которую редко ставили под сомнение. И все потому, что на протяжении многих лет, Эдисон часто заходил в церковь неподалеку от своего дома. Недоразумение раскрылось после того, как однажды у него все же спросили о его вере в бога и периодических визитах в местную церковь. Оказалось, что церковь была прямо на пути из лаборатории к дому Эдисона, и он часто заходил в церковь в прохладные вечера просто чтобы погреться в помещении.

Изучение статического электричества начиналось с помощью простейшего прибора: металлический диск, стеклянная ручка, кошка, сургучная подушка, палец. Именно с таким “набором инструментов” работал знаменитый Алессандро Вольта.

В детстве Томас Эдисон не показывал особых дарований , считаясь трудным ребёнком. После того, как однажды учитель обозвал его “безмозглым тупицей”, мать забрала его из школы, в которой он смог проучиться только 3 месяца и решила самостоятельно обучать Томаса. При этом она читала ему книги, одними из которых были: “Краткое руководство для школ по естественной и экспериментальной философии” Ричарда Паркера и “Азбука Морзе”.

Вероятно, одной из первых электрических цепей была живая электрическая цепь, составленная из 180 взявшихся за руки солдат Людовика XV, которые содрогались от проходившего через них разряда Лейденской банки во время опыта при дворе короля.

Многие единицы физических величин в электротехнике носят имена ученых. Но, интересно, что лишь один из них, а это был Георг Ом, был дважды удостоен такой чести. Всем знакома единица измерения сопротивления «Ом», но оказывается, что в некоторых странах физическую величину, обратную сопротивлению — электропроводность, измеряют в величинах, называющихся «Мо».

В 1827 году немец по имени Георг Ом , снискавший позднее всемирную славу, не сдал экзамен и не был допущен к преподаванию физики в школе из-за крайне низкого уровня знаний и отсутствия педагогических способностей.

Интересно, что к широкому использованию переменного тока , полученного еще в 30-х годах 19 века, приступили лишь спустя 70 лет! Передачу переменного тока с помощью высоковольтных ЛЭП пытались даже запретить законом. Среди “противников переменного тока” был и Томас Эдисон!

Знаете ли вы, что в некоторых районах Южной Америки и Африки , где не было проведено электричество, можно было внутри жилища увидеть закрытые стеклянные банки, наполненные светляками! Такие «лампы» давали на зависть яркий свет!

Не все знают, что Томас Эдисон , являясь самым известным изобретателем, который только в США получил 1093 патента на изобретения и около 3 тысяч в других странах, был еще и купным предпринимателем, который в работе неизменно пользовался девизом: «Никогда не изобретай то, на что нет спроса».

Ученые считают , что мы все могли неоднократно наблюдать движение частиц со скоростью, вдвое меньшей скорости света, по каналу диаметром в 1,27 см. Это всякий раз происходит в молнии!

Великого физика Томаса Эдисона однажды спросили: нужно ли ставить громоотвод на строящуюся церковь?
- Непременно, - ответил он. - Ведь Бог бывает иногда так невнимателен.

Томас Эдисон известен как величайший изобретатель во всем мире. У него было зарегистрировано 1093 патента, которые и столетие спустя поражают нас. Но все дело в том, что не все изобретения принадлежат лично ему. Некоторые из открытий Эдисона принадлежат его невоспетым техникам - и его наиболее известное изобретение электрического света, даже не было сделано в его лаборатории. За четыре десятилетия до рождения Эдисона, английский ученый Сэр Хамфри Дэйви изобрел дуговое свечение (с использованием карбоновой нити). На протяжении многих лет, исследователи улучшали открытие Дэйви. Была одна проблема: ни одно из улучшений не горело более 12 часов (из-за разрыва нити). Достижение Эдисона заключалось в том, что он подобрал соответствующую нить, которая могла гореть много дней. Он сделал очень важное открытие, но не был первопроходцем.

Направление движения электрического тока

Если составить электрическую цепь из источника тока, потребителя энергии и соединяющих их проводов, замкнуть ее, то по этой цепи потечет электрический ток. Резонно спросить: «А в каком направлении?» Учебник теоретических основ электротехники дает ответ: «Во внешней цепи ток течет от плюса источника энергии к минусу, а в внутри источника от минуса к плюсу».
Так ли это? Вспомним, что электрическим током называется упорядоченное движение электрически заряженных частиц. Таковыми в металлических проводниках являются отрицательно заряженные частицы - электроны. Но ведь электроны во внешней цепи движутся как раз наоборот: от минуса источника к плюсу. Это можно доказать очень просто. Достаточно поставить в вышеуказанную цепь электронную лампу - диод. В случае, если анод лампы будет заряжен положительно, то ток в цепи будет, если же отрицательно, то тока не будет. Напомним, что разноименные заряды притягиваются, а одноименные - отталкиваются. Поэтому положительный анод притягивает отрицательные электроны, но не наоборот. Сделаем вывод, что за направление электрического тока в науке электротехнике принимают направление ПРОТИВОПОЛОЖНОЕ движению электронов.
Выбор направления, противоположный существующему, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники как науки.
Среди множества теорий, иногда даже анекдотичных, пытающихся объяснить электрические явления, появившихся на заре науки об электричестве, остановимся на двух основных.
Американский ученый Б. Франклин выдвинул так называемую унитарную теорию электричества, по которой электрическая материя представляет собой некую невесомую жидкость, которая могла вытекать из одних тел и накапливаться в других. Согласно Франклину, электрическая жидкость содержится во всех телах, а наэлектризованным становится только тогда, когда в них бывает недостаток или избыток электрического флюида. Недостаток флюида означает отрицательную электризацию, избыток - положительную. Так появилось понятие положительного и отрицательного заряда. При соединении положительно заряженных тел с отрицательными электрическая жидкость (флюид) переходит от тела с повышенным количеством жидкости к телам с пониженным количеством. Как в сообщающихся сосудах. С этой же гипотезой в науку вошло понятие движения электрических зарядов - электрического тока.
Гипотеза Франклина оказалась в высшей степени плодотворной и предвосхитила электронную теорию проводимости, Однако она оказалась далеко не безупречной. Дело в том, что французский ученый Дюфе обнаружил, что существует два вида электричества, которые, подчиняясь каждое в отдельности теории Франклина, при соприкосновении нейтрализовывали друг друга. Причиной появления новой дуалистической теории электричества, выдвинутой Симмером на основании опытов Дюфе, была простой. Как это ни поразительно, но на протяжении многих десятилетий экспериментов с электричеством никто не заметил, что при натирании электризуемых тел, заряжается не только натираемое, но и натирающее тело. Иначе гипотеза Симмера просто бы не появилась. Но в том, что она появилась, есть своя историческая справедливость.
Дуалистическая теория считала, что в телах обычном состоянии содержатся два рода электрической жидкости в РАЗНЫХ количествах, нейтрализующих друг друга. Электризация объяснялась тем, что соотношение положительных и отрицательных электричеств в телах менялось. Не очень понятно, но надо же было как-то объяснять реально существующие явления.
Обе гипотезы с успехом объясняли основные электростатические явления и долгое время конкурировали друг с другом. Исторически дуалистическая теория предвосхитила ионную теорию проводимости газов и растворов.
Изобретение вольтова столба в 1799 г. и последовавшее за ним открытие явления электролиза позволило сделать выводы о том, что при электролизе жидкостей и растворов в них наблюдается два противоположных направления движения зарядов - положительного и отрицательного. Дуалистическая теория торжествовала, так как при разложении, например, воды наглядно можно было видеть, что на положительном электроде выделяются пузырьки кислорода, а на отрицательном - водорода. Однако и здесь было не все гладко. При разложении воды количество выделяемых газов было неодинаково. Водорода было вдвое больше кислорода. Это ставило в тупик. Как мог бы помочь ученым того времени любой нынешний школьник, знающий, что в молекуле воды на атом кислорода приходится два атома водорода (знаменитое H2O) но химики еще не сделали этого открытия.
Революционный демократ А.И. Герцен, выпускник физико-математического факультета Московского университета, писал, что эти гипотезы не помогают, а даже “делают страшный вред учащимся, давая им слова вместо понятий, убивая в них вопрос ложным удовлетворением. “Что есть электричество?” - “Hевесомая жидкость”. Не правда ли лучше было бы, если бы ученик отвечал: “Не знаю”?”. Все-таки не прав был Герцен. Ведь в современной терминологии электрический ток ТЕЧЕТ от плюса к минусу источника, а не как-нибудь по другому передвигается и мы нисколько этим не огорчены.
Сотни ученых разных стран проводили тысячи опытов с вольтовым столбом, но только через двадцать лет датским ученым Эрстедом было открыто магнитное действие электрического тока. В 1820 г. было опубликовано его сообщение о том, что проводник с током влияет на показания магнитной стрелки. После многочисленных экспериментов он дает правило, по которому можно определить направление отклонения магнитной стрелки от тока или тока от направления магнитной стрелки. “Мы будем пользоваться формулой: полюс, который видит отрицательное электричество, входящим над собой, отклоняется к востоку”. Правило настолько туманное, что современный грамотный человек не сразу и разберется как им воспользоваться, а что же говорить о том времени, когда понятия еще не устоялись.
Поэтому Ампер в труде, представленном Парижской академии наук, сначала решает принять одно из направлений токов за основное, а потом дает правило, по которому можно определить действие магнитов на токи. Читаем: “Так как мне пришлось бы постоянно говорить о двух противоположных направлениях, по которым текут оба электричества, то, во избежание излишних повторений, после слов НАПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА, я буду всякий раз подразумевать ПОЛОЖИТЕЛЬНОГО электричества”. Так впервые было введено ныне общепринятое правило направления тока. Ведь до открытия электрона еще оставалось еще более семидесяти лет.
Направление тока во всех правилах подразумевало движение ПОЛОЖИТЕЛЬНО заряженных частиц.
Этого канона придерживался позже и Максвелл, придумавший правило “пробочника” или “буравчика” для определения направления магнитного поля катушки. Однако вопрос об истинном направлении тока оставался открытым. Вот что писал Фарадей: “Если я говорю. что ток идет от положительного места к отрицательному, то лишь в согласии с традиционным, хотя до некоторой степени молчаливым соглашением, заключенным между учеными и обеспечивающим им постоянное ясное и определенное средство для указания направления сил этого тока”.
После открытия электромагнитной индукции Фарадеем (наведение тока в проводнике в изменяющемся магнитном поле) возникла необходимость для определения направления индуцированного тока. Это правило дал выдающийся русский физик Э.Х.Ленц. Оно гласит: “Если металлический проводник перемещается вблизи тока или магнита, то в нем возникает гальванический ток. Направление этого тока таково, что покоящийся провод пришел бы от него в движение, противоположное действительному перемещению»”. То есть правило сводилось к такому типу, как “спроси совет и поступи наоборот”.
Правила, известные нынешним выпускника школ, как “правило левой руки” и “правило правой руки” в окончательном виде предложил английский физик Флеминг и служат они для ОБЛЕГЧЕНИЯ ЗАПОМИНАНИЯ физического явления физикам, студентам и школьникам, а не для того, чтобы им морочить головы.
Эти правила широко вошли в практику и учебники физики и после открытия электрона очень многое пришлось бы изменять и не только в учебниках, если указывать истинное направление тока. Так и живет эта условность более полутора столетий. Сначала она не вызывала трудностей, но с изобретением электронной лампы (по иронии судьбы первую радиолампу изобрел Флеминг) и широким применением полупроводников начали возникать трудности. Поэтому физики и специалисты по электронике предпочитают говорить не о направлениях электрического тока, а о направлениях движения электронов, или зарядов. Но электротехника по-прежнему оперирует старыми определениями. Иногда это вызывает путаницу. Можно было бы внести коррективы, но не вызовет ли это больше неудобств, чем существующие?

Суд над электрической лампочкой
Внедрение научно-технических достижений в повседневную практику нередко сталкивалось с таким противодействием, что поборникам нового приходилось порой использовать форму судебного процесса с обвинителями, защитниками и судьями для доказательства преимуществ новой техники.
Удивительно, но факт, что с помощью судебного процесса пришлось доказывать широкой публике, казалось бы, очевидные преимущества электрического освещения.
Для этого в марте 1879 года английский парламент учредил комиссию, которая должна была положить конец кривотолкам и нелепым слухам, распускавшимся противниками электричества - газовыми компаниями.
Комиссия обладала значительными полномочиями: она имела право вызывать всех свидетелей, каких сочтет нужными, и на тех же правах, на которых их вызывает суд. Дознание производилось так же, как судебное следствие. Ответчиком было электричество.
Свидетели давали показания относительно его свойства и действий, стенографисты записывали их. Члены комиссии занимали судейские места. Стол с вещественными доказательствами был заставлен различными электрическими приборами, с которыми тут же проводились опыты. Стены покрывали чертежи и диаграммы.
Председателем суда был избран профессор химии Л. Плейфер. Строго соблюдая процедуру суда, комиссия “допросила” свидетелей защиты - Тиндаля, Томсона, Приса, Сименса, Кука и других.
Доводы свидетелей обвинения были следующими. По мнению художников, электрический свет “холоден и представляет мало экспрессии”. Английские леди находили, что он придает “какую-то мертвенность лица и, кроме того, затрудняет выбор одежды, так как освещенные электрическим светом костюмы кажутся иными, чем при вечернем освещении”.
Торговцы Биллинсгсэтского рынка жаловались на то, что “электрический свет придает дурной вид рыбе, и просили снять устроенное у них освещение”. Многие жаловались на резь в глазах и мигание света. Свидетели защиты терпеливо разъясняли, что следует смотреть не на фонари, а на освещенные ими предметы, что смотреть прямо на солнце еще больнее, но никто не ставит это в вину солнечному свету. Что мертвенность лица замечается только “при смешении газового света с электрическим”. Что “мигание” дуги в лампах от некачественно изготовленных электродов. И т.д. и т.п.
В приговоре комиссия постановила, что электрический свет вышел из области опытов и проб и ему необходимо предоставить возможность конкуренции с газовым освещением. Комиссия запретила передавать электрическое освещение газовым компаниям, “как некомпетентным в вопросах электротехники”.
Что же касается экономичности, то электротехнике предстояло пройти еще длительный путь - к созданию центральных электрических станций, линий электропередачи и распределительных устройств.

Интересные факты из истории создания и эксплуатации электрического счетчика

Величайшим изобретением девятнадцатого века было изобретение "метода изобретений". Этот афоризм английского математика и философа Альфреда Норда Вайтхэда (1891-1947) прекрасно отражает историю создания электрического счетчика, который совершенствовался с каждым новым изобретением, следовавшим одно за другим, основываясь на научных достижениях и стимулируя дальнейшее развитие.

Первая половина девятнадцатого века принесла блестящие открытия в области электромагнетизма. В 1820 году француз Андре-Мари Ампер (1775-1836) открыл явление взаимодействия электрических токов. В 1827 году немец Георг Симон Ом (1787-1854) установил зависимость между силой тока и напряжением в проводниках. В 1831 году англичанин Майкл Фарадей (1791-1867) открыл закон электромагнитной индукции, который лежит в основе принципа действия генераторов, двигателей и трансформаторов.

Не удивительно, что когда настало время, ключевые изобретения совершаются почти одновременно в разных частях света. Венгр Отто ТитусБлати, изобретатель индукционного электросчетчика и со-изобретатель трансформатора, вспоминая в 1930 году этот захватывающий период, говорил: "В мое время было легко. Наука походила на тропический лес. Все, что было нужно, это хороший топор, и куда бы ты ни ударил, мог срубить огромное дерево".

С изобретением динамо-машины (АньошЙедлик в 1861 г., Вернер фон Сименс в 1867 г.) появилась возможность вырабатывать электроэнергию в больших количествах. Первой областью массового применения электричества стало освещение. Но когда электроэнергию - начали продавать, возникла необходимость определить цену. Однако было неясно, в каких единицах следует вести учет и какие принципы измерения были бы наиболее удобными.

Первым электросчетчиком стал счетчик часов работы лампы Самюэля Гардинера (США), запатентованный в 1872 году. Он измерял время, в течение которого электроэнергия подавалась в точку нагрузки, при этом все лампы, подключенные к этому счетчику, контролировались одним выключателем. С появлением электрической лампочки Эдисона стало практиковаться разветвление цепей освещения, и такой счетчик вышел из употребления.

Электролитические счетчики

Томас Альва Эдисон (1847-1931), который внедрил первые распределительные осветительные электросети постоянного тока, утверждал, что электричество нужно продавать как газ – в те времена широко используемый в целях освещения.

"Электрический счётчик" Эдисона, запатентованный в 1881 году, использовал электрохимический эффект тока. Он содержал электролитическую ячейку, куда в начале расчётного периода помещалась точно взвешенная пластинка меди. Ток, проходящий через электролит, вызывал осаждение меди. В конце расчетного периода, медную пластинку взвешивали снова, и разница в весе отображала количество электричества, которое прошло сквозь нее. Этот счетчик был калиброван таким образом, что счета можно было выставлять в кубических футах газа.

Такие счетчики продолжали использовать до конца 19-го века. Однако у них был большой недостаток: считывание показаний представляло сложность для энергетической компании и было совершенно невозможным для потребителя. Позднее Эдисон добавил счетный механизм для удобства считывания показаний счетчика.

Существовали и другие электролитические счетчики, такие как водородный счётчик немецкой компании "Сименс-Шукерт" (SiemensShuckert) и ртутный счётчик Йенского стекольного завода "ШоттундГеноссен" (Schott&Gen.Jena).Но электролитические счетчики могли измерять только ампер-часы и не годились при колебаниях напряжения.

Маятниковые счётчики

Еще одним из возможных принципов конструкции счетчиков было создание некоторого движения – колебания или вращения – пропорционального энергии, которое, в свою очередь, могло бы запустить счетный механизм для отображения показаний счетчика.

Принцип работы маятникового счетчика был описан американцами Вильямом Эдвардом Эйртоном и Джоном Перри в 1881 году. В 1884 году в Германии, не зная об их изобретении, Германн Арон (1845-1902) сконструировал маятниковый счетчик.

В более усовершенствованной модели этого счетчика имелось два маятника с катушками на каждом, подключенными к источнику напряжения. Под маятниками помещались две токовые катушки с противоположными намотками. Благодаря взаимодействию катушек один из маятников двигался медленнее, а другой быстрее, чем без электрической нагрузки. Эта разность хода передавалась счетному механизму счетчика. Маятники менялась ролями каждую минуту, чтобы компенсировать разницу в исходной частоте колебаний. В этот же момент заводился часовой механизм. Но такие счетчики были дорогостоящими, потому что они содержали два часовых механизма, и их постепенно вытеснили моторные счётчики. Маятниковый счетчик позволял измерять ампер-часы или ватт-часы, но его можно было использовать исключительно для сетей постоянного тока.

Моторные счетчики

Другой альтернативой для создания электросчетчика было использование мотора. В таких счетчиках, вращающий момент пропорционален нагрузке и уравновешивается противодействующим моментом, таким образом, частота вращения ротора пропорциональна нагрузке, тогда как моменты находятся в равновесии. В 1889 году Американец Элиху Томсон (1853-1937) разработал свой "Самопишущий ваттметр" для компании "Дженерал Электрик" (GeneralElectric).

Это был двигатель с якорем без металлического сердечника, который запускался от электрического напряжения, проходящего через катушку и резистор с помощью коллектора. Статор приводился в движение током, и поэтому вращающий момент был пропорционален произведению напряжения и силы тока. Тормозной момент обеспечивался постоянным электромагнитом, который воздействовал на алюминиевый диск, прикрепленный к якорю. Такой счетчик использовался преимущественно для постоянного тока. Большим недостатком моторных электросчетчиков являлся коллектор.

Изобретение трансформаторов

Во времена, когда только началось распределение электрической энергии, было еще неясно, какие системы окажутся эффективней: системы постоянного или переменного тока. Однако вскоре выявился один важный недостаток систем постоянного тока – напряжение нельзя было изменить, а, следовательно, было невозможно создавать более крупные системы. В 1884 году француз Люсьен Голар (1850-1888) и англичанин Джон Диксон Гиббс изобрели "вторичный генератор", предшественник современного трансформатора. На практике трансформатор разработали и получили патент для компании "Ганц" (Ganz) в 1885 году трое венгерских инженеров – Карой Циперновский, Отто ТитуцБлати и Микса Дери. В том же году Вестингхаус купил патент Голара и Гибсона, а Вильям Стэнли (1858-1916) усовершенствовал дизайн. Джордж Вестингхаус (1846-1914) также приобрел патенты Николя Теслы на использование переменного тока. Благодаря этому появилась возможность применения электрических систем переменного тока. Начиная с 20-го столетия, они постепенно сменили системы постоянного тока.

Для учета электроэнергии потребовалось решить новую задачу – измерение электроэнергии переменного тока.

Индукционные счетчики

В 1885 году итальянец Галилео Феррарис (1847-1897) сделал важное открытие, что два не совпадающих по фазе поля переменного тока могут заставить вращаться сплошной ротор, такой как диск или цилиндр. В 1888 году независимо от него американец хорватского происхождения Николя Тесла (1857-1943) тоже обнаружил вращающееся электрическое поле. Шелленбергер также, случайно, открыл эффект вращающихся полей в 1888 году и разработал счётчик количества электричества для переменного тока. Противодействующий момент создавался винтовым механизмом. В таком счетчике отсутствовал элемент напряжения, чтобы учесть коэффициент мощности, поэтому он не подходил для работы с электродвигателями. Эти открытия послужили основой для создания индукционных двигателей и открыли путь индукционным счетчикам.

В 1889 году венгр Отто ТитуцБлати (1860-1939), работая на завод "Ганц" (Ganz) в г. Будапешт, Венгрия, запатентовал свой "Электрический счётчик для переменных токов" (патент Германии № 52.793, патент США № 423.210).

Как описывается в патенте, "Этот счетчик, по существу, состоит из металлического вращающегося тела, такого как диск или цилиндр, на который действуют два магнитных поля, сдвинутые по фазе друг относительно друга. Это смещение фаз является результатом того, что одно поле создается главным током, в то время как другое поле образуется за счет катушки с большой самоиндукцией, шунтирующей те точки цепи, между которыми измеряется потребляемая энергия. Однако магнитные поля не пересекаются в теле вращения, как в хорошо известном механизме Феррариса, а проходят сквозь разные его части, независимо друг от друга".

С таким устройством Блати удалось достичь внутреннего смещения фаз почти ровно на 90°, поэтому счетчик отображал ватт-чаты более или менее корректно. В счетчике использовался тормозной электромагнит для обеспечения широкого диапазона измерений, а также был предусмотрен циклометрический регистр. В том же году компания "Ganz" приступила к производству. Первые счетчики крепились на деревянной основе, делая 240 оборотов в минуту, и весили 23 кг. К 1914 году вес снизился до 2,6 кг. В 1894 году Оливер БлэкбурнШелленбергер (1860-1898) разработал счетчик ватт-часов индукционного типа для компании "Вестингхаус" (Westinghouse). В нем катушки тока и напряжения располагались на противоположных сторонах диска, и два постоянных магнита замедляли движение этого диска. Этот счетчик тоже был большим и тяжелым, весом в 41 фунт. У него был барабанный счетный механизм.

В 1899 году Людвиг Гутманн, работая на фирму "Сангамо" (Sangamo), разработал счётчик ватт-часов активной энергии переменного тока типа "A". Ротор состоял из цилиндра со спиральной прорезью, расположенного в полях катушек напряжения и тока. Диск, прикрепленный ко дну цилиндра, использовался для торможения с помощью постоянного магнита. Регулировка коэффициента мощности не была предусмотрена.

Дальнейшие усовершенствования

В последующие годы было достигнуто много усовершенствований: уменьшение веса и габаритов, расширение диапазона нагрузки, компенсация изменения коэффициента нагрузки, напряжения и температуры, устранение трения путем замены подпятников шарикоподшипниками, а затем двойными камнями и магнитными подшипниками, а также продление срока стабильной работы за счет улучшения качественных характеристик тормозных электромагнитов и удаления масла изопоры и счетного механизма. К очередному столетию, были разработаны трехфазные индукционные счетчики, использующие две или три системы измерения, установленные на одном, двух или трех дисках.

Новые функциональные возможности Индукционные счётчики, известные также как счетчики Феррариса, и счетчики, основанные на принципах счетчика Блати, все еще производятся в больших количествах и выполняют основную работу по учету энергии, благодаря их низкой стоимости и отличным показателям надёжности.

По мере распространения электричества, быстро появилась концепция многотарифного электросчетчика с локальным или дистанционным управлением, счетчика максимальной нагрузки, счётчика предварительно оплаченной электроэнергии и "Максиграфа".

Первая система контроля пульсаций была запатентована в 1899 году французом Сезаром Рене Лубери, и ее совершенствовали во многих компаниях: "Компани де Комптёр" (CompagniedesCompteurs) (позднее "Шлюмберже" (Schlumberger)), "Сименс" (Siemens), "АЕГ" (AEG), "Ландис и Гир" (Landis&Gyr), "Цельвегер" (Zellweger) и "Саутер" (Sauter) и "Браун Бовери" (BrownBoveri), - и это перечень только некоторых из них.

В 1934 году компания "Ландис и Гир" (Landis&Gyr) разработала счетчик "Тривектор", измеряющий активную и реактивную энергию и потребляемую мощность.

Электронные счётчики и дистанционное считывание показаний

Выдающийся период первоначальной разработки счетчиков подошел к концу. Как сказал Блати, продолжая свою метафору: "Теперь ты бродишь сутками напролет, не натыкаясь даже на куст".

Электронные технологии не находили применения в учете энергии до тех пор, пока в 1970-х годах не появились первые аналоговые и цифровые интегральные микросхемы. Это можно легко понять, если задуматься об ограниченном расходе энергии в замкнутом корпусе электросчетчика и ожидаемой надёжности. Новая технология дала новый толчок к развитию электрических счетчиков. Сначала были разработаны точные стационарные счетчики, главным образом использующие принцип время-импульсного умножения. Также применялись ячейки Холла, в основном для коммерческих и квартирных электросчетчиков. В 1980-х годах были разработаны гибридные счетчики, состоящие из индукционных счетчиков и электронных тарифных единиц. Эта технология использовалась относительно недолго.

Дистанционные измерения

Идея считывания показаний счетчиков на расстоянии появилась в 1960-х годах. Первоначально использовалась дистанционная импульсная передача, но постепенно вместо нее стали использовать различные протоколы и средства передачи данных.

В настоящее время счетчики с развитыми функциональными возможностями основываются на новейших электронных технологиях, с применением цифровой обработки сигналов, причем большинство функций предусмотрены встроенным программным обеспечением.

Стандарты и точность измерения

Необходимость в тесном сотрудничестве между производителями и энергетическими компаниями осознана относительно рано. Первый стандарт измерений, Код C12 Американского Национального Института Стандартов (ANSI) для измерения электроэнергии, был разработан еще в 1910 году. В его предисловии сказано: "При том, что этот Код, естественно, основывается на научно-технических принципах, мы всегда осознавали большую важность коммерческой стороны измерений ".

Первый известный стандарт измерения Международной Электротехнической Комиссии (МЭК), Издание 43, датируется 1931 годом.

Высокий стандарт точности – это отличительная характеристика, которую установила и продолжает сохранять измерительная индустрия. Уже в 1914 году в проспектах описываются счетчики с точностью 1.5% при диапазоне измерений от 10% и менее до 100% максимального тока. Стандарт МЭК 43:1931 устанавливает класс точности 2.0. Такой уровень точности до сих пор считается удовлетворительным для большинства счетчиков, находящихся сегодня в коммунально-бытовом применении, даже для стационарных счетчиков.

Птица не погибает, потому что по её телу проходит ничтожно малый ток. Однако, стоит ей коснуться какого-либо заземлённого предмета (например, металлической опоры), как возникшее напряжение моментально её убьёт.

2) Многие животные способны вырабатывать электричество. Например, электрические угри в целях самообороны или охоты могут вырабатывать электрический ток напряжением до 500 В. Поэтому жители некоторых районов Амазонки, охотясь на них, защищаются от ударов тока, предварительно “разряжая” угрей при помощи стада коров.

3) Рыбы из отряда гимнотообразных (Южная Америка) определяют доминирующего самца по самой высокой частоте электрического сигнала.

4) Тело человека, в частности мышцы сердца, способно вырабатывать электроэнергию. Именно благодаря этому Электрокардиограмма позволяет измерять ритм биения сердца. 5) Первая электрическая цепь была построена ещё при дворе Людовика XV. Она была “живой”, так как во время опыта через тела 180 солдат был пропущен разряд, полученный при помощи Лейденской банки.

6) В конце 19 века между изобретателями постоянного и переменного тока Т. Эдисоном и Н. Теслой разгорелась настоящая война. Была предпринята попытка в законодательном порядке исключить возможность передачи переменного тока при помощи ЛЭП. Однако, как известно, предпочтение впоследствии всё-таки было отдано переменному току.

7) В 1874 году в России была предпринята попытка сократить расходы электроэнергии при её транспортировке, используя для этого железнодорожные рельсы. Инженер Ф. Пироцкий использовал один из рельсов как прямой провод, а второй — как обратный. Идея создания на этой основе городского транспорта оказалась небезопасной для пешеходов и получила своё применение гораздо позже в современном метро.

8) При попадании в человека разряда молнии на его теле образовывается особый рисунок, носящий название фигуры Лихтенберга.


9) В самом начале исследований электрических явлений, не имея специальных приборов, учёные вынуждены были жертвовать свои здоровьем ради науки. В. Петров, впервые давший научное описание явлению электрической дуги срезал верхний слой кожи на пальцах, чтобы лучше чувствовать слабые токи.