Ядро, его строение и функции. Хроматин. Хромосомы. Кариотип.

Ядро – важнейший структурный компонент живых клеток эукариот.

Впервые ядро было описано Р. Броуном в 1831 г. Морфологию и функции ядра исследовали Флемминг, Страсбургер, Чистяков, Геккель, Баранецкий, Навашин, Герасимов, Беляев и др. Большинство клеток содержат одно ядро, но встречаются двуядерные (инфузория-туфелька) и многоядерные (скелетные мышцы, печень) клетки. Некоторые высокоспециализированные клетки утрачивают ядра (эритроциты млекопитающих и клетки ситовидных трубок у покрытосеменных).

Ядро представляет собой эластичное тело, отделенное от цитоплазмы ядерной оболочкой. Форма ядра, как правило, круглая, но бывает веретеновидная, нитевидная, сегментированная (лопастная) и др. Впячивания и выпячивания ядерной оболочки значительно увеличивают поверхность ядра, тем самым усиливая связь ядерных и цитоплазматических структур и веществ. Ядро всегда располагается в цитоплазме.

По физическим и химическим свойствам ядро близко к цитоплазме.

Рис. Схема ультраструктурой организации интерфазного ядра: 1 - ядерная мембрана с порами (2), 3 - плотный хроматин; 4 - рыхлый хроматин; 5 - ядрышко; 6 - интерхроматиновые гранулы; 7 - перихроматиновые гранулы; 8 - перихроматиновые фибриллы; 9 - кариоплазма.

Ядро состоит из ядерной оболочки, ядерного сока, ядрышка и хроматина.

Ядерная оболочка (кариолемма) очень тонкая (300-500 А о); образована двумя мембранами (наружной и внутренней), между которыми имеется полость – перинуклеарное пространство . Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Ядерная оболочка пронизана порами (округлые отверстия диметром 200-300 А о), через которые между ядром и цитоплазмой происходит обмен различными веществами. Также вещества из ядра в цитоплазму и из цитоплазмы в ядро попадают путем отшнуровывания выростов и выпячиваний ядерной оболочки. Кроме того, мелкие молекулы могут диффундировать через ядерную оболочку. В определенных точках ядерная мембрана непосредственно переходит в мембрану эндоплазматической сети, с которой тождественна по своей физико-химической структуре. Несмотря на активный обмен веществ между ядром и цитоплазмой, ядерная оболочка отграничивает ядерное содержимое от цитоплазмы, делая возможным существование особой внутриядерной среды, отличной от окружающей цитоплазмы.

Рис. Пути обмена веществ между ядром и цитоплазмой. 1 - обмен веществ через ядерные поры, 2 - впячивание цитоплазмы внутрь ядра, 3 - впячивание ядерной оболочки, 4 - продвижение ядерной мембраны в эндоплазматическую сеть; 5 - выведение части каналов во внешнее межклеточное пространство.

Ядерный сок (кариоплазма, нуклеоплазма, кариолимфа) представляет собой желеобразный раствор – систему гидрофильных коллоидов – в котором находятся разнообразные белки, нуклеотиды, а также хромосомы и ядрышко. По химическому составу ядерный сок близок к матриксу цитоплазмы, однако в нем значительно выше содержание нуклеотидов. Функция ядерного сока – связь ядерных структур.

Ядрышко образование более плотное, чем основная масса ядра, собственной оболочки не имеет, состоит из крупных гранул, по форме и размерам близко к рибосомам. Матрикс ядрышка имеет жидку консистенцию. Формируется ядрышко в области вторичной перетяжки (ядрышковый организатор). Функция ядрышка – синтез р-РНК и соединение их с белками, т.е. сборка субъединиц рибосом.

Хроматин – глыбки, гранулы и нитчатые структуры, окрашивающиеся некоторыми красителями (гематоксилином, софранином, кармином и др.). С химической точки зрения хроматин – дезоксирибонуклеопротеид (ДНП, комплекс ДНК и белков-гистонов). Гистоны обладают основными (щелочными) свойствами благодаря высокому содержанию в них основных аминокислот. По преобладающему содержанию аминокислот выделяют пять важнейших гистонов:

Гистон Н1 имеет высокое содержание лизина;

Гистон Н2b лизина содержит меньше, чем Н1;

Гистон Н2a имеет высокое содержание лизина и аргинина;

Гистон Н3 содержит большое количество аргинина;

Гистон Н4 богат аргинином и глицином.

Все гистоны хорошо растворимы в кислых средах. Гистоновые белки с неодинаковой прочностью связываются с ДНК. Поэтому они обладают различной способностью менять пространственное расположение нити ДНК и влиять на участие ДНК в процессе транскрипции. Молекулы гистонов соединяются с ДНК в основном за счет электростатических связей между отрицательно заряженными фосфатными группами молекулы ДНК и положительно заряженными группами гистоновых аминокислот, обладающих щелочными свойствами. В результате образуется нуклеосома. Нуклеосома – это комплекс участка ДНК с гистонами. Он имеет небольшую длину и периодически повторяется по всей длине ДНК. В состав нуклеосомы входит от 160 до 240 нуклеотидных пар и по 2 молекулы каждой фракции гистонов Н2a, Н2b, Н3 и Н4 – всего 8 молекул, соединенных между собой при помощи своих гидрофобных участков. Основной участок нуклеосомы представляет собой цилиндр (октамер) диаметром 11 нм и толщиной 5,7 нм, вокруг которого двойная спираль образует около двух витков и переходит на следующий цилиндр. Длина «накрученного» фрагмента ДНК составляет примерно 60 нм.

В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.

Эукариоты (от греч. eu - хорошо и carion - ядро) - организмы, содержащие в клетках четко оформленное ядро. К эукариотам относятся одноклеточные и многоклеточные растения, грибы и животные, то есть все организмы, кроме бактерий. Клетки эукариот разных царств различаются по ряду признаков. Но во многом их строение сходно.

Например, у человека 23 пары.

Число хромосом у грибов колеблется от 2 до 28, у большинства видов - от 10 до 12.

В общем, разное количество.

Хроматин - форма упаковки ДНК в ядрах клеток эукариот. Хроматин - это сложная смесь веществ, из которых построены хромосомы эукариот. Основными компонентами хроматина являются ДНК и хромосомных белков, в состав которых входят гистоны инегистоновые белки, образующие высокоупорядоченные в пространстве структуры. Соотношение ДНК и белка в хроматине составляет ~1:1, а основная масса белка хроматина представлена гистонами. Термин «Х.» введен У. Флеммингом в 1880 г. для описания окрашиваемых специальными красителями внутриядерных структур.

Если просуммировать все хромосомы, молекула ДНК у высших эукариот имеет длину около 2 метров и, следовательно, должна быть максимально сконденсирована - примерно в 10000 раз, чтобы поместиться в клеточном ядре - том компартменте клетки, в котором хранится генетический материал. Накручивание ДНК на "шпульки" из гистоновых белков, обеспечивает элегантное решение этой проблемы упаковки и дает начало полимеру, в котором повторяются комплексы белок-ДНК и который известен как хроматин.

Хроматин не однороден по своей структуре; он выступает в различных формах упаковки - от фибриллы высококонденсированного хроматина (известного как гетерохроматин) до менее компактизированной формы, где гены обычно экспрессируются (известной как эухроматин).

Полученные в последнее время данные позволяют предполагать, что ncRNA (некодирующие РНК) могут "направлять" переход специализированных участков генома в более компактные состояния хроматина. Таким образом, на хроматин следует смотреть как на динамический полимер, который может индексировать геном и усиливать сигналы, поступающие из внешней среды, определяя в конечном счете, какие гены должны экспрессироваться, а какие нет.

Хроматин активно транскрибируемых генов находится в состоянии постоянного изменения, характеризующемся непрерывным замещением гистонов (Henikoff and Ahmad, 2005).

Элементарной единицей упаковки хроматина является нуклеосома. Нуклеосома состоит из двойной спирали ДНК, обмотанной вокруг специфического комплекса из восьми нуклеосомных гистонов (гистонового октамера). Нуклеосома представляет собой дисковидную частицу с диаметром около 11 нм, содержащую по две копии каждого из нуклеосомных гистонов (Н2А, Н2В, Н3, Н4). Гистоновый октамер образует белковую сердцевину, вокруг которой дважды обмотана двуспиральная ДНК (146 нуклеотидных пар ДНК на гистоновый октамер).

Нуклеосомы, входящие в состав фибрилл, расположены более или менее равномерно вдоль молекулы ДНК на расстоянии 10-20 нм друг от друга. В состав нуклеосом входят четыре пары молекул гистонов: H2a, H2b, H3 и H4, а также одна молекула гистона H1.

Хроматин - это вещество хромосом - комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоидау прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК. Основную массу хроматина составляют белки гистоны. Гистоны являются компонентом нуклеосом, -надмолекулярных структур, участвующих в упаковке хромосом.

Классификация:

1.Эухроматин – локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компактный, более активен в функциональном отношении. Эухроматин - неконденсированный хроматин, с которого происходит синтез белка.

2.Гетерохроматин - конденсированный хроматин, с которого белок не синтезируется. Гетерохроматин - плотно спирализованная часть хроматина, соответствует конденсированным, плотно скрученным сегментам хромосом, что делает их недоступными для транскрипции. Он интенсивно окрашивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул.

Метафазные хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации. На стадии метафазы сестринские хроматиды соединены в районе первичной перетяжки, называемой центромерой. Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. На центромере происходит сборка кинетохора - сложной белковой структуры, определяющей прикрепление хромосомы к микротрубочкам веретена деления - движителям хромосомы в митозе. Центромера делит хромосомы на две части, называемые плечами. У большинства видов короткое плечо хромосомы обозначается буквой p, длинное плечо - буквой q. Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.

В зависимости от расположения центромеры различают три типа строения хромосом:

1. Акроцентрические хромосомы , у которых центромера находится практически на конце, и второе плечо настолько мало, что его может быть не видно на цитологических препаратах;

2. Субметацентрические хромосомы с плечами неравной длины;

3. Метацентрические хромосомы , у которых центромерарасположена посередине или почти посередине.

Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка, которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы, содержащие многократные повторы генов, кодирующих рибосомальные РНК. Небольшие хромосомные сегменты, отделяемые от основного тела хромосомы вторичными перетяжками, называются спутниками.

а) Гетерохроматин . Во время интерфазы определённые участки хромосом и целые хромосомы остаются компактными. Они образуют «глыбки» интенсивно окрашенные и, как правило, прилежащие к мембране ядра. Гетерохроматин неактивен в отношении транскрипции. Существует две формы гетерохроматина: факультативный и конститутивный

    факультативный гетерохроматин бывает гетерохроматичным только временами. Он информативен, содержит гены с которых считывается наследственная информация, когда гетерохроматин переходит в эухроматическое состояние. Образуется при спирализации одной из двух гомологичных хромосом. Типичным примером служит тельце полового хроматина, образуемого одной из двух Х-хромосом соматических клеток женских особей человека и млекопитающих. Функциональная роль факультативного гетерохроматина заключается в компенсации снижении дозы определенного гена (например, появление промежуточного признака при явлении неполного доминирования у гетерозигот Аа, влияет на экспрессивность проявления наследственных признаков в фенотип), определяет тканеспецифичность.

    структурный гетерохроматин – отличается высокоспирализованным состоянием, которое сохраняется на протяжении всего мит. цикла. Он занимает постоянные участки в гомологичных хромосомах – это фрагменты околоцентромерных, теломерных участков хромосом, Не содержит структурных генов (нетранскрибируемый); Его роль не ясна, но по видимому он выполняет опорную функцию.

б) Эухроматин (разрыхленный) - имеет менее компактную организацию, деспирализуется в конце митоза, образует слабоокрашенные нитчатые структуры содержит структурные транскрибируемые гены;

В КАЖДОЙ ХРОМОСОМЕ СВОЙ ПОРЯДОК РАСПОЛОЖЕНИЯ ЭУ- И ГЕТЕРОХРОМАТИНА, ЧТО ИСПОЛЬЗУЕТСЯ ДЛЯ ИДЕНТИФИКАЦИИ ОТДЕЛЬНЫХ ХРОМОСОМ В ЦИТОГЕНЕТИКЕ.

Уровни структурной организации хроматина:

Данные микроскопического и электронно-микроскопического изучения хроматина и митотических хромосом дают следующую картину структурной организации хромосом:

    двойная спираль ДНК - 1,5 нм (толщина биспирали)

    нуклеосомная нить (ДНК присоединяет белки и скручивается в нуклеогистоновый комплекс) - 8 молекул гистонов: Н2а, Н2в, Н3, Н4 они служат основой – образуя белковые тела - коры , на которые «накручены» фрагменты ДНК длиной примерно в 200 пар нуклеотидов. Гистон Н 1 «сшивает» витки ДНК. Участки ДНК не связанные с белками, расположенные между гистоновыми корами, называются связующими или линкёрными . Результат скручивания ДНК и присоединение белка преобразуется в нуклеогистоновый комплекс с нуклеосомной структурой – 10 – 13 нм

    хроматиновая фибрилла 20 – 25 нм, дальнейшее скручивание ДНК и присоединение белков

    серии петельных доменов (хромонема) 100 – 200 нм. Домен – область с поперечным размером, возвышение

    конденсированный участок хромосомы – 700 нм (образуют глыбки хроматина)

    метафазная хромосома - 1400 нм

Линкёрная ДНК Гистоновый кор

нуклеосомы

нуклеосомная организация хроматиновая фибрилла

Серии петельных доменов

конденсированный участок

хромосомы (конденсация

хроматиновых метафазная хромосома

петель и объединение петель,

имеющих сходную структуру )

МОРФОЛОГИЯ МЕТАФАЗНЫХ МИТОТИЧЕСКИХ ХРОМОСОМ.

Для изучения индивидуального набора хромосом (кариотипа) особое значение имеют митотические метафазные хромосомы т. к. хромосомы на этой стадии максимально спирализованы и видны как отдельные морфологические структуры. Благодаря спирализации достигается плотная упаковка наследственного материала, что важно для перемещения хромосом в процессе митоза

1. Хромосома состоит из двух половинок - хроматид, каждая хроматида состоит из биспирали ДНК. Хромосомы обозначают – «п », ДНК – «с », т.о. хромосома – П 2С

2 . На теле хромосомы есть первичная перетяжка – центромера или кинетохор

Центромера делит тело хромосомы на плечи. В зависимости от расположения центромеры различают хромосомы по форме: метацентрические (равноплечие), субметацентрически (неравноплечие имеют длинное плечо –« q » и короткое - « p » ) , акроцентрические (палочковидные), телоцентрические (выражено неравноплечие) ;

4. Некоторые хромосомы имеют вторичную перетяжку, которая отделяет

небольшой участок – спутник хромосомы. Хромосома, имеющая спутник называется спутничной. У человека спутничные хромосомы относятся к аутосомам и имеют номер – 13, 14, 15, 21, 22

5. В области вторичных перетяжек некоторых хромосом располагаются я д р ы ш к о в ы е о р г а н и з а т о р ы. Они содержат гены, кодирующие рРНК и служат местом образования я д р ы ш к а.

6. На концах плеч хромосом расположены т е л о м е р ы . Они препятствуют склеиванию хромосом, возможно содержат гены, отвечающие за продолжительность жизни .

Метафазная хромосома

Формы хромосом

/-телоцентрическая, //-акроцентрическая, ///-субметацентрическая, IV -метацентрическая;

1--центромера, 2 -спутник, 3 -короткое плечо « p » , 4 -длинное плечо –« q » , 5 - хроматиды

1. В соматических клетках диплоидный (двойной) набор хромосом – 2п4с.

2. В диплоидном наборе хромосомы парные.

3. Парные хромосомы имеют одинаковое строение и называются – г о м о л о г и ч н ы е .

4. Хромосомы из разных пар – н е г о м о л о г и ч н ы е.

5. Хромосомы, имеющие одинаковое строение в клетках особей разного пола, называются,

а у т о с о м а м и . Их обозначают арабскими цифрами (1,2,3,…). Они представлены парами гомологичный хромосом, но индивидуально различных (отцовских и материнских). Их располагают в порядке уменьшения размеров, поэтому самая большая хромосома имеет первый номер. У человека самая маленькая аутосома имеет 22 номер.

У человека в соматических клетках 22 пары - 44 аутосомы, а в половых клетках - 22 аутосомы

6. Хромосомы участвующие в определении пола, называются п о л о в ы м и или

г е т е р о х р о м о с о м а м и (гетеросомы), их обозначают латинскими буквами «Х» и «У». В соматических клетках человека две половые хромосомы, у женского пола две ХХ, у мужского ХУ.

Т.о. в соматических клетках человека 46 хромосом = 44 аутосомы две половые ХХ, или 44 аутосомы + две половые ХУ, а в половых клетках 23 хромосомы = 22 аутосомы + одна половая Х или 22 аутосомы + одна половая У.

7. В половых клетках (гаметах – сперматозоидах и яйцеклетках) содержится половинный - г а п л о и д н ы й –п набор хромосом.

ПОНЯТИЕ О КАРИОТИПЕ.

КАРИОТИП – это хромосомный комплекс ядер эукариотических клеток, характеризующийся:

    Строением хромосом

    Размерами – большие, средние, маленькие хромосомы

    Числом хромосом (у человека 46, дрозофилы 8)

Диплоидный набор хромосом (кариотип)

Геном – это комплекс генов гаплоидного набора хромосом. У человека геном содержит 23 хромосомы.

Правила хромосом:

    правило постоянства числа хромосом – каждый вид имеет определенное и постоянное число хромосом. Число хромосом видовой признак

    правило парности хромосом число хромосом четное, они составляют пары.

    правило индивидуальности – каждая пара хромосом имеет свои особенности строения. Негомологичные хромосомы всегда имеют отличия.

    правило непрерывности хромосом – «каждая хромосома от хромосомы», т. е. хромосома в митотическом цикле непрерывна, она переходит из одного функционального состояния в другое (компактизация - декомпактизация). В митотическом цикле происходит ауторепродукция хромосом:

Во время анафазы расходятся идентичные хроматиды (дочерние или сестринские однохроматидные хромосомы),

В синтетический период на основе принципа комплементарности и антипараллельности происходит удвоение ДНК (образование материнских двухроматидных хромосом)

Хроматин (от греч. сhroma - цвет краска) - это основная структура интерфазного ядра, которая очень хорошо красится основными красителями и обуславливает для каждого типа клеток хроматиновый рисунок ядра.

Благодаря способности хорошо окрашиваться различными красителями и особенно основными этот компонент ядра и получил название «хроматин» (Флемминг 1880).

Хроматин является структурным аналогом хромосом и в интерфазном ядре представляет собой несущие ДНК тельца.

Морфологически различают два вида хроматина:

1) гетерохроматин;

2) эухроматин.

Гетерохроматин (heterochromatinum) соответствует частично конденсированным в интерфазе участкам хромосом и является функционально неактивным. Этот хроматин очень хорошо окрашивается и именно его можна видеть на гистологических препаратах.

Гетерохроматин в свою очередь делится на:

1) структурный; 2) факультативный.

Структурный гетерохроматин представляет участки хромосом, которые постоянно находятся в конденсированном состоянии.

Факультативный гетерохроматин - это гетерохроматин, способный деконденсироваться и превращатся в эухроматин.

Эухроматин - это деконденсированные в интерфазе участки хромосом. Это рабочий, функционально активный хроматин. Этот хроматин не окрашивается и не обнаруживается на гистологических препаратах.

Во время митоза весь эухроматин максимально конденсируется и входит в состав хромосом. В этот период хромосомы не выполняют никаких синтетических функций. В связи с этим хромосомы клеток могут находится в двух структурно-функциональных состояниях:

1) активном (рабочем), иногда они частично или полностью деконденсированы и с их участием в ядре происходят процессы транскрипции и редупликации;

2) неактивном (нерабочем, метаболического покоя), когда они максимально конденсированы выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Иногда в отдельных случаях целая хромосома в период интерфазы может оставаться в конденсированном состоянии, при этом она имеет вид гладкого гетерохроматина. Например, одна из Х-хромосом соматических клеток женского организма подлежит гетерохроматизации на начальных стадиях эмбриогенеза (во время дробления) и не функционирует. Этот хроматин называется половых хроматином или тельцами Барра.

В разных клетках половой хроматин имеет различный вид:

а) в нейтрофильных лейкоцитах - вид барабанной палочки;

б) в эпителиальных клетках слизистой - вид полусферической глыбки.

Определение полового хроматина используется для установления генетического пола, а также для определения количества Х-хромосом в кариотипе индивидума (оно равняется количеству телец полового хроматина+1).



При электронно-микроскопических исследованиях установлено, что препараты выделенного интерфазного хроматина содержат элементарные хромосомные фибриллы толщиной 20-25 нм, которые состоят из фибрилл толщиной 10 нм.

В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входят:

б) специальные хромосомные белки;

Количественное соотношение ДНК, белка и РНК составляет 1:1,3:0,2. На долю ДНК в препарате хроматина приходится 30-40%. Длина индивидуальных линейных молекул ДНК колеблется в непрямых пределах и может достигать сотен микрометров и даже сантиметров. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6х10 -12 г.

Белки хроматина составляют 60-70% от его сухой массы и представлены двумя группами:

а) гистоновыми белками;

б) негистоновыми белками.

ЁГистоновые белки (гистоны ) - щелочные белки, содержащие основные аминокислоты (главным образом лизин, аргинин) располагаются неравномерно в виде блоков по длине молекулы ДНК. Один блок содержит 8 молекул гистонов, которые образуют нуклеосому. Размер нуклеосомы около 10 нм. Нуклеосома образуется путем компактизации и сверхспирализации ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 5 раз.

ЁНегистоновые белки составляют 20% от количества гистонов и в интерфазных ядрах образуют внутри ядра структурную сеть, которая носит название ядерного белкового матрикса. Этот матрикс представляет основу, которая определяет морфологию и метаболизм ядра.

Перихроматиновые фибриллы имеют толщину 3-5 нм, гранулы имеют диаметр 45нм и интерхроматиновые гранулы имеют диаметр 21-25 нм.