Комплексные числа и
координатная
плоскость

Геометрическая модель множества R действительных чисел – числовая прямая. Любому действительному числу соответствует единственная точка

на
числовой прямой и, любой точке прямой
соответствует только одно
действительное число!

Добавив к числовой прямой, соответствующей множеству всех действительных чисел ещё одно измерение – прямую, содержащую множество чисто м

Добавив к числовой прямой, соответствующей множеству
всех действительных чисел ещё одно измерение –
прямую, содержащую множество чисто мнимых чисел –
получим координатную плоскость, в которой каждому
комплексному числу a+bi можно поставить в соответствие
точку (a; b) координатной плоскости.
i=0+1i соответствует точка (0;1)
2+3i соответствует точка (2;3)
-i-4 соответствует точка (-4;-1)
5=5+1i соответствует тоска (5;0)

Геометрический смысл операции сопряжения

! Операция сопряжения есть осевая
симметрия относительно оси абсцисс.
!! Сопряжённые друг другу
комплексные числа равноудалены от
начала координат.
!!! Вектора, изображающие
сопряженные числа, наклонены к оси
абсцисс под одинаковым углом, но
расположены по разные стороны от
этой оси.

Изображение действительных чисел

Изображение комплексных чисел

Алгебраический
способ
изображения:
Комплексное число
a+bi изображается
точкой плоскости
с координатами
(a;b)

Примеры изображения комплексных чисел на координатной плоскости

(Нас интересуют
комплексные числа
z=x+yi , у которых
х=-4. Это-уравнение
прямой,
параллельной оси
ординат)
у
Х= - 4
Действительная
часть равна -4
0
х

Изобразите на координатной плоскости множество всех комплексных чисел, у которых:

Мнимая часть
является четным
однозначным
натуральным
числом
(Нас интересуют
комплексные числа
z=x+yi, у которых
у=2,4,6,8.
Геометрический образ
состоит из четырех
прямых,параллельных
оси абсцисс)
у
8
6
4
2
0
х

Комплексные числа

Мнимые и комплексные числа. Абсцисса и ордината

комплексного числа. Сопряжённые комплексные числа.

Операции с комплексными числами. Геометрическое

представление комплексных чисел. Комплексная плоскость.

Модуль и аргумент комплексного числа. Тригонометрическая

форма комплексного числа. Операции с комплексными

числами в тригонометрической форме. Формула Муавра.

Начальные сведения о мнимых и комплексных числах приведены в разделе «Мнимые и комплексные числа». Необходимость в этих числах нового типа появилась при решении квадратных уравнений для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики

и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Основные договорённости:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0 i или a – 0 i . Например, записи 5 + 0 i и 5 – 0 i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d ) i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Это определение соответствует правилам действий с обычными многочленами.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число ( a – c ) + (b – d ) i .

Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

( ac – bd ) + (ad + bc ) i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = 1.

П р и м е р . (a+ bi )( a – bi ) = a 2 + b 2 . Следовательно, произведение

двух сопряжённых комплексных чисел равно действительному

положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi .

Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3 i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3 i

И выполнив все преобразования, получим:

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B – число 2, и O – ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b (см. рис.). Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или буквой r

Геометрическое изображение комплексных чисел. Тригонометрическая форма комплексного числа.

2015-06-04

Действительная и мнимая ось
Аргумент комплексного числа
Главный аргумент комплексного числа
Тригонометрическая форма комплексного числа

Задание комплексного числа $z = a+bi$ равносильно заданию двух действительных чисел $a,b$ - действительной и мнимой частей данного комплексного числа. Но упорядоченная пара чисел $(a,b)$ изображается в декартовой прямоугольной системе координат точкой с координатами $(a, b)$. Таким образом, эта точка может служить изображением и для комплексного числа $z$: между комплексными числами и точками координатной плоскости устанавливается взаимно однозначное соответствие.

При использовании координатной плоскости для изображения комплексных чисел ось $Ox$ обычно называют действительной осью (так как действительная часть числа принимается за абсциссу точки), а ось $Oy$ - мнимой осью (так как мнимая часть числа принимается за ординату точки).


Комплексное число $z$, изображаемое точкой $M(a,b)$, называется аффиксом этой точки. При этом действительные числа изображаются точками, лежащими на действительной оси, а все чисто мнимые числа $bi$(при $a = 0$) - точками, лежащими на мнимой оси. Число нуль изображается точкой O.


Рис.1
На рис. 1 построены изображения чисел $z_{1} = 2 + 3i, z_{2}=1 =1,z_{3} = 4i, z_{4} = -4 + i, z_{5} = -2, z_{6} = - 3 – 2i, z_{7} = -5i, z_{8} = 2 – 3i$.

Два комплексно сопряженных числа изображаются точками, симметричными относительно оси $Ox$ (точки $z_{1}$ и $z_{8}$ на рис. 1).


Рис. 2
Часто с комплексным числом $z$ связывают не только точку $M$, изображающую это число, но и вектор $\vec{OM}$, ведущий из $O$ в $M$; изображение числа $z$ вектором удобно с точки зрения геометрического истолкования действия сложения и вычитания комплексных чисел. На рис. 2, а показано, что вектор, изображающий сумму комплексных чисел $z_{1}, z_{2}$, получается как диагональ параллелограмма, построенного на векторах $\vec{OM_{1}}, \vec{OM_{2}}$, изображающих слагаемые. Это правило сложения векторов известно как правило параллелограмма (например, для сложения сил или скоростей в курсе физики). Вычитание может быть сведено к сложению с противоположным вектором (рис. 2, б).


Рис. 3
Как известно, положение точки на плоскости можно задавать также ее полярными координатами $r, \phi$. Тем самым и комплексное число - аффикс точки также определится заданием $r$ и $\phi$. Из рис. 3 ясно, что $r = OM = \sqrt{x^{2} + y^{2}}$ является в то же время модулем комплексного числа $z$: полярный радиус точки, изображающей число $z$, равен модулю этого числа.

Полярный угол точки $M$ называют аргументом числа $z$, изображаемого этой точкой.


Аргумент комплексного числа (как и полярный угол точки) определен неоднозначно; если $\phi_{0}$ -одно из его значений, то все его значения выражаются формулой
$\phi = \phi_{0} + 2k \pi (k = 0, \pm 1, \pm 2, \cdots)$

Все значения аргумента в совокупности обозначаются символом $Arg \: z$.

Итак, всякому комплексному числу может быть поставлена в соответствие пара действительных чисел: модуль и аргумент данного числа, причем аргумент определяется неоднозначно. Напротив, заданным модулю $|z| = r$ и аргументу $\phi$ отвечает единственное число $z$, имеющее данные модуль и аргумент. Особыми свойствами обладает число нуль: его модуль равен нулю, аргументу не приписывается никакого определенного значения.

Для достижения однозначности в определении аргумента комплексного числа можно условиться одно из значений аргумента называть главным. Его обозначают символом $arg \: z$. Обычно в качестве главного значения аргумента выбирается значение, удовлетворяющее неравенствам
$0 \leq arg \: z (в других случаях неравенствам $- \pi


Обратим еще внимание на значения аргумента действительных и чисто мнимых чисел:
$arg \: a = \begin{cases} 0, & \text{если} a>0, \\
\pi, & \text{если} a $arg \: bi = \begin{cases} \frac{\pi}{2}, & \text{если} b > 0, \\
\frac{3 \pi}{2}, & \text{если} b

Действительная и мнимая части комплексного числа (как декартовы координаты точки) выражаются через его модуль и аргумент (полярные координаты точки) по формулам:
$a = r \cos \phi, b = r \sin \phi$, (1)
и комплексное число может быть записано в следующей тригонометрической форме:
$z = r(\cos \phi \phi + i \sin \phi)$ (2)
(запись числа в виде $z = a + bi$ будем называть записью в алгебраической форме).


Условие равенства двух чисел, заданных в тригонометрической форме, таково: два числа $z_{1}$ и $z_{2}$ равны тогда и только тогда, когда их модули равны, а аргументы равны или отличаются на целое число периодов $2 \pi$.

Переход от записи числа в алгебраической форме к его записи в тригонометрической форме и обратно совершается по формулам (4):
$r = \sqrt{a^{2} + b^{2}}, \cos \phi = \frac{a}{r}= \frac{a}{\sqrt{a^{2} + b^{2}}}, \sin \phi = \frac{b}{r} = \frac{b}{\sqrt{a^{2} + b^{2}}}, tg \phi = \frac{b}{a}$ (3)
и формулам (1). При определении аргумента (его главного значения) можно пользоваться значением одной из тригонометрических функций $\cos \phi$ или $\sin \phi$ и учитывать знак второй.

Пример. Записать в тригонометрической форме следующие числа:
а)$6 + 6i$; б) $3i$; в) $-10$.
Решение, а) Имеем
$r = \sqrt{6^{2} + (-6)^{2}} = 6 \sqrt{2}$,
$\cos \phi = \frac{6}{6 \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$,
$\sin \phi = - \frac{6}{6 \sqrt{2}} = - \frac{1}{\sqrt{2}} = - \frac{\sqrt{2}}{2}$,
откуда $\phi = \frac{7 \pi}{4}$, и, следовательно,
$6-6i = 6 \sqrt{2} \left (\cos \frac{7 \pi}{4} + i \sin \frac{7 \pi}{4} \right)$;
б) $r = 3, \cos \phi = 0, \sin \phi = 1, \phi = \pi /2$;
$3i = 3 \left (\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$
в) $r = 10, \cos \phi = -1, \sin \phi = 0, \phi = \pi$;
$-10 = 10 (\cos \pi + i \sin \pi)$

Существуют следующие формы комплексных чисел: алгебраическая (x+iy), тригонометрическая (r(cos+isin)), показательная (re i).

Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).

Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).

Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.

x+iy - алгебраическая форма записи комплексного числа.

Выведем тригонометрическую форму записи комплексного числа.

Подставляем полученные значения в начальную форму: , т.е.

r(cos +isin ) - тригонометрическая форма записи комплексного числа.

Показательная форма записи комплексного числа следует из формулы Эйлера:
,тогда

z=re i - показательная форма записи комплексного числа.

Действия над комплексными числами.

1. сложение. z 1 +z 2 =(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);

2 . вычитание. z 1 -z 2 =(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);

3. умножение. z 1 z 2 =(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2)+i(x1y2+x2y1);

4 . деление. z 1 /z 2 =(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=

Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.

Произведение.

z1=r(cos+isin); z2=r(cos+isin).

То произведение z1*z2 комплексных чисел находится: , т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.

;
;

Частное.

Если комплексные числа заданы в тригонометрической форме.

Если комплексные числа заданы в показательной форме.

Возведение в степень.

1. Комплексное число задано в алгебраической форме.

z=x+iy, то z n находим по формуле бинома Ньютона :

- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).

; n!=1*2*…*n; 0!=1;
.

Применяем для комплексного числа.

В полученном выражении нужно заменить степени i их значениями:

i 0 =1 Отсюда, в общем случае получаем: i 4k =1

i 1 =i i 4k+1 =i

i 2 =-1 i 4k+2 =-1

i 3 =-i i 4k+3 =-i

Пример .

i 31 = i 28 i 3 =-i

i 1063 = i 1062 i=i

2. тригонометрической форме.

z=r(cos+isin), то

- формула Муавра .

Здесь n может быть как “+” так и “-” (целым).

3. Если комплексное число задано в показательной форме:

Извлечение корня.

Рассмотрим уравнение:
.

Его решением будет корень n–ой степени из комплексного числа z:
.

Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.

Если комплексное число задано в тригонометрической форме:

z=r(cos+isin), то корень n-ой степени от z находится по формуле:

, где к=0,1…n-1.

Ряды. Числовые ряды.

Пусть переменная а принимает последовательно значения а 1 ,а 2 ,а 3 ,…,а n . Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.

Числовым рядом называется выражение а 1 +а 2 +а 3 +…+а n +…=. Числа а 1 ,а 2 ,а 3 ,…,а n – члены ряда.

Например.

а 1 – первый член ряда.

а n – n-ый или общий член ряда.

Ряд считается заданным, если известен n-ый (общий член ряда).

Числовой ряд имеет бесконечное число членов.

Числители – арифметическая прогрессия (1,3,5,7…).

n-ый член находится по формуле а n =а 1 +d(n-1); d=а n -а n-1 .

Знаменатель – геометрическая прогрессия . b n =b 1 q n-1 ;
.

Рассмотрим сумму первых n членов ряда и обозначим ее Sn.

Sn=а1+а2+…+а n .

Sn – n-ая частичная сумма ряда.

Рассмотрим предел:

S - сумма ряда.

Ряда сходящийся , если этот предел конечен (конечный предел S существует).

Ряд расходящийся , если этот предел бесконечен.

В дальнейшем наша задача заключается в следующем: установить какой ряд.

Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.

, C=const.

Геометрическая прогрессия является сходящимся рядом , если
, и расходящимся, если
.

Также встречается гармонический ряд (ряд
). Этот рядрасходящийся .