Cтраница 1


Плотность гелия но отношению к воздуху составляет 0 138, удельный объем - 5 596 см3 / г. Гелий почти не растворим в воде и других жидкостях и меньше, чем любой другой газ склонен к адсорбции.  

Плотность гелия при 0 и 1 атм равна.  

Плотность гелия составляет примерно V. Поскольку шар находится в воздухе, простой путь решения задачи состоит в следующем: считать плотность шара равной - 6 / 7 рвозд и не обращать в дальнейшем внимания на присутствие воздуха.  

Добровольским и Голубевым определена плотность гелия на восьми изотермах от 20 до 164 К и шести изобарах до 500 атм.  

Из табл. 2 видно, что плотность гелия невелика, а теплоемкость значительна; по этим характеристикам гелий уступает только водороду. Газообразный гелий обладает высокой теплопроводностью и является хорошим теплоносителем.  


Какова подъемная сила F 1 м3 гелия, идущего на наполнение дирижаблей, если плотность гелия относительно воздуха равна 0 137 и 1 м3 воздуха весит 1 3 кгс.  

F - численный коэффициент для приведения удельного веса ртути к значению, соответствующему стандартному значению ускорения силы тяжести и температуре 0 С; - 0 001 - суммарная поправка на капиллярную депрессию уровня ртути (диаметр трубки барометра 32 мм); / j - расстояние в мм от средней точки спирали термометра до линии конденсации водяного пара (направление вверх считается положительным); / 2 - расстояние в мм от линии конденсации водяного пара до нижнего мениска ртути в барометре (направление вверх считается положительным); гг - отношение плотности насыщенного водяного пара при давлении р к плотности ртути; г2 - отношение плотности гелия при давлении р и комнатной температуре к плотности ртути.  

Отделенный, как аргон, от азота и других подмесей, гелий выделяется из смеси с другими аргоновыми газами на основании того, что он легче их всех, а потому проникает чрез пористые перегородки в наибольшем количестве, а при действии холода, даже развиваемого жидким водородом, не превращается в жидкое состояние ; если же гелий смешан с другими аргоновыми газами, то при их сжижении растворяется в них, а такой раствор при - 250 (жидкий водород) выделяет в пустоту почти один гелий. Плотность гелия лишь в 2 0 раза превосходит плотность водорода, так что после него это наиболее легкий газ. В части аргоновых газов, подверженных сжижению, и в тех частях сжиженного воздуха, которые испаряются наиболее трудно, находятся еще два газа, считаемые, как аргон, простыми телами, но кипящие выше аргона, а именно криптон Кг 81 8 и ксенон Хе 128, открытые Рамзаем и Траверсом.  

Рассмотрим теперь взаимодействие нейтрона с ротонным спектром. Нам необходимо определить изменение плотности гелия в месте нахождения нейтрона, обусловленное наличием ротонов.  

В заключение мы должны рассмотреть переходы из состояния квазисвободной плоской волны в локализованное состояние электрона в гелии. Сандерс и Левин наблюдали , что, когда плотность гелия в газовой фазе возрастает при 4 2 К, в области 6 - Ю20 - 1 2 - 1021 атом / см3 достигается критическое значение плотности, начиная с которого подвижность электрона убывает на три-четыре порядка до величины, соответствующей подвижности электрона в жидкости. Теоретическое исследование зависимости энергий свободного и локализованного состояний электрона от плотности в гелии приводит к значению 1 0 - 1021 атом / смА, выше которого локализованные состояния становятся более стабильными, чем свободные. Это теоретическое значение хорошо согласуется с экспериментальными данными. Полученный результат легко понять, если учесть, что при относительно низких плотностях пузырек не является конфигурацией с наинизшей энергией, поскольку работа объемного расширения, требующаяся для образования полости, еще велика. В то же время снижение энергии локализованного состояния по сравнению с энергией плоской волны мало ввиду малой плотности. Эксперименты Сандерса вместе с изложенными соображениями подтверждают применимость пузырьковой модели.  

В заключение мы должны рассмотреть переходы из состояния квазисвободной плоской волны в локализованное состояние электрона в гелии. Сандерс и Левин наблюдали , что, когда плотность гелия в газовой фазе возрастает при 4 2 К, в области б - Ю20 - 1 2 - 1021 атом / см3 достигается критическое значение плотности, начиная с которого подвижность электрона убывает на три-четыре порядка до величины, соответствующей подвижности электрона в жидкости. Теоретическое исследование зависимости энергий свободного и локализованного состояний электрона от плотности в гелии приводит к значению 1 0 - 1021 атом / см3, выше которого локализованные состояния становятся более стабильными, чем свободные. Это теоретическое значение хорошо согласуется с экспериментальными данными. Полученный результат легко понять, если учесть, что при относительно низких плотностях пузырек не является конфигурацией с наинизшей энергией, поскольку работа объемного расширения, требующаяся для образования полости, еще велика. В то же время снижение энергии локализованного состояния по сравнению с энергией плоской волны мало ввиду малой плотности. Эксперименты Сандерса вместе с изложенными соображениями подтверждают применимость пузырьковой модели.  

Процесс при небольших перепадах протекает почти обратимо в. Др устанавливается разность темп-р ДГ такая, что Др р5ДГ, где р - плотность гелия, S - энтропия единицы массы гелия.  

Вычислить вероятность рассеяния удается только для нейтронов, скорость которых меньше скорости звука в гелии II, что соответствует энергиям, меньшим, чем 3 5 К. В этом случае энергия взаимодействия нейтрона с гелием имеет весьма простой вид - она пропорциональна плотности гелия. В промежуточной области энергий, между 3 5 и 15 5 К, вычисления наталкиваются на большие затруднения.  

Активированные угли были получены прокаливанием сарана при 600 с последующей обработкой паром при 950; длительность обработки паром последовательно увеличивалась. В третьем и четвертом столбцах даны объемы, вычисленные по правилу Гурвича по изотермам адсорбции NJ и СгН5С1; в пятом столбце приведены объемы, вычисленные по плотности гелия и ртути.  

По физическим свойствам гелий наиболее близок к молекулярному водороду. Вследствие ничтожной поляризуемости атомов гелия у него самые низкие температуры кипения (-269 o С) и плавления (-271 o С при 2,5×10 6 Па).

Гелий по сравнению с другими элементами обладает наибольшей энергией ионизации атома (24,59 эВ). Особая устойчивость электронной структуры атома отличает гелий от остальных элементов Периодической системы Д.И. Менделеева.

Гелий хуже других газов растворяется в воде и других растворителях. В 1 л воды, например, растворяется при 0 o С менее 10 мл гелия, т.е. в два с лишним раза меньше, чем молекул водорода (H 2), и в 51000 раз меньше, чем молекул хлороводорода (HCl).

После водорода гелий - самый легкий из всех газов. Он более чем в 7 раз легче воздуха.

Плотность гелия равна 0,178кг/м 3 . Важнейшие константы гелия представлены в таблице ниже:

Таблица 1. Физические свойства гелия.

Распространенность гелия в природе

Гелий относится к группе благородный газов. Он впервые был обнаружен на Солнце, а затем и на Земле. Спектральный анализ показывает присутствие гелия в атмосфере звезд и в метеоритах.

Краткое описание химических свойств и плотность гелия

Для инертных газов характерно полное или почти полное отсутствие химической активности. Так, в обычных условиях гелий химически инертен, но при сильном возбуждении атомов он может образовывать молекулярные ионы He 2 + . В обычных условиях эти ионы неустойчивы; захватывая недостающий электрон, они распадаются на два нейтральных атома.

Примеры решения задач

ПРИМЕР 1

Задание Относительная плотность газа по водороду - 27. Массовая доля элемента водорода в нем - 18,5%, а элемента бора - 81,5%. Определите формулу газа.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов водорода в молекуле через «х», число атомов бора через «у».

Найдем соответствующие относительные атомные массы элементов водорода и бора (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(B) = 11; Ar(H) = 1.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y = ω(H)/Ar(H) : ω (B)/Ar(B);

x:y = 18,5/1: 81,5/11;

x:y = 18,5: 7,41 = 2,5: 1 = 5: 2.

Значит простейшая формула соединения водорода и бора имеет вид H 5 B 2 .

Значение молярной массы газа можно определить при помощи его плотности по водороду:

M gas = M(H 2) × D H2 (gas) ;

M gas = 2 × 27 = 54 г/моль.

Чтобы найти истинную формулу соединения водорода и бора найдем отношение полученных молярных масс:

M gas / M(H 5 B 2) = 54 / 27 = 2.

M(H 5 B 2) = 5 ×Ar(H) + 2 × Ar(B) = 5 ×1 + 2 × 11 = 5 + 22 = 27 г/моль.

Это означает, что все индексы в формуле H 5 B 2 следует умножить на 2. Таким образом формула вещества будет иметь вид H 10 B 4 .

Ответ Формула газа - H 10 B 4 .

ПРИМЕР 2

Задание Вычислите относительную плотность по воздуху углекислого газа CO 2 .
Решение Для того, чтобы вычислить относительную плотность одного газа по другому, надо относительную молекулярную массу первого газа разделить на относительную молекулярную массу второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (CO 2) = M r (CO 2) / M r (air);

D air (CO 2) = 44 / 29 = 1,52.

M r (CO 2) = A r (C) + 2 ×A r (O) = 12 + 2 × 16 = 12 + 32 = 44.

Ответ Относительная плотность по воздуху углекислого газа равна 1,52.

Гелий - подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна. По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия. Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций - абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки - и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях - ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия - альфа-частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа-частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа-частицами было впервые осуществлено взаимопревращение элементов - то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа-частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа-частиц были синтезированы кюрий , берклий , калифорний , менделевий .

Мы перечислили эти факты лишь с одной целью - показать, что элемент № 2 - элемент весьма необычный.

Земной гелии

Гелий - элемент необычный, и история его необычна . Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа-частицы - высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235 , тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута . Все эти элементы порождают только тяжелый изотоп гелия - 4 He, чьи атомы можно рассматривать как останки альфа-частиц, захороненные в оболочке из двух спаренных электронов - в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале , можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд. лет превращается в гелий и свинец .

Гелий в земной коре накапливается медленно. Одна тонна гранита , содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия - половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико - несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.
Гелий пи Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 10 августа 1868 г. и англичанин Дж. Локьер - 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

Природные соединения, в составе которых есть альфа-активные изотопы, - это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой - самородные металлы, магнетит , гранат , апатит , циркон и другие, - прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т. д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот , углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко - десятых долей процента. Большая (1,5-10%) гелиеносность метаноазотных месторождений - явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 54014 м 3 ; судя же по вычислениям, его образовалось в земной коре за 2 млрд. лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий - легкий газ и, подобно водороду (хотя и медленнее), он улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся - старый улетучивался в космос , а вместо него в атмосферу поступал свежий - «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли - в альфа-активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий - редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе - 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Инертный, но очень нужный гелий

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком - жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента № 2. Оттого практике гелий был недоступен.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий - идеальное средство для передавливания из одной емкости в другую легковоспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов. С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах или других системах, находящимся под давлением или вакуумом.


Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т. п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения - при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле - криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена - частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

ИЗОТОПЫ ГЕЛИЯ, В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 - 2,440-21 секунды, гелия-6 - 0,83 секунды, гелия-8 - 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые получен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

ПОСЛЕДНИЙ ТВЕРДЫЙ ГАЗ. В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше - 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый - в 1926 г.

ГЕЛИЕВЫЙ ВОЗДУХ. Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких - быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни - довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную.

НАШ ГЕЛИЙ. В 1980 г. группа ученых и специалистов во главе с И. Л. Андреевым была удостоена Государственной премии за создание и внедрение технологии получения гелиевых концентратов из сравнительно бедных гелиеносных газов. На Оренбургском газовом месторождении построен гелиевый завод, ставший главным нашим поставщиком «солнечного газа» для нужд разных отраслей.

ГЕЛИЕВЫЙ КОМПЛЕКС. В 1978 г. академику В. А. Легасову с сотрудниками при распаде ядер трития, включенных в молекулу аминокислоты глицина, удалось зарегистрировать парамагнитный гелийсодержащий комплекс, в котором наблюдалось сверхтонкое взаимодействие ядра гелия-3 с неспаренным электроном. Это пока наибольшее достижение в химии гелия.

Жидкий

Гелий идет под вторым порядковым номером в периодической системе элементов Менделеева. Это один из главных элементов инертной группы газов. Обозначается гелий латинскими буквами «He» и имеет атомный номер два. Этот газ не обладает запахом, не имеет цвета и вкуса.
Газ гелий является одним из самых распространенных элементов во вселенной и по количеству идет сразу после водорода. Гелий также является одним из самых легких элементов. Для получения гелия используют метод фракционной перегонки (процесс низкотемпературного разделения).

Открытие гелия

Во время солнечного затмения в городе Гунтур в 1868 году ученый из Франции Пьер Жансен смог исследовать хромосферу Солнца при помощи спектроскопа. Он смог определить, что в протуберанцах Солнца находиться не только водород, но и другие элементы. В то время новый элемент приняли за D натрий. Но Пьер Жансен написал письмо во Французскую Академию наук, где изложил свою теорию открытия нового элемента.
Спустя пару месяцев астроном из Англии Норман Локьер провел собственные исследования и также при помощи спектроскопа выявил новую линию в спектре неизвестного элемента длинной 587,56 нм. Во время совместной работой со своим другом химиком Эдвардом Франкландом Норман Локьер дал название открытому элементу - гелий, что означало на древнегреческом языке «Солнце».
В честь открытия нового элемента Французская академия решила вручить почетные медали обоим ученым и Норману Локьеру и Пьеру Жансену.
Итальянец Луиджи Пальмиери в 1881 году во время своих исследований вулканических газов смог определить гелий. Луиджи Пальмиери использовал прокаливание для нагрева вулканического продукта в бунзеновской горелке и пытался определить весь спектр полученных газов. Но Пальмиери так и не смог четко сформулировать свои исследования и поэтому его опытам большого значения не придали. Но спустя много лет гелий и аргон действительно были обнаружены в вулканических газах.
Открытие гелия на Земле произошло в 1895 году, когда шотландский химик Уильям Рамзай занимался исследованиями газов, полученных при разложении минерала клевеита. При помощи спектрометра он смог обнаружить желтую линию в спектре газов, которая говорила о наличии гелия. Для дополнительного исследования Уильям Рамзай отправил образцы ученому Уильяму Круксу. Дополнительные исследования показали, что желтая линия совпадает со спектром ранее открытого гелия в хромосфере Солнце. В дальнейшем шведские химики Н. Ленгле и П. Клеве смогли точно определить атомный вес гелия, повторив опыты Рамзая с клевеитом. Окончательную точку в открытии гелия на Земле в 1896 году поставили Зигберт Фридлендер, Эдвард Бэли и Генрих Кайзер, которые определили присутствие гелия в атмосфере нашей планеты.
В дальнейшем Рамзай продолжил свои исследования гелия и обнаружил, что гелий часто сопутствует торию и урану. В 1906 году ученый Ройдс и Резенфорд открыли, что альфа-частицы этих радиоактивных элементов являются ядрами гелия. Именно благодаря исследованиям Рамзая было положено начало теории строения атома.
Жидкий гелий впервые смог получить методом дросселирования физик из Нидерландов Хейке Камерлинг-Оннесу. Он охладил гелий в кипевшем в вакууме водороде. Получить твердый гелий не получалось до 1926 года. Немецкий физик Виллем Хендрик смог под высоким давлением сжать гелий и выделить кристаллы.
В 1932 году ученый Кеез исследовал зависимость теплоемкости жидкого гелия и температуры. Он узнал, что при температуре 2,1К (точное значение =2,172 K.) плавный подъем теплоемкости гелия сменяется резким падением и график теплоемкости выглядит как греческая буква «лямбда» (?). В связи с этим открытием этой точки температуры было присвоено название «?-точка». Именно в этой точке происходят глобальные изменения с гелием. Одна фаза жидкого гелия сменяет другую и при этом не выделяется тепла. Гелию ниже «?-точки» было присвоено обозначение гелий-II, а выше гелий-I.
Явление сверхтекучести гелия впервые открыл советский ученый Пётр Леонидович Капица, которые исследовал свойства жидкого гелия-II. Он смог доказать, что жидкий гелий-II течет практически без трения.
Происхождение названия
В слове гелий имеется окончание «-ий» (лат. «-um» — «Helium»), что характерно для обозначения металлов в периодической системе элементов. Это связано с тем, что Локьер при открытии гелия предположил, что это металл и дал такое название. А переименовать в «Гелион» с окончанием «-он» уже не представлялось возможным, так как это название было закреплено за ядром лёгкого изотопа гелия (гелий-III)

Нахождение гелия

В космосе
Во Вселенной гелий занимает второй место по распространенности. Большая часть гелия в космосе образовалась после Большого Взрыва, в период первичного нуклеосинтеза. На данный момент гелий образуется во Вселенной благодаря термоядерному синтезу водорода в недрах звезд. Малая часть гелия образуется в земной коре при альфа-распаде тяжелых элементов и просачивается сквозь земную кору связываясь с частичками природного газа. Концентрация гелия в природном газе может достигать семи процентов и выше от объема.

В атмосфере земли
Гелий в атмосфере земли получается в результате распада элементов Ac, Th, U. И содержание гелия в атмосфере достигает 7,24?10?5 % по массе и 5,27?10?4 % по объёму. Запасы гелия оцениваются примерно в 5?1014 м?. Обычно концентрация гелия в других газах не превышает двух процентов и в очень редких случаях встречаются газы, содержание в которых гелия достигает 8-15%.
В земной коре
Гелий занимает второй место после аргона по содержанию в земной коре. В земном веществе содержание гелия оценивается примерно в 3 г/т. Наибольшая концентрация гелия замечена в минералах, в которых присутствует торий, самарий, уран, монацит, гадолинит, фергюсонит, клевеит, торианит. При этом в торианите содержание гелия может достигать 10,5 л/кг, в остальных минерала в пределах от 0,8 до 3,5 л/кг.

Определение гелия
Чтобы качественно определить гелий используют анализ спектров испускания (линии 388,86 нм и 587,56 нм). Количественно гелий определяют хроматографическим и масс-спектрометрическим методом. Также используются методы, которые основаны на измерении физических свойств гелия, таких как плотность, теплопроводность и так далее.
Физические свойства гелия
Гелий является инертным химическим элементом. Он не токсичен, без цвета, вкуса и запаха. При нормальных условиях гелий является одноатомным газом с точкой кипения 4,215 K (гелий IV). Твердое состояние гелия достигается только при давлении порядка 25 атмосфер и выше. Без давления гелий не переходит в твердое состояние даже при температурах близких к абсолютному нулю. Большинство соединений гелия нестабильны в нормальных условиях и для образования связей требуются специальные условия.
Воздействие гелия на организм
В своем большинстве инертные газы воздействуют на организм, вызывая наркотическое опьянение. Воздействия простого гелия при нормальном давлении на организм не оказывает никакого действия. При повышении давления у человека может возникнуть синдром высокого давления.

Свойства в газовой фазе
Гелий ведет себя как идеальный газ при нормальных условиях. В большинстве проявлений гелий является многоатомным газом с плотностью 0,17847 кг/м?. Теплопроводность гелия при нормальных условиях составляет 0,1437 Вт/(м.К), больше чем у водорода и других газов. Удельная теплоемкость при нормальных условиях 5,23 кДж/(кг.К), а в водорода 14,23 кДж/(кг.К).
При пропускании тока через трубку заполненную гелием можно наблюдать разряды различных цветов, которые зависят от давления в трубке. Если уменьшать давление то цвета будут меняться от розового, желтого до зеленого и оранжевого. Это объясняется тем, что в спектре гелия находиться несколько линий, которые располагаются в диапазоне от ультрафиолетового до инфракрасного спектра. Главные линии спектра гелия лежат в диапазоне между 706,52 нм и 447,14 нм. Уменьшение давления в трубке приводит к тому, что увеличивается длина пробега электрона, и энергия от его столкновения с атомами гелия возрастает. В результате этого происходит возбуждение атомов и большей энергии, что и приводит к смещению спектральных линий.
Гелий слабо растворяется в воде по сравнению с другими газами. При температуре 20 °C в одном литре воды растворяется всего 8,8 мл гелия. В этаноле растворяется 2,5 мл при 15°C и 3,2 при 25 °C. Скорость диффузии гелия в твердых материалах в несколько раз больше чем у других газов. Например, диффузия гелия на 65% больше чем у водорода
У гелия коэффициент преломления ближе к единице, чем у других газов. Гелий при нормальной температуре имеет отрицательный коэффициент Джоуля-Томсона. То есть он не нагревается, когда свободно увеличивается в объеме. Гелий остывает во время свободного расширения только при температуре ниже 40 К (ниже температуры инверсии Джоуля-Томсона) при нормальном давлении. При понижении температуры гелий способен перейти в жидкообразное состояние при расширительном охлаждении. Такое охлаждение возможно при помощи детандера.

Химические свойства гелия
Гелий является одним и наименее активных химических элементов среди инертных газов. Большинство соединений гелия существуют в газовой фазе, в виде эксимерных молекул, которые имеют неустойчивое основное состояние и устойчивое возбужденное электронное состояние. Гелий способен образовывать двухатомные молекулы (He2), соединения с фтором (HeF) и хлором (HeCl).

Получение гелия
Промышленным способом для получения гелия используют месторождения гелийсодержащих природных газов. Чтобы отделить гелий от другого газа используют глубокое охлаждение. Гелий сжижается лучше остальных газов. При помощи дросселирования в несколько этапов очищают гелий от углекислого газа и углеводородов. В итоге получается смесь нескольких газов (гелий, водород и неон). Дальше для отделения водорода от гелия используют CuO и температуру 650—800 К. Окончательно очищают гелий методом охлаждения смеси в кипящем вакууме N2 и адсорбцией оставшихся примесей. Таким методом получают чистый гелий (до 99,8% по объему)
В России гелий газ получают из нефтяного или природного газа. Основным российским заводом по добыче гелия является ООО «Газпром добыча Оренбург». На этом заводе добывают гелий из газа с низким содержанием гелия, что повышает его окончательную стоимость. Чтобы снизить себестоимость гелия были разработаны проекты освоения месторождений в Восточной Сибири и Дальнем Востоке. На данном этапе главным поставщиком гелия на мировой рынок является США, на долю которых приходиться порядка 140 миллионов м? гелия в год. Все самые крупные месторождения гелия находятся на США. Россия по объему производимого гелия занимает третью строчку после США и Алжира.

Транспортировка гелия
Для того чтобы перевозить гелий используют специальные баллоны для газов (ГОСТ 949-73). Эти баллоны необходимо помещать в специальные контейнеры, чтобы не повредить их в дороге. Для перевозки упакованных баллонов с гелием можно использовать любой транспорт пригодный для перевозки газов. Жидкий гелий перевозят в специальных транспортных емкостях. При перевозке жидкого гелия сосуды с гелием должны находиться в вертикальном положении. При правильной транспортировке гелий можно перевозить как железнодорожным транспортом, так и на специальных автомобилях.

Применение гелия
Гелий широко используется в народном хозяйстве и промышленности. В металлургии гелий используют при выплавке чистых металлов. Гелий используется в качестве пищевой добавки E939 и средства упаковки. За счет уникальных свойств гелий используют в качестве хладагента. Гелием наполняют воздушные шары, используют в медицине как дыхательную смесь, используют в лазерах и в качестве теплоносителей в котлах и трубопроводах.

Существует три основных источника получения гелия:

  • из гелийсодержащих природных газов
  • из минералов
  • из воздуха

Получение гелия из природного газа

Основным способом получения гелия является метод фракционной конденсации из природных гелийсодержащих газов , т.е. методом глубокого охлаждения. Причем используется его характерное свойство - наиболее низкая по сравнению с известными веществами температура кипения. Это позволяет конденсировать все сопутствующие гелию газы, прежде всего метан и азот. Процесс осуществляется обычно в две стадии:

  • выделение так называемого сырого гелия (концентрата, содержащего 70-90% He)
  • очистка с получением технически чистого гелия.

На рисунке ниже приведена одна из схем установки для извлечения гелия из природного газа.

Газ сжимается до 25 атмосфер и под этим давлением поступает в установку. Очистка от (CO 2) и частичная осушка газа производятся в скрубберах, которые орошаются раствором, содержащим 10-20% моноэтаноламина, 70-80% диэтиленгликоля и 5-10% воды. После скрубберов в газе остается 0,003-0,008% углекислоты CO 2 , а точка росы не превышает 5°С. Дальнейшая осушка осуществляется в адсорберах с силикагелем, где достигается температура точки росы -45°С.

Под давлением около 20 атмосфер чистый сухой газ поступает в предварительный теплообменник 1, где охлаждается до -28° С обратными газовыми потоками. При этом происходит конденсация тяжелых углеводородов, которые отделяются в сепараторе 2. В аммиачном холодильнике 3 газ охлаждается до -45°С, конденсат отделяется в сепараторе 4. В основном теплообменнике 5 температура газа снижается до -110°С, в результате чего конденсируется значительная часть метана. Паро-жидкостная смесь (около 20% жидкости) дросселируется до давления 12 атмосфер в первый противоточный конденсатор 6, на выходе из которого паро-газовая смесь обогащается гелием до 3%. Образовавшийся в трубках конденсат стекает в отпарную секцию, на тарелках которой из жидкости удаляется растворенный в ней гелий, присоединяющийся к паро-газовому потоку.

Жидкость дросселируется до 1,5 атмосфер в межтрубное пространство конденсатора, где служит хладагентом. Образовавшийся здесь пар выводится через теплообменники 5 и 1. Паро-газовая смесь, выходящая из конденсатора 6 и содержащая до 3% He, под давлением 12 атмосфер идет во второй противоточный конденсатор 7, состоящий из двух частей: в нижней части находится змеевиковый теплообменник, в трубках которого испаряется сдросселированная с 12 до 1,5 атмосфер кубовая жидкость, а в верхней части - прямотрубчатый теплообменник, в межтрубном пространстве которого кипит азот при температуре -203°С и давлении 0,4 атмосферы. В результате конденсации компонентов газовой смеси в нижней части аппарата 7 газ обогащается гелием до 30-50%, а в верхней части - до 90-92%.

Сырой гелий такого состава под давлением 11-12 атмосфер поступает в теплообменники, где нагревается и выводится из установки. Так как в природном газе содержатся небольшие примеси водорода, то в сыром гелии концентрация водорода увеличивается до 4-5%. Удаление водорода производят каталитическим гидрированием с последующей осушкой газа в адсорберах с силикагелем. Сырой гелий сжимается до 150- 200 атмосфер мембранным компрессором 8, охлаждается в теплообменнике 9 и поступает в прямоточный змеевиковый конденсатор 10, охлаждаемый азотом, кипящим под вакуумом. Конденсат (жидкий ) собирается в сепараторе 11 и периодически выводится, а несконденсировавшийся газ, содержащий примерно 98% He идет в адсорбер 12 с активированным углем, охлаждаемым жидким азотом. Гелий, выходящий из адсорбера, содержит примесей менее 0,05% и поступает в баллоны 13 в качестве продукта.

Особенно богаты гелием природные газы в США, что определяет широкое применение гелия для в этой стране.

Получение гелия из минералов

Другим источником гелия являются некоторые радиоактивные минералы содержащие уран, торий и самарий:

  • клевеит
  • фергюсонит
  • самарскит
  • гадолинит
  • монацит
  • торианит

В частности монацитовые пески , крупное месторождение которых имеется в Траванкоре (Индия): монациты этого месторождения содержат около 1 см 3 гелия в 1 г руды.

Для получения гелия из моноцита необходимо нагреть в закрытом сосуде моноцит до 1000°С. Гелий выделяется вместе с углекислым газом (CO 2), который затем поглощался раствором едкого натрия (NaOH). Остаточный газ содержит 96,6% He. Дальнейшая очистка производится при 600°С на металлическом магнии для удаления азота, а затем при 580°С - на металлическом кальции для удаления оставшихся примесей. Продукционный газ содержит свыше 99,5% He. Из 1000 т монацитового песка можно получить около 80 м 3 чистого гелия. Такой способ получения гелия не представляет технического и промышленного интереса. .

Получение гелия из воздуха

В небольшом количестве гелий находится в воздухе , из которого он может быть получен в качестве побочного продукта при производстве кислорода и азота из воздуха, описанного в статье « ». В промышленных ректификационных колоннах для разделения воздуха над жидким азотом собирается остающаяся газообразной смесь неона и гелия. На рисунке ниже показан аппарат Клода , специально приспособленный для отделения такой смеси.

Газ, выходящий из аппарата через вентиль Д, охлаждается в змеевике S, который поливается жидким азотом из Т, чтобы сконденсировать остаточный азот. Если вентиль R немного открыть, получается смесь, содержащая очень мало азота. При таком методе промышленного получения гелия, кроме трудности, заключающейся в необходимости обработать большое количество воздуха, встречается еще дополнительное затруднение - необходимость отделения гелия от неона . Это отделение может быть выполнено с помощью жидкого водорода, в котором неон отвердевает, или с помощью адсорбции неона активированным углем, охлаждаемым жидким азотом.

Получение гелия из воздуха нецелесообразно вследствие его малого количества - 0,00046% объема или 0,00007% веса. Расчеты показывают, что стоимость одного кубометра гелия, добытого из воздуха, будет в тысячи раз больше, чем при добывании его из природных газов. Такая высокая стоимость, конечно, исключает возможность промышленного выделения гелия из воздуха.

Например: Чтобы добыть 1 кубометр гелия, нужно выделить 116 т азота.