КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ

Кафедра «Автоматизации управления войсками»

Только для преподавателей

"Утверждаю"

Начальник кафедры № 9

полковник ЯКОВЛЕВ А.Б.

«____»______________ 2004 г.

доцент А.И.СМИРНОВА

"ОПРЕДЕЛИТЕЛИ.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ"

ЛЕКЦИЯ № 2 / 1

Обсуждено на заседании кафедры № 9

«____»___________ 2004г.

Протокол № ___________

Кострома, 2004.

Введение

1. Определители второго и третьего порядка.

2. Свойства определителей. Теорема разложения.

3. Теорема Крамера.

Заключение

Литература

1. В.Е. Шнейдер и др., Краткий курс высшей математики, том I, гл. 2, п.1.

2. В.С. Щипачев, Высшая математика, гл.10, п.2.

ВВЕДЕНИЕ

На лекции рассматриваются определители второго и третьего порядков, их свойства. А также теорема Крамера, позволяющая решать системы линейных уравнений с помощью определителей. Определители используются также в дальнейшем в теме "Векторная алгебра" при вычислении векторного произведения векторов.

1-ый учебный вопросОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО

ПОРЯДКА

Рассмотрим таблицу из четырех чисел вида

Числа в таблице обозначены буквой с двумя индексами. Первый индекс указывает номер строки, второй – номер столбца.

ОПРЕДЕЛЕНИЕ 1. Определителем второго порядка называют выражение вида :

(1)

Числа а 11, …, а 22 называют э л е м е т а м и определителя.

Диагональ, образованная элементами а 11 ; а 22 называется г л а в н ой, а диагональ, образованная элементами а 12 ; а 21 -п о б о ч н ой.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

ПРИМЕРЫ. Вычислить:

Рассмотрим теперь таблицу из девяти чисел, записанных в три строки и три столбца:

ОПРЕДЕЛЕНИЕ 2. Определителем третьего порядка называется выражение вида :

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:


" + " " – "

С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.

Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.

Это правило вычисления определителя третьего порядка называют

п р а в и л о м т р е у г о л ь н и к о в.

ПРИМЕРЫ. Вычислить по правилу треугольников:


ЗАМЕЧАНИЕ. Определители называют также д е т е р м и н а н т а м и.

2-ой учебный вопросСВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ.

ТЕОРЕМА РАЗЛОЖЕНИЯ

Свойство 1. Величина определителя не изменится, если его строки поменять местами с соответствующими столбцами.

.

Раскрывая оба определителя, убеждаемся в справедливости равенства.

Свойство 1 устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк и для столбцов.

Свойство 2. При перестановке двух строк (или столбцов) определитель изменяет знак на противоположный, сохраняя абсолютную величину .

.

Свойство 3. Общий множитель элементов строки (или столбца ) можно выносить за знак определителя.

.

Свойство 4. Если определитель имеет две одинаковые строки (или столбца), то он равен нулю.

Это свойство можно доказать непосредственной проверкой, а можно использовать свойство 2.

Обозначим определитель за D. При перестановке двух одинаковых первой и второй строк он не изменится, а по второму свойству он должен поменять знак, т.е.

D = - DÞ 2 D = 0 ÞD = 0.

Свойство 5. Если все элементы какой–то строки (или столбца ) равны нулю, то определитель равен нулю.

Это свойство можно рассматривать как частный случай свойства 3 при

Свойство 6. Если элементы двух строк (или столбцов ) определителя пропорциональны, то определитель равен нулю.

.

Можно доказать непосредственной проверкой или с использованием свойств 3 и 4.

Свойство 7. Величина определителя не изменится, если к элементам какой-либо строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число.

.

Доказывается непосредственной проверкой.

Применение указанных свойств может в ряде случаев облегчить процесс вычисления определителей, особенно третьего порядка.

Для дальнейшего нам понадобится понятия минора и алгебраического дополнения. Рассмотрим эти понятия для определения третьего порядка.

ОПРЕДЕЛЕНИЕ 3. Минором данного элемента определителя третьего порядка называется определитель второго порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.

Минор элемента а i j обозначается М i j . Так для элемента а 11 минор

Он получается, если в определителе третьего порядка вычеркнуть первую строку и первый столбец.

ОПРЕДЕЛЕНИЕ 4. Алгебраическим дополнением элемента определителя называют его минор, умноженный на (-1) k , где k - сумма номеров строки и столбца, на пересечении которых стоит данный элемент.

Алгебраическое дополнение элемента а i j обозначается А i j .

Таким образом, А i j =

.

Выпишем алгебраические дополнения для элементов а 11 и а 12.

. .

Полезно запомнить правило: алгебраическое дополнение элемента определителя равно его минору со знаком плюс , если сумма номеров строки и столбца, в которых стоит элемент, четная, и со знаком минус , если эта сумма нечетная .

Лекция 1.1. Числовые матрицы и действия над ними.

Краткое содержание: Место линейной алгебры и аналитической геометрии в естествознании. Роль отечественных ученых в развитии этих наук. Понятие матрицы. Операции над матрицами и их свойства.

Таблица чисел вида называется прямоугольной матрицей размерности . Матрицы обозначаются заглавными латинскими буквами A, B, C, …Числа, из которых состоит таблица, называют элементами матрицы. Каждый элемент имеет два индекса и , обозначающие соответственно номер строки () и номер столбца(), в которых расположен данный элемент. Используются следующие обозначения матрицы .

Две матрицы называются равными , если они имеют одинаковую размерность (т.е. одинаковое число строк и столбцов) и если числа, стоящие на соответствующих местах этих матриц, равны.

Если число строк матрицы равно числу ее столбцов, матрицу называют квадратной . В квадратной матрице число строк (или столбцов) называют порядком матрицы. В частности квадратная матрица первого порядка – это просто действительное число. Соответственно говорят, что вектор строка есть матрица размерности , а вектор-столбец имеет размерность .

Элементы, стоящие на главной диагонали квадратной матрицы (идущей из левого верхнего в правый нижний угол), называются диагональными .

Квадратная матрица все элементы которой не лежащие на главной диагонали равны 0 называется диагональной .

Диагональная матрица, все диагональные элементы которой равны 1, а все внедиагональные – 0, называется единичной и обозначается или , где n- ее порядок.

Основные операции над матрицами – сложение матриц и умножение матрицы на число.

Произведением матрицы А на число называется матрица той же размерности, что и матрица А, каждый элемент которой умножен на это число .

Например: ; .

Свойства операции умножения матрицы на число:

1. l(mА )=(lm)А (ассоциативность)

2. l(А +В )= lА +lВ (дистрибутивность относительно сложения матриц)

3. (l+m)А =)=lА +mА (дистрибутивность относительно сложения чисел)

Линейной комбинацией матриц А и В одинакового размера называется выражение вида: aА +bВ , где a,b - произвольные числа

Суммой матрицА и В (это действие применимо только к матрицам одинаковой размерности) называется матрица С такой же размерности, элементы которой равны суммам соответствующих элементов матриц А и В .

Свойства сложения матриц:

1)А +В =В +А (коммутативность)

2)(А +В )+С =А +(В +С )=А +В +С (ассоциативность)

Разностью матрицА и В (это действие применимо только к матрицам одинаковой размерности) называется матрица С такой же размерности, элементы которой равны разности соответствующих элементов матриц А и В .

Транспонирование . Если элементы каждой строки матрица размерности записать в том же порядке в столбцы новой матрицы, причем номер столбца будет равен номеру строки, то новую матрицу называют транспонированной по отношению к и обозначают . Размерность равна Переход от к называется транспонированием. Ясно так же, что . ,

Умножение матриц . Операция умножения матриц возможна лишь в том случае, если число столбцов первого множителя равны числу строк второго. В результате умножения получим матрицу, число строк которой совпадает с числом строк первого множителя, а число столбцов с числом столбцов второго:

Правило умножения матриц: чтобы получить элемент, стоящий в –й строке и –м столбце произведения двух матриц, нужно элементы –й строки первой матрицы умножить на элементы –го столбца второй матрицы и полученные произведения сложить. На математическом жаргоне иногда говорят: нужно –ую строку матрицы умножить на –й столбец матрицы . Ясно, что строка первой и столбец второй матрицы должны содержать одинаковое количество элементов.

В отличие от этих операций операция умножения матрицы на матрицу определяется более сложно. Пусть заданы две матрицы А и В , причем число столбцов первой из них равно числу строк второй: например, матрица А имеет размерность , а матрица В – размерность . Если

, , то матрица размерности

, где (i=1,…,m;j=1,…,k)

называется произведением матрицы А на матрицу В и обозначается АВ .

Свойства операции умножения матриц:

1. (АВ)С=А(ВС)=АВС (ассоциативность)

2. (А+В)С=АС+ВС (дистрибутивность)

3. А(В+С)=АВ+А (дистрибутивность)

4. Умножение матриц некоммутативно: АВ не равно ВА ., если равно, то эти матрицы называются перестановочными.

Элементарные преобразования над матрицами :

1. Перемена местами двух строк (столбцов)

2. Умножение строки (столбца) на число, отличное от нуля

3. Прибавление к элементам одной строки (столбца) элементов другой строки (столбца), умноженных на какое либо число


Лекция 1.2. Определители с действительными коэффициентами. Нахождение обратной матрицы.

Краткое содержание: Определители и их свойства. Методы вычисления определителей с действительными коэффициентами. Нахождение обратной матрицы дляматриц третьего порядка.

Понятие определителя вводится только для квадратной матрицы. Определитель – это число , которое находится по вполне определенным правилам и обозначается или det A .

Определитель матрицы второго порядка находится так: или

Определителем третьего порядка называется число:

.

Для запоминания этой громоздкой формулы существует «правило треугольников»:

Можно посчитать и другим методом ‑ методом разложения по строке или по столбцу. Введем некоторые определения:

Минором квадратной матрицы А называется определитель матрицы А , который получается вычеркиванием –й строки и –го столбца: например для минор - .

Алгебраическим дополнением элемента определителя называется его минор, взятый со своим знаком, если сумма номеров строки и столбца, в которых расположен элемент, четна, и с обратным знаком, если сумма номеров нечетна: .

Тогда: Определитель третьего порядка равен сумме произведений элементов какого-нибудь столбца (строки) на их алгебраические дополнения.

ПР: Вычислим определитель: , разложив его по элементам первой строки.

Свойства определителей:

1.Определитель равен 0, если содержит две одинаковые строки (столбца) или нулевую строку (столбец).

2.Определитель меняет свой знак при перестановке двух строк (столбцов).

3.Общий множитель в строке (в столбце) можно выносить за знак определителя.

4.Определитель не меняется, если к строке (столбцу) прибавить любую другую строку (другой столбец), умноженную на произвольное число.

5.Определитель не меняется при транспонировании матрицы .

6.Определитель еденичной матрицы равен 1:

7.Определитель произведения матриц равен произведению определителей

Обратная матрица .

Квадратная матрица называется невырожденной , если ее определитель отличен от нуля.

Если при умножении квадратных матриц А и В в любом порядке получается единичная матрица (АВ=ВА=Е ), то матрица В называется обратной матрицей для матрицы А и обозначается , т.е. .

Теорема. Всякая невырожденная матрица имеет обратную .

Алгоритм нахождения обратной матрицы:

Обратная матрица. Квадратная матрица наз невырожденной, если ее определитель отличен от нуля. В противном случае она называется вырожденной.

Матрица, обратная к матрице обозначается . Если обратная матрица существует, то она единственна и

Где – присоединенная (союзная), составленная из алгебраических дополнений j:

Тогда определитель обратной матрицы связан с определителем данной матрицы следующим соотношением: . В самом деле, , откуда и следует данное равенство.

Свойства обратной матрицы:

1. , где ‑ невырожденные квадратные матрицы одинакового порядка.

3. .

4.


Лекция 1.3. Решение систем линейных уравнений методом Крамера.методам Гаусса и средствами матричного исчисления.

Краткое содержание: Метод Крамера и метод Гаусса решения систем линейных алгебраических уравнений. Матричный способ решения систем уравнений. Ранг матрицы. Теорема Кронекера-Капелли. Фундаментальная система решений. Однородные и неоднородные системы.

Система уравнений следующего вида:

(*) , где , ‑ коэффициенты, ‑ переменные, называется системой линейных уравнений. Решить систему линейных уравнений – это значит указать все решения системы, т.е. такие наборы значений переменных, которые обращают уравнения системы в тождества. Система линейных уравнений называется.

Ответ:.Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения и возможно только при условии, если

Этот вывод следует из следующей теоремы.

Теорема Крамера. Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):
9.операции над множествами. диаграммы Вьена.

Диаграммы Эйлера-Венна – геометрические представления множеств. Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U, а внутри его – кругов (или каких-нибудь других замкнутых фигур), представляющих множества. Фигуры должны пересекаться в наиболее общем случае, требуемом в задаче, и должны быть соответствующим образом обозначены. Точки, лежащие внутри различных областей диаграммы, могут рассматриваться как элементы соответствующих множеств. Имея построенную диаграмму, можно заштриховать определенные области для обозначения вновь образованных множеств.

Операции над множествами рассматриваются для получения новых множеств из уже существующих.

Определение. Объединением множеств А и В называется множество, состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А, В (рис. 1):

Определение. Пересечением множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат одновременно как множеству А, так и множеству В (рис. 2):

Определение. Разностью множеств А и В называется множество всех тех и только тех элементов А, которые не содержатся в В (рис. 3):

Определение. Симметрической разностью множеств А и В называется множество элементов этих множеств, которые принадлежат либо только множеству А, либо только множеству В (рис. 4):

11.отображения (функция), область определения, образы множеств при отображении, множество значений функции и её график.



Ответ: Отображением множества E в множество F, или функцией, определенной на E со значениями в F, называется правило, или закон f, который каждому элементу ставит в соответствие определенный элемент .

Элемент называют независимым элементом, или аргументом функции f, элемент называют значением функции f, илиобразом; при этом элемент называется прообразом элемента .

Отображение (функцию) обычно обозначают буквой f или символом , указывая тем самым, что f отображает множество E в F. Употребляется также обозначение , указывающее, что элементу x соответствует элемент f(x). Иногда функцию удобно задавать посредством равенства, в котором содержится закон соответствия. Например, можно говорить, что "функция f определена равенством ". Если "y" - общее наименование элементов множества F, т. е. F = {y}, то отображение записывают в виде равенстваy = f(x) и говорят, что это отображение задано явно.

2. Образ и прообраз множества при заданном отображении

Пусть задано отображение и множество .

Множество элементов из F, каждый из которых является образом хотя бы одного элемента из D при отображении f, называется образоммножества D и обозначается f(D).

Очевидно, .

Пусть теперь задано множество .

Множество элементов таких, что , называется прообразом множества Y при отображении f и обозначается f -1 (Y).

Если , то . Если при каждом множество f -1 (y) состоит не более чем из одного элемента , то f называетсявзаимно однозначным отображением E в F. Впрочем, можно определить взаимно однозначное отображение f множества E на F.

Отображение называется:

Инъективным (или инъекцией, или взаимно однозначным отображением множества E в F), если , или если уравнение f(x) = y имеет не более одного решения;

Сюръективным (или сюръекцией, или отображением множества E на F), если f(E) = F и если уравнение f(x) = y имеет по крайней мере одно решение;

Биективным (или биекцией, или взаимно однозначным отображением множества E на F), если оно инъективно и сюръективно, или если уравнение f(x) = y имеет одно и только одно решение.

3. Суперпозиция отображений. Обратное, параметрическое и неявное отображения

1) Пусть и . Поскольку , то отображение g каждому элементу относит определенный элемент .

Таким образом, каждому посредством правила поставлен в соответствие элемент

Тем самым определено новое отображение (или новая функция), которое назовем композицией отображений, или суперпозицией отображений, или сложным отображением.

2) Пусть - биективное отображение и F = {y}. В силу биективности f каждому соответствует единичный образ x, который обозначим через f -1 (y), и такой, что f(x) = y. Таким образом, определено отображение , которое называется обратным отображению f, или обратной функцией функции f.

Очевидно, отображение f обратно отображению f -1 . Поэтому отображения f и f -1 называют взаимно обратными. Для них справедливы соотношения

причем хотя бы одно из этих отображений, например , биективно. Тогда существует обратное отображение , а значит, .

Определенное таким образом отображение называется заданным параметрически с помощью отображений ; причем переменная из называется параметром.

4) Пусть на множестве определено отображение , где множество содержит нулевой элемент. Предположим, что существуют множества такие, что при каждом фиксированном уравнение имеет единственное решение . Тогда на множестве E можно определить отображение , ставящее каждому в соответствие то значение , которое при указанном x является решением уравнения .

Относительно так определенного отображения

говорят, что оно задано неявно посредством уравнения .

5) Отображение называется продолжением отображения , а g - сужением отображения f, если и .

Сужение отображения на множество иногда обозначают символом .

6) Графиком отображения называется множество

Ясно, что .

12. монотонные функции. Обратная функция, теорема существования. Функции y=arcsinx y=arcos x х свойства и графики.

Ответ: Моното́нная фу́нкция - это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю то функция называется стро́го моното́нной.

Пусть имеется функция f(x) определенная на отрезке , значения которой принадлежат некоторому отрезку . Если

то говорят, что на отрезке определена функция, обратная к функции f(x) и обозначают это так:x=f (-1) (y).

Обратите внимание на отличие этого определения от определения заполненности отрезка сплошь. В определении f (-1) (…) стоит квантор, т.е. значение х, обеспечивающее равенство y=f(x), должно быть единственным, в то время как в определении заполненности отрезка сплошь стоит квантор, что говорит о том, что может быть несколько значений х, удовлетворяющих равенству y=f(x).

Обычно, говоря об обратной функции, заменяют х на у а y на x(x «y) и пишут y=f (-1) (x). Очевидно, что исходная функция f(x) и обратная функция f (-1) (x) удовлетворяют соотношению

f (-1) (f(x))=f(f (-1) (x))=x.

Графики исходной и обратной функции получаются друг из друга зеркальным отображением относительно биссектрисы первого квадранта.

Теорема. Пусть функция f(x) определена, непрерывна и строго монотонно возрастает (убывает) на отрезке . Тогда на отрезке определена обратная функция f (-1) (x), которая также непрерывна и строго монотонно возрастает (убывает).

Доказательство.

Докажем теорему для случая, когда f(x) строго монотонно возрастает.

1. Существование обратной функции.

Так как по условию теоремы f(x) непрерывна, то, согласно предыдущей теореме, отрезок заполнен сплошь. Это означает, что.

Докажем, что х единственно. Действительно, если взять х’>x, то будет f(x’)>f(x)=y и поэтому f(x’)>y. Если взять х’’

2. Монотонность обратной функции.

Сделаем обычную замены x «y и будем писать y= f (-1) (x). Это значит, что x=f(y).

Пусть x 1 >x 2 . Тогда:

y 1 = f (-1) (x 1); x 1 =f(y 1)

y 2 = f (-1) (x 2); x 2 =f(y 2)

Какое же соотношение между y 1 и y 2 ? Проверим возможные варианты.

а) y 1 x 2 .

б) y 1 =y 2 ? Но тогда f(y 1)=f(y 2) и x 1 =x 2 , а у нас было x 1 >x 2 .

в) Остается единственный вариант y 1 >y 2 , т.е. Но тогда f (-1) (x 1)>f (-1) (x 2), а это и означает, что f (-1) (…) строго монотонно возрастает.

3. Непрерывность обратной функции.

Т.к. значения обратной функции заполняют сплошь отрезок , то по предыдущей теоремеf (-1) (…) непрерывна. <

<="" a="" style="color: rgb(255, 68, 0);">

y = arcsin x y = arccos x
функция обратная функции y = sin x, - / 2 x / 2 функция обратная функции y = cos x, 0 x

<="" a="" style="color: rgb(0, 0, 0); font-family: Arial; font-size: 11px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(0, 171, 160);">

<="" a="" style="color: rgb(255, 68, 0); font-family: Arial; font-size: 11px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(0, 171, 160);">

y = arctg x y = arcctg x
функция обратная функции y = tg x, - / 2 < x < / 2 функция обратная функции y = ctg x, 0 < x <

13.композиция функций. Элементарные функции. Функции y=arctg x , y = arcctg x, их свойства и графики.

Ответ: В математике компози́ция фу́нкций (суперпози́ция фу́нкций) - это применение одной функции к результату другой.

Композиция функций G и F обычно обозначается G∘F, что обозначает применение функции G к результату функции F.

Пусть F:X→Y и G:F(X)⊂Y→Z две функции. Тогда их композицией называется функция G∘F:X→Z, определённая равенством:

(G∘F)(x)=G(F(x)),x∈X.

Элементарные функции - функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций :

  • алгебраические:
    • степенная;
    • рациональная.
  • трансцендентные:
    • показательная и логарифмическая;
    • тригонометрические и обратные тригонометрические.

Каждую элементарную функцию можно задать формулой, то есть набором конечного числа символов, соответствующих используемым операциям. Все элементарные функции непрерывны на своей области определения.

Иногда к основным элементарным функциям относят также гиперболические и обратные гиперболические функции, хотя они могут быть выражены через перечисленные выше основные элементарные функции.

<="" a="" style="color: rgb(255, 68, 0); font-family: Arial; font-size: 11px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(0, 171, 160);">

y > 0 при x R ЭКСТРЕМУМЫ: нет нет ПРОМЕЖУТКИ МОНОТОННОСТИ: возрастает при x R убывает при x R

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:



Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных - буквы. За примерами далеко ходить не надо.

Следующий пример - на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

Cтраница 1


Главный определитель составляется так, чтобы в первом столбце находились коэффициенты при том параметре, который откладывается по горизонтальной оси. В данном случае принято, что klK откладывается по вертикальной оси, a & 2it - по горизонтальной.  

Главный определитель равен нулю, а хотя бы один вспомогательный определитель не равен нулю.  

Главный определитель - Гурвица составляется следующим образом.  

Граф / С4 - х и его остовы.  

Главный определитель матрицы Р (или Q) имеет порядок т, а выражение соответствующие главные определители означает, что столбцы матрицы Р, входящие в рассматриваемый определитель, имеют такие же номера и такой же порядок, как строки матрицы Q, входящие в другой определитель.  

Главный определитель D (p), называемый характеристическим, не зависит ни от искомой переменной, ни от места приложения возмущающей силы.  

Составляем главный определитель А.  

Составляем главный определитель системы и приравниваем его нулю. Об устойчивости судим по характеру корней. Степень характеристического уравнения определяется числом энергоемких элементов, независимо накапливающих энергию, с учетом полюсов у каждого из имеющихся в схеме частотно-зависимых управляемых источников. В некоторых случаях необходимо при исследовании устойчивости учитывать не только первый доминантный полюс ОУ или транзистора, но и остальные полюса.  

Поскольку главный определитель системы (3.50) равен нулю, собственные векторы определяются не однозначно, а с точностью до постоянного множителя.  

Выразим главный определитель D [ ф-ла (8.35) ] через параметры схемы.  

Если главный определитель системы п линейных уравнений с п неизвестными не равен нулю, то система имеет единственное решение, если же этот определитель равен нулю, то система является либо неопределенной, либо несовместной.  

Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система в соответствии с теоремой 2 может быть или несовместной, или неопределенной. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система, в соответствии с теоремой 2 может быть или несовместной, или неопределенной. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.