Хромосома - это организованная структура ДНК и белка, содержащаяся в клетках. Это один кусочек свернутой в спираль ДНК, содержащий много генов, регулирующих элементов и других нуклеотидных последовательностей. Хромосомы также содержат связанные с ДНК белки, которые служат для упаковки ДНК и контролирования ее функций. Хромосомная ДНК кодирует всю генетическую информацию организма или большую ее часть; некоторые виды также содержат плазмиды или другие экстрахромосомные генетические элементы.

Или болезнь Дауна, также известный как трисомия 21 является наследственным заболеванием, вызванным присутствием части или целой 3 копии 21 хромосомы . Обычно, он связан с задержкой физического развития, характерными чертами лица или от легкого до умеренного интеллектуального...


Хромосомы широко варьируются между разными организмами. Молекула ДНК может быть круглой или линейной, и в ее составе может быть от 100000 до более 3750000000 нуклеотидов в длинной цепочке. Обычно клетки-эукариоты (клетки с ядрами) имеют большие линейные хромосомы, а клетки-прокариоты (клетки без определенных ядер) обладают круглыми хромосомами меньшего размера, хотя из этого правила есть много исключений. Кроме того в клетках могут содержаться хромосомы нескольких видов; например, митохондрии в большинстве эукариотов и хлоропласты в растениях имеют свои собственные маленькие хромосомы.

В эукариотах ядерные хромосомы упакованы белками в уплотненную структуру под названием хроматин. Это позволяет очень длинным молекулам ДНК вмещаться в клеточное ядро. Структура хромосом и хроматина варьируется в клеточном цикле. Хромосомы являются важным блоком для клеточного деления и должны воспроизводиться, делиться и пропускаться успешно к своим дочерним клеткам для обеспечения генетического разнообразия и выживания своего потомства. Хромосомы могут быть как дублированными, так и недублированными. Недублированные хромосомы - это единичные линейные пряди, в которых дублированные хромосомы содержат две идентичные копии (называемые хроматидами), объединенные центромерой.

Уплотнение дублированных хромосом во время митоза и мейоза приводит к образованию классической структуры с четырьмя плечами. Хромосомная рекомбинация играет жизненную роль в генетическом разнообразии. Если этими структурами манипулировать неправильно посредством процессов, известных, как хромосомная нестабильность и транслокация, клетка может подвергнуться митотической катастрофе и умереть, или она может неожиданно избежать апоптоза, приводя к прогрессированию рака.

На практике «хромосома» - это довольно неопределенный термин. Для прокариотов и вирусов, где нет хроматина, термин генофор является более пригодным. В прокариотах ДНК обычно организована в виде петли, которая скручена в тугую спираль на себе, иногда сопровождается одной или меньшими круглыми молекулами ДНК под названием плазмиды. Эти маленькие круглые геномы также обнаружены в митохондриях и хлоропластах, что отражает их бактериальное происхождение. Простейшие генофоры обнаружены в вирусах: это молекулы ДНК или РНК - короткие линейные или круглые генофоры, которые часто лишены структурных белков.

Слово «хромосома » образовано греческими словами «χρῶμα» (chroma , цвет) и «σῶμα» (soma , тело) из-за свойства хромосом подвергаться очень сильному окрашиванию определенными красителями.

История изучения хромосом

В ряде экспериментов, начатых в середине 1880-х, Теодор Бовери определенно продемонстрировал, что хромосомы являются векторами наследственности. Его двумя принципами были последовательность хромосом и индивидуальность хромосом. Второй принцип был очень оригинальным. Вильгельм Ру предположил, что каждая хромосома несет разную генетическую нагрузку. Бовери смог протестировать и подтвердить эту гипотезу. При помощи повторного открытия, сделанного в ранней работе Грегора Менделя, в начале 1900-х, Бовери смог отметить связь между правилами наследования и поведением хромосом. Бовери повлиял на два поколения американских цитологов: среди них Эдмунд Бичер Уилсон, Уолтер Саттон и Теофилус Пейнтер (в действительности Уилсон и Пейнтер работали с ним).

В своей знаменитой книге «Клетка в развитии и наследственности » Уилсон связал вместе независимую работу Бовери и Саттона (около 1902 г.), назвав хромосомную теорию наследственности «Теорией Саттона-Бовери» (имена иногда переставляются местами). Эрнст Мэйр отмечает, что теория была горячо оспорена некоторыми знаменитыми генетиками, например, Уильямом Бэйтсоном, Вильгельмом Йохансеном, Ричардом Гольдшмидтом и Т.Х. Морганом, все они обладали довольно догматичным складом ума. В итоге полное доказательство было получено от хромосомных карт в собственной лаборатории Моргана.

Прокариоты и хромосомы

Прокариоты - бактерии и археи - обычно имеют одну круглую хромосому, но существует много вариаций.

В большинстве случаев размер хромосом бактерий может варьироваться от 160000 пар оснований в эндосимбиотической бактерии Candidatus Carsonella ruddii до 12200000 пар оснований в обитающей в почве бактерии Sorangium cellulosum . Спирохеты рода Borrelia являются замечательным исключением из этой классификации вместе с такими бактериями, как Borrelia burgdorferi (причина болезни Лайма), содержащими одну линейную хромосому.

Структура в последовательностях

Хромосомы прокариотов имеют меньшую структуру на основе последовательности, чем эукариоты. Бактерии обычно обладают одной точкой (происхождение дублирования), откуда начинается дублирование, в то время как некоторые археи содержат множество точек происхождения дублирования. Гены в прокариотах часто организованы в опероны и обычно не содержат интроны, в отличие от эукариотов.

Упаковка ДНК

Прокариоты не имеют ядер. Вместо этого их ДНК организована в структуру под названием нуклеоид. Нуклеоид - это отдельная структура, которая занимает определенный участок клетки бактерии. Однако эта структура динамична, поддерживается и трансформируется действиями похожих на гистон белков, которые связываются с бактериальной хромосомой. В археях ДНК в хромосомах даже более организованы, при этом ДНК упакованы в структуры, аналогичные нуклеосомам эукариотов.

Бактериальные хромосомы склонны привязываться к плазменной мембране бактерии. В молекулярном биологическом приложении это позволяет ее изоляцию от ДНК плазмида посредством центрифугирования лизированной бактерии и осаждения мембран (и присоединенной ДНК).

Хромосомы прокариотов и плазмиды являются, как ДНК эукариотов, в целом сверхспиральными. ДНК должна выделиться сначала в ослабленном состоянии для доступа к транскрипции, регулированию и дублированию.

В эукариотах

Эукариоты (клетки с ядрами, обнаруживаемые в растениях, дрожжах и животных) обладают большими линейными хромосомами, содержащимися в клеточном ядре. Каждая хромосома имеет одну центромеру, одно или два плеча выступают из центромеры, хотя в большинстве обстоятельств эти плечи, как таковые, не видны. К тому же большинство эукариотов обладают одним круглым митохондриальным геномом, а некоторые эукариоты могут иметь дополнительные маленькие круглые или линейные цитоплазматические хромосомы.

В ядерных хромосомах эукариотов неуплотненная ДНК существует в полуупорядоченной структуре, где она завернута вокруг гистонов (структурные белки), формируя композитный материал под названием хроматин.

Хроматин

Хроматин - это комплекс ДНК и белка, содержащийся в ядре эукариота, который упаковывает хромосомы. Структура хроматина варьируется значительно между различными этапами клеточного цикла, в соответствии с требованиями ДНК.

Межфазный хроматин

Во время межфазы (период клеточного цикла, когда клетка не делится) можно различить два вида хроматина:

  • Эухроматин, который состоит из активной ДНК, то есть выраженной в качестве белка.
  • Гетерохроматин, который состоит по большей части из неактивной ДНК. Как кажется, он служит структурным целям во время хромосомных стадий. Гетерохроматин можно далее разделить на два типа:
    • Конститутивный гетерохроматин , никогда не выражаемый. Он расположен вокруг центромеры и обычно содержит повторные последовательности.
    • Факультативный гетерохроматин , иногда выражаемый.

Метафазный хроматин и деление

На ранних стадиях митоза или мейоза (деление клетки) пряди хроматина становятся все более уплотненными. Они перестают функционировать, как доступный генетический материал (останавливается транскрипция), и становятся компактной транспортабельной формой. Эта компактная форма делает индивидуальные хромосомы видимыми, и они образуют классическую структуру с четырьмя плечами, с парой сестринских хроматид, присоединенных друг к другу в центромере. Более короткие плечи называются «p плечи » (от французского слова «petit» - маленький), а более длинные плечи называются «q плечи » (буква «q » следует за буквой «p » в латинском алфавите; q-g «grande» - большой). Это единственный натуральный контекст, в котором отдельные хромосомы видны при помощи оптического микроскопа.

Во время митоза микротрубочки вырастают из центросом, расположенных на противоположных концах клетки, и также присоединяются к центромере в специализированных структурах под названием кинетохоры, одна из которых присутствует на каждой сестринской хроматиде. Специальная последовательность оснований ДНК в области кинетохоров обеспечивает вместе со специальными белками долговременное присоединение к этой области. Микротрубочки затем оттягивают хроматиды к центросомам, чтобы каждая дочерняя клетка наследовала один набор хроматид. Когда клетки разделились, хроматиды раскручиваются, и ДНК может снова транскрибироваться. Несмотря на свой внешний вид, хромосомы структурно сильно уплотненные, что позволяет этим гигантским ДНК структурам помещаться в клеточные ядра.

Человеческие хромосомы

Хромосомы у людей могут быть разделены на два типа: аутосомы и половые хромосомы. Определенные генетические черты связаны с полом человека и передаются через половые хромосомы. Аутосомы содержат оставшуюся часть генетической наследуемой информации. Все действуют тем же образом во время деления клеток. В человеческих клетках содержатся 23 пары хромосом (22 пары аутосом и одну пару половых хромосом), что дает в целом 46 на клетку. В добавление к ним в человеческих клетках имеется много сотен копий митохондриального генома. Задание последовательности человеческого генома обеспечило много информации о каждой хромосоме. Ниже приводится таблица, в которой собрана статистика для хромосом на основе информации о геноме человека Института Сенгера в базе данных VEGA (Комментарии к геному позвоночных). Число генов - это приблизительная оценка, так как она частично основана на предсказании генов. Общая длина хромосом - это тоже приблизительная оценка, основанная на оцененном размере областей непоследовательных гетерохроматинов.

Хромосомы

Гены

Общее число комплементарных пар оснований нуклеиновых кислот

Упорядоченные комплементарные пары оснований нуклеиновых кислот

X (половая хромосома)

Y (половая хромосома)

Итого

3079843747

2857698560

Число хромосом в различных организмах

Эукариоты

В этих таблицах дается общее число хромосом (включая половые) в клеточных ядрах. Например, диплоидные человеческие клетки содержат 22 разных вида аутосомов, каждый присутствует в двух копиях, и две половых хромосомы. Это дает 46 хромосом в целом. Другие организмы имеют более двух копий своих хромосом, например, гексаплоидная хлебная пшеница содержит шесть копий семи разных хромосом, всего 42 хромосомы.

Число хромосом в некоторых растениях


Виды растений


Arabidopsis thaliana (диплоид)



Садовая улитка


Тибетская лиса


Домашняя свинья


Лабораторная крыса


Сирийский хомяк



Домашняя овца




Зимородок


Шелкопряд





Число хромосом в других организмах

Виды

Большие хромосомы

Промежуточные хромосомы

Микрохромосомы

Trypanosoma brucei

Домашний голубь (Columba livia domestics )

2 половых хромосомы







Нормальные члены отдельных видов эукариотов имеют то же число ядерных хромосом (см. таблицу). Другие хромосомы эукариотов, то есть митохондриальные и похожие на плазмиды маленькие хромосомы, значительнее варьируются в количестве, и на каждую клетку может быть тысяча копий.

Виды с бесполовым воспроизведением имеют один набор хромосом, тех же самых, что в клетках организма. Однако бесполые виды могут быть гаплоидными и диплоидными.

Виды с половым воспроизведением имеют соматические клетки (клетки организма), которые являются диплоидными , имеющими два набора хромосом, один от матери и другой от отца. Гаметы, репродуктивные клетки, являются гаплоидными [n]: у них один набор хромосом. Гаметы получены мейозом диплоидной клетки зародышевой линии. Во время мейоза соответствующие хромосомы отца и матери могут обмениваться маленькими частями друг друга (скрещивание), и тем самым образуют новые хромосомы, которые не унаследованы только от того или другого родителя. Когда соединяются мужская и женская гаметы (оплодотворение), формируется новый диплоидный организм.

Некоторые виды животных и растений полиплоидные : в них есть более двух наборов гомологических хромосом. Важные для сельского хозяйства растения , такие как табак или пшеница, часто полиплоидные, по сравнению с наследственными видами. Пшеница имеет гаплоидное число семи хромосом, обнаруженное в некоторых культурных растениях, а также в диких предках. Более распространенные макаронная и хлебная пшеница - полиплоидные, имеющие 28 (тетраплоид) и 42 (гексаплоид) хромосомы, по сравнению с 14 (диплоид) хромосомами в дикой пшенице.

Прокариоты

Виды прокариотов в целом имеют одну копию каждой главной хромосомы, но большинство клеток может легко выжить с многочисленными копиями. Например, Buchnera , симбионт тли, имеет много копий своей хромосомы, количество которых колеблется от 10 до 400 копий на клетку. Однако в некоторых больших бактериях, таких как Epulopiscium fishelsoni , могут присутствовать до 100 000 копий хромосомы. Количество копий плазмидов и похожих на плазмиды маленьких хромосом, как в эукариотах, значительно колеблется. Число плазмидов в клетке почти полностью определяется скоростью деления плазмидов - быстрое деление порождает высокое число копий.

Кариотип

В целом кариотип - это характерное хромосомное дополнение эукариотических видов. Подготовка и изучение кариотипов - это часть цитогенетики.

Хотя дублирование и транскрипция ДНК высоко стандартизированы в эукариотах, то же самое нельзя сказать для их кариотипов , которые обычно весьма изменчивы. Виды числа хромосом и их детальная организация могут варьироваться. В некоторых случаях между видами может быть значительное колебание. Часто имеется:

  1. колебание между двумя полами;
  2. колебание между зародышевой линией и сомой (между гаметами и оставшейся частью организма);
  3. колебание между членами популяции из-за сбалансированного генетического полиморфизма;
  4. географическое колебание между расами;
  5. мозаика или иные аномалии

Также колебание в кариотипе может возникнуть в ходе развития из оплодотворенной яйцеклетки.

Техника определения кариотипа обычно называется кариотипированием . Клетки могут быть блокированы частично через деление (в метафазе) в искусственных условиях (в реакционной пробирке) колхицином. Эти клетки затем окрашиваются, фотографируются и упорядочиваются в кариограмму, с набором упорядоченных хромосом, аутосом в порядке длины и половых хромосом (здесь X/Y) в конце.

Как и во многих видах с половым воспроизведением, у человека имеются специальные гоносомы (половые хромосомы, в противоположность аутосомам). Это XX у женщин и XY у мужчин.

Историческое примечание

На исследование человеческого кариотипа ушло много лет, прежде чем был получен ответ на самый основной вопрос: Сколько хромосом содержится в нормальной диплоидной человеческой клетке? В 1912 г. Ганс вон Винивартер сообщил о 47 хромосомах в сперматогониях и 48 - в оогониях, включая механизм определения пола XX/XO. Пейнтер в 1922 г. не был уверен по поводу диплоидного числа человека - 46 или 48, вначале склоняясь к 46. Он пересмотрел позднее свое мнение с 46 на 48, и правильно настаивал на том, что человек обладает системой XX/XY.

Для окончательного решения проблемы нужны были новые техники:

  1. Использование клеток в культуре;
  2. Подготовка клеток в гипотоническом растворе, где они набухают и распространяют хромосомы;
  3. Задержка митоза в метафазе раствором колхицина;
  4. Раздавливание препарата на предметодержателе, стимулируя хромосомы в единой плоскости;
  5. Разрезание микрофотографии и упорядочение результатов в неопровержимой кариограмме.

Только в 1954 г. было подтверждено диплоидное число человека - 46. Учитывая техники Винивартера и Пейнтера, их результаты были довольно примечательными. Шимпанзе (ближайший живущий родственник современных людей) имеет 48 хромосом.

Заблуждения

Хромосомные отклонения - это разрушения в нормальном хромосомном содержании клетки и основная причина генетических состояний у людей, таких как синдром Дауна, хотя большая часть отклонений оказывает небольшое влияние или не оказывает его совсем. Некоторые хромосомные нарушения не вызывают болезни у носителей, такие как транслокации или хромосомные инверсии, хотя они могут привести к повышенному шансу рождения ребенка с хромосомным нарушением. Аномальное количество хромосом или хромосомных наборов под названием анэуплоидия может быть летальным или дать рост генетическим нарушениям. Семьям, которые могут нести хромосомную перегруппировку, предлагается генетическая консультация.

Набор или потеря ДНК от хромосом может привести к разнообразным генетическим расстройствам. Примеры среди людей:

  • Синдром кошачьего крика, вызванный делением части короткого плеча хромосомы 5. Состояние получило такое название, потому что заболевшие дети издают пронзительные похожие на кошачьи крики. У людей, пораженных этим синдромом, широко поставленные глаза, маленькая голова и челюсть , умеренно-тяжелые проблемы с психическим здоровьем, невысокий рост.
  • Синдром Дауна, самая распространенная трисомия, обычно вызван лишней копией хромосомы 21 (трисомия 21). Характерные признаки включают пониженный мышечный тонус , коренастое телосложение , асимметричные скулы, раскосые глаза и слабо-умеренные нарушения развития.
  • Синдром Эдвардса или трисомия хромосомы 18, вторая наиболее распространенная трисомия. Симптомы включают замедленность движений, нарушения развития и многочисленные врожденные аномалии, вызывающие серьезные проблемы для здоровья. 90% больных умирают в младенчестве. Для них характерны сжатые кулаки и пальцы внахлест.
  • Изодицентрическая хромосома 15, также называемая idic(15), частичная тетрасомия длинного плеча хромосомы 15 или обратное дублирование хромосомы 15 (inv dup 15).
  • Синдром Якобсена возникает очень редко. Его также называют нарушением терминальной делеции длинного плеча хромосомы 11. Страдающие от него имеют нормальный интеллект или слабую неспособность развития, с плохими речевыми навыками. У большинства имеется нарушение кровотечения под названием синдром Пари-Труссо.
  • Синдром Клайнфельтера (XXY). Мужчины с синдромом Клайнфельтера обычно стерильны, как правило, выше ростом, руки и ноги у них длиннее, чем у ровесников. Мальчики с синдромом обычно застенчивые и тихие, у них выше вероятность замедленной речи и дислексии. Без лечения тестостероном у некоторых может развиться гинекомастия в подростковом периоде.
  • Синдром Патау, также называемый Д-синдромом или трисомия 13 хромосомы. Симптомы аналогичны в некоторой степени трисомии хромосомы 18, без характерной складчатой руки.
  • Маленькая добавочная маркерная хромосома. Это означает наличие дополнительной аномальной хромосомы. Свойства зависят от происхождения дополнительного генетического материала. Синдром кошачьих глаз и синдром изодицентрической хромосомы 15 (или idic15) вызваны добавочной маркерной хромосомой, как синдром Паллистера-Киллиана.
  • Синдром тройной Х хромосомы (XXX). Девочки XXX, как правило, выше ростом, более худые и у них выше вероятность дислексии.
  • Синдром Тернера (X вместо XX или XY). При синдроме Тернера женские половые признаки имеются, но недоразвиты. Женщины с синдромом Тернера имеют короткое туловище, низкий лоб, аномалии развития глаз и костей и вогнутую грудь.
  • Синдром XYY. Мальчики XYY обычно выше своих братьев и сестер. Как у мальчиков XXY и девочек XXX, у них больше вероятность возникновения трудностей с обучением.
  • Синдром Вольфа Хиршхорна, который вызван частичным разрушением короткого плеча хромосомы 4. Он характеризуется тяжелой задержкой роста и серьезными проблемами психического здоровья.

). Хроматин неоднороден, и некоторые типы такой неоднородности видны под микроскопом. Тонкая структура хроматина в интерфазном ядре, определяемая характером укладки ДНК и ее взаимодействия с белками, играет важную роль в регуляции транскрипции генов и репликации ДНК и, возможно, клеточной дифференцировки .

Последовательности нуклеотидов ДНК, которые образуют гены и служат матрицей для синтеза мРНК , распределены по всей длине хромосом (отдельные гены, разумеется, слишком малы, чтобы их можно было видеть под микроскопом). К концу XX столетия примерно для 6000 генов было установлено, на какой хромосоме и в каком участке хромосомы они находятся и каков характер их сцепления (то есть положения друг относительно друга).

Неоднородность метафазных хромосом, как уже упоминалось, можно увидеть даже при световой микроскопии. При дифференциальном окрашивании по меньшей мере в 12 хромосомах обнаружены различия в ширине некоторых полос между гомологичными хромосомами ( рис. 66.3). Такие полиморфные участки состоят из некодирующих высокоповторяющихся последовательностей ДНК.

Методы молекулярной генетики сделали возможной идентификацию огромного числа меньших по размеру и потому не выявляемых при световой микроскопии полиморфных участков ДНК. Эти участки выявляют как полиморфизм длин рестрикционных фрагментов, варьирующие по числу тандемные повторы и полиморфизм коротких тандемных повторов (моно-, ди-, три- и тетрануклеотидных). Такая изменчивость фенотипически обычно не проявляется.

Однако полиморфизм служит удобным инструментом пренатальной диагностики благодаря сцеплению определенных маркеров с мутантными генами, вызывающими заболевания (например, при миопатии Дюшенна), а также при установлении зиготности близнецов , установлении отцовства и прогнозирования отторжения трансплантата .

Трудно переоценить значение таких маркеров, особенно широко распространенных в геноме высокополиморфных коротких тандемных повторов, для картирования генома человека. В частности, они позволяют установить точный порядок и характер взаимодействия локусов, играющих важную роль в обеспечении нормального онтогенеза и клеточной дифференцировки. Это касается и тех локусов, мутации в которых приводят к наследственным заболеваниям.

Различимые под микроскопом участки на коротком плече акроцентрических аутосом ( рис. 66.1) обеспечивают синтез рРНК и образование ядрышек , поэтому их называют районами ядрышкового организатора . В метафазе они неконденсированы и не окрашиваются. Районы ядрышкового организатора примыкают к находящимся на конце короткого плеча хромосомы конденсированным участкам хроматина - спутникам. Спутники не содержат генов и являются полиморфными участками.

В небольшой части клеток удается выявить другие деконденсированные в метафазе участки, так называемые ломкие участки , где могут происходить "полные" разрывы хромосомы. Клиническое значение имеют нарушения в единственном подобном участке, расположенном на конце длинного плеча Х-хромосомы. Такие нарушения вызывают синдром ломкой Х-хромосомы .

Другие примеры специализированных районов хромосом - теломеры и центромеры .

Пока точно не установлена роль гетерохроматина , на долю которого приходится значительная часть генома человека. Гетерохроматин конденсирован в течение практически всего клеточного цикла, он неактивен и реплицируется поздно. Большинство участков конденсированы и неактивны во всех клетках (), хотя другие, например Х-хромосома, могут быть как конденсированными и неактивными, так и деконденсированными и активными ( факультативный гетерохроматин). Если из-за хромосомных аберраций гены оказываются рядом с гетерохроматином, то активность таких генов может изменяться или даже блокироваться. Поэтому проявления хромосомных аберраций , таких, как дупликации или делеции, зависят не только от затронутых локусов, но и от типа хроматина в них. Многие хромосомные аномалии, не являющиеся летальными, затрагивают неактивные или инактивируемые участки генома. Возможно, этим объясняется, что трисомии по некоторым хромосомам или моносомии по Х-хромосоме совместимы с жизнью.

Проявления хромосомной аномалии зависят также от нового расположения структурных и регуляторных генов по отношению друг к другу и к гетерохроматину.

К счастью, многие структурные особенности хромосом удается надежно обнаружить цитологическими методами. В настоящее время существует ряд методов дифференциального окрашивания хромосом ( рис. 66.1 и рис. 66.3). Расположение и ширина полос идентичны в каждой паре гомологичных хромосом, за исключением полиморфных участков, поэтому окрашивание можно использовать в клинической цитогенетике для идентификации хромосом и выявления в них структурных нарушений.

ХРОМОСОМЫ (греческий chroma цвет, окраска + soma тело) - главные структурно-функциональные элементы клеточного ядра, содержащие расположенные в линейном порядке гены и обеспечивающие хранение, воспроизводство генетической информации, а также начальные этапы ее реализации в признаки; изменяют свою линейную структуру в клеточном цикле. Термин «хромосомы» предложен Вальдейером (W. Waldeyer) в 1888 году из-за палочковидной формы и интенсивного окрашивания этих элементов основными красителями в период деления клетки.

Термин «хромосома» в полном его значении применим к соответствующим ядерным структурам клеток многоклеточных эукариотных организмов (см.). В ядре таких клеток хромосом всегда несколько, они составляют хромосомный набор (см.). В соматических клетках хромосомы парны, так как происходят от двух родительских (диплоидный набор хромосом), в зрелых половых клетках содержится одинарный (гаплоидный) набор хромосом. Каждый биологический вид характеризуется постоянным числом, размерами и другими морфологическими признаками хромосом (см. Кариотип). У разнополых организмов хромосомный набор включает две хромосомы, несущие гены, определяющие пол особи (см. Ген , Пол), которые называют половыми, или гоносомами, в противоположность всем остальным, именуемым аутосомами. У человека пара половых хромосом составлена: у женщин из двух X-хромосом (XX набор), а у мужчин - из X и Y-хромосом (XY набор). Поэтому в зрелых половых клетках - гаметах у женщин содержится только X-хромосома, тогда как у мужчин половина сперматозоидов содержит Х-хромосому, а другая - Y-хромосому.

История

Первые наблюдения хромосом в ядре клетки, выполненные в 70-х годах 19 века И. Д. Чистяковым, О. Гертвигом, Страсбургером (E. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 века это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях (см. Мейоз , Митоз), факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В 20-40-х годах 20 века преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С. Г. Навашин, Г. А. Левитский, Л. Н. Делоне, П. И. Живаго, А. Г. Андрес, М. С. Навашин, А. А. П рокофъева-Бельговская, а также зарубежные - Хейтц (E. Heitz), Дарлингтон (С. D. Darlington) и др. С 50-х годов для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 году Тио (H. J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х годах после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в мета фазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков (см. Менделя законы) положило начало цитогенетическим исследованиям. В конце 19 - начале 20 века Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е. В. Wilson) были заложены основы хромосомной теории наследственности (см.), согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле (см.) Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов (см. Рекомбинация) гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30-40-е годы 20 века, первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х годов для этих целей стали применять фото- и спектрометрию (см. Спектрофотометрия), рентгеноструктурный анализ (см.) и другие физико-химические методы.

Физико-химическая природа хромосом

Физико-химическая природа хромосом зависит от сложности организации биологического вида. Хромосома эукариот состоит из молекулы дезоксирибонуклеиновой кислоты (см.), гистоновых и негистоновых белков (см. Гистоны), а также рибонуклеиновой кислоты (см.). Основным химическим компонентом хромосомы, заключающим в структуре своей молекулы генетическую информацию, является ДНК. В естественных условиях в отдельных участках хромосомы ДНК может быть свободной от структурных белков, однако в основном она существует в виде комплекса с гистонами, причем как и в интерфазе, так и в метафазе весовое отношение ДНК/гистон составляет единицу. Содержание кислых белков в хромосомах варьирует в зависимости от их активности и степени конденсации в клеточном цикле. В хроматине (см.) интерфазного ядра и на любой стадии митотической конденсации ДНК существует в комплексе с гистонами, и взаимодействие именно этих молекул создает элементарные структурные частицы хроматина - нуклеосомы. В нуклеосоме ее центральную часть составляют 8 молекул гистонов четырех типов (по 2 молекулы от каждого типа). Это гистоны Н2А, Н2В, НЗ и Н4, взаимодействующие между собой, по-видимому, С-концевыми участками молекул. N-концевые участки гистоновых молекул взаимодействуют с молекулой ДНК таким образом, что последняя оказывается накрученной на гистоновый остов, делая два витка на одной его стороне и один на другой. На одну нуклеосому приходится около 140 пар оснований ДНК. Между соседними нуклеосомами имеется варьирующий по длине отрезок ДНК (10-70 пар оснований). Когда он выпрямлен, ДНК принимает вид нити с бусинками. Если отрезок находится в сложенном состоянии, нуклеосомы тесно прилегают друг к другу, формируя фибриллу диаметром 10 нм. Строение из нуклеосомных частиц является принципом организации хроматина (см.) как в интерфазной, так и в метафазной хромосоме.

Индивидуально различимые хромосомы формируются ко времени клеточного деления, митоза или мейоза, в результате прогрессивно нарастающей конденсации хромосом. В профазе митотического деления хромосомы видны в световом микроскопе в виде длинных и переплетенных нитей, поэтому индивидуальные хромосомы на всем протяжении неразличимы. В профазе первого мейотического деления хромосомы претерпевают сложные специфические морфологические преобразования, связанные главным образом с конъюгацией гомологичных хромосом (см. Конъюгация хромосом) и генетической рекомбинацией (обменом участками) между ними. В пахитене (когда заканчивается конъюгация) особенно показательно чередование хромомер по длине хромосом, причем хромомерный рисунок специфичен для каждой хромосомы и меняется по мере конденсации. Многие хромосомы в оогенезе и Y-хромосома в сперматогенезе обладают высокой транскрипционной активностью. У некоторых видов организмов такие хромосомы получили название «ламповых щеток». Они состоят из оси, построенной из хромомер и межхромомерных участков, и многочисленных боковых петель - деконденсированных хромомер, находящихся в состоянии генетического функционирования (транскрипции).

В метафазе деления клетки хромосомы имеют наименьшую длину и их легко исследовать, поэтому описание индивидуальных хромосом, как и всего их набора в клетке, дают применительно к их состоянию в этой фазе. Размеры метафазных хромосом у одного и того же вида организмов сильно различаются: хромосомы размерами в доли микрона имеют точечный вид, при длине более 1 мкм они выглядят как палочковидные тела. Обычно это раздвоенные по длине образования, состоящие из двух сестринских хроматид (рис. 2, 3), поскольку в метафазе хромосомы редуплицированы.

Индивидуальные хромосомы набора различаются между собой по длине и другим морфологическим признакам. Методы, применявшиеся до 70-х годов, обеспечивали равномерное окрашивание хромосомы по ее длине. Тем не менее такая хромосома в качестве обязательного элемента структуры имеет первичную перетяжку - участок, где обе хроматиды сужаются, видимо не отделяясь одна от другой, и плохо окрашиваются. Этот район хромосомы называется центромерой, он содержит специализированную структуру - кинетохор, который участвует в формировании нитей веретена деления хромосом. По соотношению размеров лежащих по обе стороны от первичной перетяжки хромосомных плеч хромосомы подразделяются на три типа: метацентрические (со срединно расположенной перетяжкой), субметацентрические (перетяжка смещена от середины), акроцентрические (центромера расположена близко к концу хромосомы, рис. 3). У человека имеются все три типа хромосом. Концы хромосом называют теломерами. По длине хромосом с той или иной степенью постоянства могут встречаться не имеющие отношения к центромере, так называемые вторичные перетяжки. Если они располагаются близко к теломере, отделяемый перетяжкой дистальный участок хромосомы называют спутником, а перетяжку - спутничной (рис. 2). У человека десять со вторичной перетяжкой хромосом, все они являются акроцентрическими, спутники локализованы в коротком плече. Некоторые вторичные перетяжки содержат рибосомные гены и называются ядрышкообразующими, поскольку благодаря их функционированию в продукции РНК в интерфазном ядре формируется ядрышко (см.). Другие вторичные перетяжки образуются гетерохроматиновыми районами хромосом; у человека из таких перетяжек наиболее выражены околоцентромерные перетяжки в 1, 9 и 16-й хромосомах.

Первоначальный метод использования красителя Гимзы и других хромосомных красителей давал равномерную окраску по всей длине хромосомы. С начала 70-х годов разработан ряд методов окраски и обработки метафазных хромосом, которые позволили обнаружить дифференцированность (деление на светлые и темные полосы) линейной структуры каждой хромосомы по всей ее длине: Q-окраска (Q - от английского quinacrine акрихин), получаемая с помощью акрихина, акрихиниприта и других флюорохромов; G-окраска (G - от фамилии Giemsa), получаемая с помощью красителя Гимзы (см. Романовского - Гимзы метод) после инкубации препаратов хромосом в специальных условиях; R-окраска (R - от англ. reverse обратный; хромосомы окрашиваются обратно G-окраске). Тело хромосомы оказывается подразделенным на сегменты разной интенсивности окрашивания или флюоресценции. Число, положение и размер таких сегментов специфичны для каждой хромосомы, поэтому любой хромосомный набор может быть идентифицирован. Другие методы позволяют дифференциально окрашивать отдельные специфические районы хромосом. Возможно избирательное окрашивание красителем Гимзы гетерохроматиновых районов хромосомы (С-окраска; С - от centromere центромера), располагающихся рядом с центромерой - С-сегментов (рис. 4). У человека С-сегменты обнаружены в околоцентромерном районе всех аутосом и длинном плече Y -хромосомы. Гетерохроматиновые районы варьируют по величине у разных индивидуумов, обусловливая полиморфизм хромосом (см. Хромосомный полиморфизм). Специфические окраски позволяют выявить в метафазных хромосомах функционировавшие в интерфазе ядрышкообразующие районы, а также кинетохоры.

На электронномикроскопическом уровне основной ультраструктурой единицей интерфазного хроматина при просвечивающей электронной микроскопии (см.) является нить диаметром 20-30 нм. Плотность упаковки нитей различна в участках плотного и диффузного хроматина.

Метафазная хромосома на срезе в просвечивающем электронном микроскопе представляется равномерно заполненной фибриллами 20-30 нм в поперечнике, которые в зависимости от плоскости сечения имеют вид округлых, овальных или удлиненных образований. В профазе и телофазе в хромосоме можно обнаружить более толстые нити (до 300 нм). При электронной микроскопии поверхность метафазной хромосомы представлена хаотично уложенными многочисленными фибриллами разного диаметра, видимыми, как правило, на коротком отрезке (рис. 5). Преобладают нити диаметром 30-60 нм.

Изменчивость хромосом в онтогенезе и эволюции

Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы - непременное условие нормального развития в онтогенезе (см.) и сохранения биол. вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биол. видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом. Важное значение имеет также изменение содержания гетерохроматина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.

Библиогр.: Босток К. и Самнер Э. Хромосома эукариотической клетки, пер. с англ., М., 1981; Бочко вН. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Дарлингтон С. Д. и Л а К у р Л. Ф. Хромосомы, Методы работы, пер. с англ., М., 1980, библиогр.; Захаров А. Ф. Хромосомы человека (проблемы линейной организации;, М., 1977, библиогр.; Захаров А. Ф. и др. Хромосомы человека, Атлас, М., 1982; К и к н а д з е И. И. Функциональная организация хромосом, Л., 1972, библиогр.; Основы цитогенетики человека, под ред. А. А. Прокофьевой-Бельговской, М., 1969: С у о н с о н К., M е р ц Т. и Я н г У. Цитогенетика, пер. с англ., М., 1969; Cell biology, A comprehensive treatise, ed. by L. Goldstein a. D. M. Prescott, p. 267, N. Y. a. o., 1979; S e u й n e z H. N, The phylogeny of human chromosomes, v. 2, B. a. o.\ 1979; S h a r m a A. K. a. S h a r-m a A. Chromosome techniques, L. a. o., 1980; ThermanE. Human chromosomes, N. Y. a. o., 1980.

А. Ф. Захаров.

Значение слова Хромосомы по Ефремовой:
Хромосомы - Структурные элементы клеточного ядра, обеспечивающие передачу наследственных свойств организма от поколения к поколению.

Значение слова Хромосомы по Ожегову:
Хромосомы - Постоянная составная часть ядра животных и растительных клеток, носители наследственной генетической информации

Хромосомы в Энциклопедическом словаре:
Хромосомы - (от хромо... и греч. soma - тело) - структурные элементы ядраклетки, содержащие ДНК, в которой заключена наследственная информацияорганизма. В хромосомах в линейном порядке расположены гены. Самоудвоениеи закономерное распределение хромосом по дочерним клеткам при клеточномделении обеспечивает передачу наследственных свойств организма отпоколения к поколению. В виде четких структур хромосомы различимы (примикроскопии) только во время деления клеток. Каждая хромосома имеетспецифическую форму, размер. В клетках организмов с недифференцированнымядром (бактерии) имеется одиночная двухспиральная молекула ДНК, нередконазываемая хромосомой.

Определение слова «Хромосомы» по БСЭ:
Хромосомы (от Хромо... и Сома
органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор Х. в клетке, характерный для данного организма, называется Кариотипом. В любой клетке тела большинства животных и растений каждая Х. представлена дважды: одна из них получена от отца, другая - от матери при слиянии ядер половых клеток в процессе оплодотворения. Такие Х. называются гомологичными, набор гомологичных Х. - диплоидным. В хромосомном наборе клеток раздельнополых организмов присутствует пара (или несколько пар) половых хромосом, как правило, различающихся у разных полов по морфологическим признакам; остальные Х. называются аутосомами. У млекопитающих в половых Х. локализованы Гены, определяющие пол организма; у плодовой мушки дрозофилы пол определяется соотношением половых хромосом и аутосом (балансовая теория определения пола).
Первоначально Х. были описаны как интенсивно окрашивающиеся основными красителями плотные тельца (немецкий учёный В. Вальдейер, 1888). Однако оказалось, что внешний вид Х. существенно меняется на разных стадиях клеточного цикла, и как компактные образования с характерной морфологией Х. четко различимы в световом микроскопе лишь в период клеточного деления - в метафазе Митоза и Мейоза (рис. 1, 2). Основу Х. на всех стадиях клеточного цикла составляют хромонемы - нитевидные структуры, которые во время деления клетки плотно закручены, обусловливая спирализацию хромосом, а в неделящейся клетке раскручены (деспирализованы). При завершении деления клетки разошедшиеся к её полюсам Х. разрыхляются и окружаются ядерной мембраной. В период между двумя делениями клетки (эта стадия клеточного цикла называется интерфазой) деспирализация Х. продолжается и они становятся малодоступными для наблюдения в световой микроскоп.
Морфология Х. эукариот существенно отличается от таковой у прокариот и вирусов. Прокариоты (доядерные) и вирусы содержат обычно одну линейную или кольцевую Х., которая не имеет надмолекулярной укладки и не отделена от цитоплазмы ядерной оболочкой. Понятие Х. к генетическому аппарату прокариот применимо лишь условно, т.к. оно сформировалось при изучении Х. эукариот и подразумевает наличие в Х. не только сложного комплекса биополимеров (нуклеиновых кислот (См. Нуклеиновые кислоты) и белков), но и специфической надмолекулярной структуры. Поэтому ниже даётся описание только Х. эукариот. Изменения внешнего вида Х. в клеточном и жизненном циклах обусловлены особенностями функционирования Х. Общий же принцип их организации, индивидуальность и непрерывность Х. в ряду клеточных поколений и организмов сохраняются неизменными. Доказательства тому получены при биохимическом, цитологическом и генетическом исследованиях Х. разных организмов. Они легли в основу хромосомной теории наследственности.
Молекулярные основы строения Х. Значение Х. как клеточных органоидов, ответственных за хранение, воспроизведение и реализацию наследственной информации, определяется свойствами биополимеров, входящих в их состав. Первая молекулярная модель Х. была предложена в 1928 Н. К. Кольцовым, предугадавшим принципы их организации. Запись наследственной информации в Х. обеспечивается строением дезоксирибонуклеиновой кислоты (ДНК), её генетическим кодом. В Х. сосредоточено около 99% всей ДНК клетки, остальная часть ДНК находится в других клеточных органоидах, определяя цитоплазматическую наследственность. ДНК в Х. эукариот находится в комплексе с основными белками - гистонами и с негистоновыми белками, которые обеспечивают сложную упаковку ДНК в Х. и регуляцию её способности к синтезу рибонуклеиновых кислот (РНК) - транскрипции.
Х. в интерфазе. Х. выполняет свои основные функции - репродукцию и транскрипцию - в интерфазе, поэтому строение Х. на этой стадии клеточного цикла представляет особый интерес. В интерфазе Х. плохо различимы потому, что в связи с активным синтезом РНК многие участки Х. (т. н. Эухроматин) сильно раскручены; другие же (Гетерохроматин) не участвуют в синтезе РНК и продолжают сохранять плотную упаковку (см. Хромоцентр). В эухроматиновых участках, помимо элементарных дезоксирибонуклеопротеидных нитей (ДНП), имеются рибонуклеопротеидные частицы диаметром 200-500 Е, называемые РНП-гранулами, интергранулами и перихроматиновыми гранулами. Эти частицы представляют собой форму упаковки РНК, синтезированной на Х. и соединённой с белком, и служат для завершения образования информационной РНК и переноса её в цитоплазму.
Для изучения интерфазных Х. используют либо биохимические методы выделения вещества Х. - Хроматина и разделения его на эухроматин и гетерохроматин, либо электронно-микроскопическое исследование интактных ядер и изолированного хроматина; как модели интерфазных Х. используют гигантские Х. типа ламповых щёток из ооцитов животных и многонитчатые (политенные) Х. двукрылых. В Х. типа ламповых щёток неактивные участки имеют вид плотно упакованных структур - хромомер (рис. 2, 3), которые обнаруживаются и в Х. соматических клеток, особенно в профазе митоза, и рассматриваются как характерные морфологические, а возможно и функциональные, единицы Х. В участках Х., активно синтезирующих РНК, хромомеры раскручиваются и образуют боковые петли, в которых молекулы РНК, соединяясь с белком, образуют рибонуклеопротеиды (РНП) - частицы, представляющие собой форму упаковки генных продуктов и различающиеся в отдельных боковых петлях по размерам и морфологическим признакам.
В политенных Х., возникающих в тканях двукрылых и некоторых растений за счёт многократной репликации (удвоения) исходной Х. без последующего расхождения дочерних Х., неактивные участки имеют форму дисков, а активные образуют вздутия - Пуфы. В пуфах, так же как и в Х. типа ламповых щёток, содержатся частицы РНП диаметром 200-500 Е. Электронно-микроскопические и биохимические исследования показали, что и в хроматине, выделенном из клеток, и в интактных ядрах, и в гигантских Х. основной структурной единицей является дезоксирибонуклеопротеидная нить (ДНП) диаметром,100-200 Е.
Изучение политенных Х. в разных тканях и на разных стадиях развития двукрылых показало, что число и набор активных пуфов имеют тканевую и видовую специфичность. Это значит, что хотя все клетки многоклеточного организма имеют одинаковый набор генов, линейно расположенных в каждой Х., набор активных и неактивных в синтезе РНК участков Х. различается в каждом типе клеток и на разных стадиях развития, т. е. один и тот же участок находится в одних тканях в эухроматическом, в других - в гетерохроматическом состоянии. Отдельные участки Х. находятся в гетерохроматическом состоянии в интерфазе разных типов клеток; как правило, они отличаются присутствием высокоповторяющихся последовательностей ДНК. Постоянно функционирующим в интерфазе всех типов клеток является ядрышковый организатор - участок Х., где сосредоточены гены рибосомной РНК. В этой области формируется Ядрышко, которое долго считали самостоятельным органоидом клетки. Оно является местом формирования предшественников рибосом.
Х. в интерфазном ядре отделены от цитоплазмы ядерной мембраной; многими участками (прежде всего, Теломерами и Центромерами) они соединены с ней, благодаря чему, как полагают, каждая Х. занимает в ядре определённое место. При подготовке клетки к делению в интерфазе происходит удвоение Х. Каждая Х. строит свою копию на основе полуконсервативной репликации ДНК. Особенностью Х. эукариот является существование многих точек начала и завершения репликации (у прокариот лишь одна точка начала и одна точка завершения репликации). Этим обеспечивается возможность неодновременной репликации разных участков Х. в ходе синтетического периода и регуляция активности Х.
Х. в период митоза и мейоза. При переходе клетки к делению синтез ДНК и РНК в Х. прекращается, Х. приобретают всё более плотную упаковку (например, в одной Х. человека цепочка ДНК длиной 160 мм укладывается в объёме всего 0,5Ч10 мкм), ядерная мембрана разрушается и Х. выстраиваются на экваторе клетки. В этот период они наиболее доступны для наблюдения и изучения их морфологии. Основная структурная единица метафазных Х., так же как и интерфазных, - нить ДНП диаметром 100-200 Е, уложенная в плотную спираль. Некоторые авторы обнаруживают, что нити диаметром 100-200 Е образуют структуры второго уровня укладки - нити диаметром около 2000 Е, которые и формируют тело метафазной Х. Каждая метафазная Х. состоит из хроматид (рис. 3, 1), образовавшихся в результате репликации исходной интерфазной Х. Использование меченых и модифицированных предшественников ДНК позволило четко различать в Х., находящейся в метафазе митоза, дифференциально окрашенные хроматиды, благодаря чему было установлено, что при репликации Х. нередко происходит обмен участками между сестринскими хроматидами (Кроссинговер).
В классической цитологии придавалось большое значение Матриксу метафазной Х., его считали обязательным компонентом, в который погружены спирализованные хромонемы. Современные цитологи рассматривают матрикс метафазных Х. как остаточный

Сначала договоримся о терминологии. Окончательно человеческие хромосомы посчитали чуть больше полувека назад — в 1956 году. С тех пор мы знаем, что в соматических , то есть не половых клетках, их обычно 46 штук — 23 пары.

Хромосомы в паре (одна получена от отца, другая — от матери) называют гомологичными . На них расположены гены, выполняющие одинаковые функции, однако нередко различающиеся по строению. Исключение составляют половые хромосомы — Х и Y, генный состав которых совпадает не полностью. Все остальные хромосомы, кроме половых, называют аутосомами .

Количество наборов гомологичных хромосом — плоидность — в половых клетках равно одному, а в соматических, как правило, двум.

У человека до сих пор В-хромосомы обнаружены не были. Зато иногда в клетках возникает дополнительный набор хромосом — тогда говорят о полиплоидии , а если их число не кратно 23 — об анеуплоидии. Полиплоидия встречается у отдельных типов клеток и способствует их усиленной работе, в то время как анеуплоидия обычно свидетельствует о нарушениях в работе клетки и нередко приводит к ее гибели.

Делиться надо честно

Чаще всего неправильное количество хромосом является следствием неудачного деления клеток. В соматических клетках после удвоения ДНК материнская хромосома и ее копия оказываются сцеплены вместе белками когезинами. Потом на их центральные части садятся белковые комплексы кинетохоры, к которым позже прикрепляются микротрубочки. При делении по микротрубочкам кинетохоры разъезжаются к разным полюсам клетки и тянут за собой хромосомы. Если сшивки между копиями хромосомы разрушатся раньше времени, то к ним могут прикрепиться микротрубочки от одного и того же полюса, и тогда одна из дочерних клеток получит лишнюю хромосому, а вторая останется обделенной.

Мейоз тоже нередко проходит с ошибками. Проблема в том, что конструкция из сцепленных двух пар гомологичных хромосом может перекручиваться в пространстве или разделяться в неположенных местах. Результатом снова будет неравномерное распределение хромосом. Иногда половой клетке удается это отследить, чтобы не передавать дефект по наследству. Лишние хромосомы часто неправильно уложены или разорваны, что запускает программу гибели. Например, среди сперматозоидов действует такой отбор по качеству. А вот яйцеклеткам повезло меньше. Все они у человека образуются еще до рождения, готовятся к делению, а потом замирают. Хромосомы уже удвоены, тетрады образованы, а деление отложено. В таком виде они живут до репродуктивного периода. Дальше яйцеклетки по очереди созревают, делятся первый раз и снова замирают. Второе деление происходит уже сразу после оплодотворения. И на этом этапе проконтролировать качество деления уже сложно. А риски больше, ведь четыре хромосомы в яйцеклетке остаются сшитыми в течение десятков лет. За это время в когезинах накапливаются поломки, и хромосомы могут спонтанно разделяться. Поэтому чем старше женщина, тем больше вероятность неправильного расхождения хромосом в яйцеклетке.

Схема мейоза

Анеуплоидия в половых клетках неизбежно ведет к анеуплоидии зародыша. При оплодотворении здоровой яйцеклетки с 23 хромосомами сперматозоидом с лишней или недостающей хромосомами (или наоборот) число хромосом у зиготы, очевидно, будет отлично от 46. Но даже если половые клетки здоровы, это не дает гарантий здорового развития. В первые дни после оплодотворения клетки зародыша активно делятся, чтобы быстро набрать клеточную массу. Судя по всему, в ходе быстрых делений нет времени проверять корректность расхождения хромосом, поэтому могут возникнуть анеуплоидные клетки. И если произойдет ошибка, то дальнейшая судьба зародыша зависит от того, в каком делении это случилось. Если равновесие нарушено уже в первом делении зиготы, то весь организм вырастет анеуплоидным. Если же проблема возникла позже, то исход определяется соотношением здоровых и аномальных клеток.

Часть последних может дальше погибнуть, и мы никогда не узнаем об их существовании. А может принять участие в развитии организма, и тогда он получится мозаичным — разные клетки будут нести разный генетический материал. Мозаицизм доставляет немало хлопот пренатальным диагностам. Например, при риске рождения ребенка с синдромом Дауна иногда извлекают одну или несколько клеток зародыша (на той стадии, когда это не должно представлять опасности) и считают в них хромосомы. Но если зародыш мозаичен, то такой метод становится не особенно эффективным.

Третий лишний

Все случаи анеуплоидии логично делятся на две группы: недостаток и избыток хромосом. Проблемы, возникающие при недостатке, вполне ожидаемы: минус одна хромосома означает минус сотни генов.

Если гомологичная хромосома работает нормально, то клетка может отделаться только недостаточным количеством закодированных там белков. Но если среди оставшихся на гомологичной хромосоме генов какие-то не работают, то соответствующих белков в клетке не появится совсем.

В случае избытка хромосом все не так очевидно. Генов становится больше, но здесь — увы — больше не значит лучше.

Во-первых, лишний генетический материал увеличивает нагрузку на ядро: дополнительную нить ДНК нужно разместить в ядре и обслужить системами считывания информации.

Ученые обнаружили , что у людей с синдромом Дауна, чьи клетки несут дополнительную 21-ю хромосому, в основном нарушается работа генов, находящихся на других хромосомах. Видимо, избыток ДНК в ядре приводит к тому, что белков, поддерживающих работу хромосом, не хватает на всех.

Во-вторых, нарушается баланс в количестве клеточных белков. Например, если за какой-то процесс в клетке отвечают белки-активаторы и белки-ингибиторы и их соотношение обычно зависит от внешних сигналов, то дополнительная доза одних или других приведет к тому, что клетка перестанет адекватно реагировать на внешний сигнал. И наконец, у анеуплоидной клетки растут шансы погибнуть. При удвоении ДНК перед делением неизбежно возникают ошибки, и клеточные белки системы репарации их распознают, чинят и запускают удвоение снова. Если хромосом слишком много, то белков не хватает, ошибки накапливаются и запускается апоптоз — программируемая гибель клетки. Но даже если клетка не погибает и делится, то результатом такого деления тоже, скорее всего, станут анеуплоиды.

Жить будете

Если даже в пределах одной клетки анеуплоидия чревата нарушениями работы и гибелью, то неудивительно, что целому анеуплоидному организму выжить непросто. На данный момент известно только три аутосомы — 13, 18 и 21-я, трисомия по которым (то есть лишняя, третья хромосома в клетках) как-то совместима с жизнью. Вероятно, это связано с тем, что они самые маленькие и несут меньше всего генов. При этом дети с трисомией по 13-й (синдром Патау) и 18-й (синдром Эдвардса) хромосомам доживают в лучшем случае до 10 лет, а чаще живут меньше года. И только трисомия по самой маленькой в геноме, 21-й хромосоме, известная как синдром Дауна, позволяет жить до 60 лет.

Совсем редко встречаются люди с общей полиплоидией. В норме полиплоидные клетки (несущие не две, а от четырех до 128 наборов хромосом) можно обнаружить в организме человека, например в печени или красном костном мозге. Это, как правило, большие клетки с усиленным синтезом белка, которым не требуется активное деление.

Дополнительный набор хромосом усложняет задачу их распределения по дочерним клеткам, поэтому полиплоидные зародыши, как правило, не выживают. Тем не менее описано около 10 случаев, когда дети с 92 хромосомами (тетраплоиды) появлялись на свет и жили от нескольких часов до нескольких лет. Впрочем, как и в случае других хромосомных аномалий, они отставали в развитии, в том числе и умственном. Однако многим людям с генетическими аномалиями приходит на помощь мозаицизм. Если аномалия развилась уже в ходе дробления зародыша, то некоторое количество клеток могут остаться здоровыми. В таких случаях тяжесть симптомов снижается, а продолжительность жизни растет.

Гендерные несправедливости

Однако есть и такие хромосомы, увеличение числа которых совместимо с жизнью человека или даже проходит незаметно. И это, как ни удивительно, половые хромосомы. Причиной тому — гендерная несправедливость: примерно у половины людей в нашей популяции (девочек) Х-хромосом в два раза больше, чем у других (мальчиков). При этом Х-хромосомы служат не только для определения пола, но и несут более 800 генов (то есть в два раза больше, чем лишняя 21-я хромосома, доставляющая немало хлопот организму). Но девочкам приходит на помощь естественный механизм устранения неравенства: одна из Х-хромосом инактивируется, скручивается и превращается в тельце Барра . В большинстве случаев выбор происходит случайно, и в ряде клеток в результате активна материнская Х-хромосома, а в других — отцовская. Таким образом, все девочки оказываются мозаичными, потому что в разных клетках работают разные копии генов. Классическим примером такой мозаичности являются черепаховые кошки : на их Х-хромосоме находится ген, отвечающий за меланин (пигмент, определяющий, среди прочего, цвет шерсти). В разных клетках работают разные копии, поэтому окраска получается пятнистой и не передается по наследству, так как инактивация происходит случайным образом.

В результате инактивации в клетках человека всегда работает только одна Х-хромосома. Этот механизм позволяет избежать серьезных неприятностей при Х-трисомии (девочки ХХХ) и синдромах Шерешевского — Тернера (девочки ХО) или Клайнфельтера (мальчики ХХY). Таким рождается примерно один из 400 детей, но жизненные функции в этих случаях обычно не нарушены существенно, и даже бесплодие возникает не всегда. Сложнее бывает тем, у кого хромосом больше трех. Обычно это значит, что хромосомы не разошлись дважды при образовании половых клеток. Случаи тетрасомии (ХХХХ, ХХYY, ХХХY, XYYY) и пентасомии (XXXXX, XXXXY, XXXYY, XXYYY, XYYYY) встречаются редко, некоторые из них описаны всего несколько раз за всю историю медицины. Все эти варианты совместимы с жизнью, и люди часто доживают до преклонных лет, при этом отклонения проявляются в аномальном развитии скелета, дефектах половых органов и снижении умственных способностей. Что характерно, дополнительная Y-хромосома сама по себе влияет на работу организма несильно. Многие мужчины c генотипом XYY даже не узнают о своей особенности. Это связано с тем, что Y-хромосома сильно меньше Х и почти не несет генов, влияющих на жизнеспособность.

У половых хромосом есть и еще одна интересная особенность. Многие мутации генов, расположенных на аутосомах, приводят к отклонениям в работе многих тканей и органов. В то же время большинство мутаций генов на половых хромосомах проявляется только в нарушении умственной деятельности. Получается, что в существенной степени половые хромосомы контролируют развитие мозга. На основании этого некоторые ученые высказывают гипотезу, что именно на них лежит ответственность за различия (впрочем, не до конца подтвержденные) между умственными способностями мужчин и женщин.

Кому выгодно быть неправильным

Несмотря на то что медицина знакома с хромосомными аномалиями давно, в последнее время анеуплоидия продолжает привлекать внимание ученых. Оказалось , что более 80% клеток опухолей содержат необычное количество хромосом. С одной стороны, причиной этому может служить тот факт, что белки, контролирующие качество деления, способны его затормозить. В опухолевых клетках часто мутируют эти самые белки-контролеры, поэтому снимаются ограничения на деление и не работает проверка хромосом. С другой стороны, ученые полагают , что это может служить фактором отбора опухолей на выживаемость. Согласно такой модели, клетки опухоли сначала становятся полиплоидными, а дальше в результате ошибок деления теряют разные хромосомы или их части. Получается целая популяция клеток с большим разнообразием хромосомных аномалий. Большинство из них нежизнеспособны, но некоторые могут случайно оказаться успешными, например если случайно получат дополнительные копии генов, запускающих деление, или потеряют гены, его подавляющие. Однако если дополнительно стимулировать накопление ошибок при делении, то клетки выживать не будут. На этом принципе основано действие таксола — распространенного лекарства от рака: он вызывает системное нерасхождение хромосом в клетках опухоли, которое должно запускать их программируемую гибель.

Получается, что каждый из нас может оказаться носителем лишних хромосом, по крайней мере в отдельных клетках. Однако современная наука продолжает разрабатывать стратегии борьбы с этими нежеланными пассажирами. Одна из них предлагает использовать белки, отвечающие за Х-хромосому, и натравить, например, на лишнюю 21-ю хромосому людей с синдромом Дауна. Сообщается , что на клеточных культурах этот механизм удалось привести в действие. Так что, возможно, в обозримом будущем опасные лишние хромосомы окажутся укрощены и обезврежены.