Минотавр
Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Молекулы гелия неполярны. Второго такого вещества в природе нет.

Российская Национальная Конференция по Теплообмену (РНКТ)

Средства массовой информации упорно внедряют в сознание масс мысль о том, что ""российская наука умерла"". И хотя называть эту самую науку бодрой и здоровой оснований вроде бы мало, хоронить её определённо преждевременно. Одним из доказательств живучести научных школ и приверженцев теоретической и прикладной физики является Российская Национальная Конференция по Теплообмену - своеобразная отечественная интеллектуальная олимпиада для физиков, занимающихся вопросами теплообмена. Широкая география участников, очередь заявок на участие, конкурс докладов, которые будут представлены, однозначно свидетельствуют о том, что отечественная наука жива и востребована в важнейших сферах промышленности.


Минотавр
Система пожаротушения OneU предназначена для тушения возгораний в серверных и коммуникационных шкафах 19 дюймов. Устройство газового пожаротушения OneU может быть представлено тремя типами – OneU short (автоматическое устройство газового тушения пожаров), OneU ED NG (это устройство газового пожаротушения, не имеющее встроенной аспирационной системы) и OneU DD (аспирационный извещатель также без встроенного модуля пожаротушения).


Минотавр
На что мы прежде всего обращаем внимание в ресторане? Интерьер, чистота скатертей, внешний вид обслуживающего персонала создают первое впечатление. Качество еды, уровень сервиса, соответствие ресторана нашим ожиданиям формируют основное впечатление. Публика в ресторанном зале, музыка, свет и прочий антураж дополняют образ и вносят окончательную ясность в наше восприятие заведения в целом. На что мы никогда не обращаем внимания? На безопасность. И не от террористов, бандитов или скинхедов, хотя и это важно. От опасной стихии - пожара.


Т.Захарова
С технической стороны Spark стал современнее. За счет более широкого применения в несущей конструкции высокопрочных сплавов он жестче и в то же время легче предшественника, повысился уровень пассивной безопасности. Снижение веса, улучшение аэродинамики и доработка силовых агрегатов позволили мини-Chevrolet стать еще более экономичным, а благодаря ужесточению кузова и модернизированной подвеске удалось добиться весомого улучшения управляемости.

Последствия пожаров

Понятно, что любое мало-мальски серьёзное возгорание, а тем более полноценный пожар приносит те или иные убытки, а порой и уносит человеческие жизни. Огонь – субстанция своенравная. Достаточно ему хотя бы немного выйти из-под контроля человека, как безобидный на первый взгляд огонёк разгорается в опасный пожар.

Экспериментальное познание: помехи реальные и субъективные

С первыми проблемами помех, вероятно, столкнулись те исследователи окружающего мира, которые пытались обосновать принцип действия очага в доисторической пещере, или объяснить природу дождя, выпадающего без какой-либо связи с расположением звёзд на небе. Борьба с помехами и учёт влияния помех в расчётах и численных моделях планируемых экспериментов - один из важных аспектов научного-практического исследования, о котором нельзя забывать. Неидеальные компоненты систем и устройств, неидеальные системы передачи информации, неидеальные объекты наблюдения и даже неидеальность восприятия информации человеком образуют сложный набор всевозможных помех и отклонений от истинных значений тех или иных параметров, наблюдаемых или фиктируемых с помощью даже самой сложной и вроде бы совершенной технической аппаратуры.

Гелий (He) – инертный газ, являющийся вторым элементом периодической системы элементов, а так же вторым элементом по легкости и распространенности во Вселенной. Он относится к простым веществам и при стандартных условиях (Standard temperature and pressure) представляет собой одноатомный газ.

Гелий не имеет вкуса, цвета, запаха и не содержит токсинов.

Среди всех простых веществ, гелий имеет наименьшую точку кипения (T = 4,216 K). При атмосферном давлении получить твердый гелий невозможно, даже при температурах, близких к абсолютному нулю – для перехода в твердую форму, гелию необходимо давление выше 25 атмосфер. Химических соединений гелия мало и все при стандартных условиях они нестабильны.
Встречающийся в природе гелий состоит из двух стабильных изотопов – He и 4He. Изотоп “He” встречается очень редко (изотопная распространённость 0,00014 %) при 99,99986 % у изотопа 4He. Помимо природных, известны так же 6 искусственных радиоактивных изотопов гелия.
Появлением практически всего, имеющегося во Вселенной, гелия послужил первичный нуклеосинтез, протекавший в первые минуты после Большого взрыва.
В настоящее время практически весь гелий образуется из водорода в результате термоядерного синтеза, происходящего в недрах звезд. На нашей планете гелий образуется в процессе альфа-распада тяжёлых элементов. Та часть, гелия, которой удается просочится сквозь Земную кору, выходит наружу в составе природного газа и может составлять до 7 % от его состава. Что бы выделить гелий из природного газа, используется фракционная перегонка – процесс низкотемпературного разделения элементов.

История открытия гелия

18 августа 1868 г. ожидалось полное солнечное затмение. Астрономы всего мира деятельно готовились к этому дню. Они надеялись разрешить тайну протуберанцев – светящихся выступов, видимых в момент полного солнечного затмения по краям солнечного диска. Одни астрономы полагали, что протуберанцы представляют собой высокие лунные горы, которые в момент полного солнечного затмения освещаются лучами Солнца; другие думали, что протуберанцы – это горы на самом Солнце; третьи видели в солнечных выступах огненные облака солнечной атмосферы. Большинство же считало, что протуберанцы – не более, чем оптический обман.

В 1851 г. во время солнечного затмения, наблюдавшегося в Европе, немецкий астроном Шмидт не только увидел солнечные выступы, но и успел разглядеть, что очертания их меняются с течением времени. На основании своих наблюдений Шмидт заключил, что протуберанцы являются раскаленными газовыми облаками, выбрасываемыми в солнечную атмосферу гигантскими извержениями. Однако и после наблюдений Шмидта многие астрономы по-прежнему считали огненные выступы обманом зрения.

Только после полного затмения 18 июля 1860 г., которое наблюдалось в Испании, когда многие астрономы увидели солнечные выступы собственными глазами, а итальянцу Секки и французу Делларю удалось не только зарисовать, но и сфотографировать их, ни у кого уже не было сомнений в существовании протуберанцев.

К 1860 г. был уже изобретен спектроскоп – прибор, дающий возможность путем наблюдений видимой части оптического спектра определять качественный состав тела, от которого получается наблюдаемый спектр. Однако в день солнечного затмения никто из астрономов не воспользовался спектроскопом, чтобы рассмотреть спектр протуберанцев. О спектроскопе вспомнили, когда затмение уже закончилось.

Вот почему, готовясь к солнечному затмению 1868 г., каждый астроном в список инструментов для наблюдения включил и спектроскоп. Не забыл этот прибор и Жюль Жансен, известный французский ученый, отправляясь для наблюдения протуберанцев в Индию, где условия для наблюдения солнечного затмения по вычислениям астрономов были наилучшими.

В момент, когда сверкающий диск Солнца был полностью закрыт Луной, Жюль Жансен, исследуя с помощью спектроскопа оранжево-красные языки пламени, вырывавшиеся с поверхности Солнца, увидел в спектре, кроме трех знакомых линий водорода: красной, зелено-голубой и синей, новую, незнакомую – ярко-желтую. Ни одно из веществ, известных химикам того времени, не имело такой линии в той части спектра, где ее обнаружил Жюль Жансен. Такое же открытие, но у себя дома, в Англии, сделал астроном Норман Локиер.

25 октября 1868 г. парижская Академия наук получила два письма. Одно, написанное на следующий день после солнечного затмения, пришло из Гунтура, маленького городка на восточном побережье Индии, от Жюля Жансена; другое письмо, от 20 октября 1868 г. было из Англии от Нормана Локиера.

Полученные письма были зачитаны на заседании профессоров парижской Академии наук. В них Жюль Жансен и Норман Локиер, независимо один от другого, сообщили об открытии одного и того же "солнечного вещества". Это новое вещество, найденное на поверхности Солнца с помощью спектроскопа, Локиер предлагал назвать гелием от греческого слова "солнце" – "гелиос".

Такое совпадение удивило ученое собрание профессоров Академий и в то же время свидетельствовало об объективном характере открытия нового химического вещества. В честь открытия вещества солнечных факелов (протуберанцев) была выбита медаль. На одной стороне этой медали выбиты портреты Жансена и Локиера, а на другой – изображение древнегреческого бога солнца Аполлона в колеснице, запряженной четверкой коней. Под колесницей красовалась надпись на французском языке: "Анализ солнечных выступов 18 августа 1868 г."

В 1895 г. лондонский химик Генри Майерс обратил внимание Вильяма Рамзая, известного английского физико-химика, на тогда уже забытую статью геолога Хильдебранда. В этой статье Хильдебранд утверждал, что некоторые редкие минералы при нагревании их в серной кислоте выделяют газ, не горящий и не поддерживающий горения. В числе таких редких минералов был клевеит, найденный в Норвегии Норденшельдом, знаменитым шведским исследователем полярных областей.

Рамзай решил исследовать природу газа, содержащегося в клевеите. Во всех химических магазинах Лондона помощникам Рамзая удалось купить всего только... один грамм клевеита, заплатив за него всего 3,5 шиллинга. Выделив из полученного количества клевеита несколько кубических сантиметров газа и очистив его от примесей, Рамзай исследовал его с помощью спектроскопа. Результат был неожиданным: выделенный из клевеита газ оказался... гелием!

Не доверяя своему открытию, Рамзай обратился к Вильяму Круксу, крупнейшему в то время в Лондоне специалисту спектрального анализа, с просьбой исследовать выделенный из клевеита газ.

Крукс исследовал газ. Результат исследования подтвердил открытие Рамзая. Так 23 марта 1895 г. на Земле было обнаружено вещество, 27 лет назад найденное на Солнце. В тот же день Рамзай опубликовал свое открытие, отправив одно сообщение в Лондонское Королевское общество, а другое – известному французскому химику академику Бертло. В письме к Бертло Рамзай просил сообщить о своем открытии ученому собранию профессоров парижской Академии.

Через 15 дней после Рамзая, независимо от него, шведский химик Ланглэ выделил гелий из клевеита и так же, как и Рамзай, сообщил о своем открытии гелия химику Бертло.

В третий раз гелий был открыт в воздухе, куда, по мысли Рамзая, он должен был поступать из редких минералов (клевеита и др.) при разрушении и химических превращениях на Земле.

В небольших количествах гелий был обнаружен и в воде некоторых минеральных источников. Так, например, он был найден Рамзаем в целебном источнике Котрэ в Пиренейских горах, английский физик Джон Вильям Рэлей нашел его в водах источников на известном курорте Бат, немецкий физик Кайзер открыл гелий в ключах, бьющих в горах Шварцвальда. Однако больше всего было обнаружено гелия в некоторых минералах. Он содержится в самарските, фергусоните, колумбите, монаците, ураните. В минерале торианите с острова Цейлон содержится особенно много гелия. Килограмм торианита при нагревании докрасна выделяет 10 л гелия.

Вскоре было установлено, что гелий встречается только в тех минералах, в составе которых находятся радиоактивные уран и торий. Альфа-лучи, испускаемые некоторыми радиоактивными элементами, представляют собой не что иное, как ядра атомов гелия.

Из истории...

Его необычные свойства позволяют широко использовать гелий для самых различных целей. Первая, абсолютно логичная, исходя из его легкости – использование в воздушных шарах и дирижаблях. Причем в отличие от водорода – он не взрывоопасен. Это свойство гелия использовалось немцами в Первую Мировую войну на боевых дирижаблях. Минусом использования является то, дирижабль наполненный гелием не взлетит так высоко как водородный.

Для бомбардировки крупных городов, главным образом, столиц Англии и Франции, немецкое командование в первую мировую войну использовало дирижабли (цеппелины). Для наполнения их употребляли водород. Поэтому борьба с ними была сравнительно простой: зажигательный снаряд, попадавший в оболочку дирижабля, поджигал водород, тот мгновенно вспыхивал и аппарат сгорал. Из 123 дирижаблей, построенных в Германии за время первой мировой войны, 40 сгорели от зажигательных снарядов. Но однажды генеральный штаб английской армии был удивлен сообщением особой важности. Прямые попадания зажигательных снарядов в немецкий цеппелин не дали результатов. Дирижабль не вспыхнул, а медленно истекая каким-то неизвестным газом, улетел обратно.

Военные специалисты недоумевали и, несмотря на экстренное и подробное обсуждение вопроса о невоспламеняемости цеппелина от зажигательных снарядов, не могли найти нужного объяснения. Загадку разгадал английский химик Ричард Трелфолл. В письме в адрес Британского адмиралтейства он писал: "...полагаю, что немцы изобрели какой-то способ добывать в большом количестве гелий, и на этот раз наполнили оболочку своего цеппелина не водородом, как обычно, а гелием..."

Убедительность доводов Трелфолла, однако, снижалась фактом отсутствия в Германии значительных источников гелия. Правда, гелий содержится а воздухе, но его там мало: в одном кубическом метре воздуха содержится всего только 5 кубических сантиметров гелия. Холодильная машина системы Линде, превращающая в жидкость несколько сот кубических метров воздуха в один час, могла дать за это время не более 3 л гелия.

3 литра гелия в час! А для наполнения цеппелина нужно 5÷6 тыс. куб. м. Для получения такого количества гелия одна машина Линде должна была работать без остановки около двухсот лет, двести таких машин дали бы нужное количество гелия в один год. Постройка 200 заводов по превращению воздуха в жидкость для получения гелия экономически весьма невыгодна, а практически бессмысленна.

Откуда же немецкие химики получали гелий?

Этот вопрос, как выяснилось позже, был решен сравнительно просто. Задолго до войны немецким пароходным компаниям, возившим товары в Индию и Бразилию, дано было указание грузить возвращающиеся пароходы не обычным балластом, а монацитовым песком, который содержит гелий. Так был создан запас "гелиевого сырья" – около 5 тыс. т монацитового песка, из которого и получался гелий для цеппелинов. Кроме того, гелий добывался из воды минерального источника Наугейм, дававшего до 70 куб. м гелия ежедневно.

Случай с несгораемым цеппелином явился толчком для новых поисков гелия. Гелий стали усиленно искать химики, физики, геологи. Он неожиданно приобрел огромную ценность. В 1916 г. 1 кубометр гелия стоил 200 000 рублей золотом, т. е. 200 рублей за литр. Если учесть, что литр гелия весит 0,18 г, то 1 г его стоил свыше 1000 рублей.

Гелий сделался объектом охоты коммерсантов, спекулянтов, биржевых дельцов. Гелий в значительных количествах был обнаружен в природных газах, выходящих из недр земли в Америке, в штате Канзас, где после вступлений Америки в воину, близ города Форт-Уорс был построен гелиевый завод. Но война закончилась, запасы гелия остались неиспользованными, стоимость гелия резко упала и составляла в конце 1918 г. около четырех рублей за кубический метр.

Добытый с таким трудом гелий был использован американцами только в 1923 г. для наполнения теперь уже мирного дирижабля "Шенандоа". Он был первым и единственным в мире воздушным грузопассажирским кораблем, наполненным гелием. Однако "жизнь" его оказалась непродолжительной. Через два года после своего рождение "Шенандоа" был уничтожен бурей. 55 тыс. куб. м, почти весь мировой запас гелия, собиравшийся в течение шести лет, бесследно рассеялся в атмосфере во время бури, длившейся всего 30 минут.

Применение гелия



Гелий в природе

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – He 4 , чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

На Земле гелия мало: 1 м 3 воздуха содержит всего 5,24 см 3 гелия, а каждый килограмм земного материала - 0,003 мг гелия. Но по распространённости во Вселенной гелий занимает 2-е место после водорода: на долю гелия приходится около 23% космической массы. Примерно половина всего гелия сосредоточена в земной коре, главным образом в её гранитной оболочке, аккумулировавшей основные запасы радиоактивных элементов. Содержание гелия в земной коре невелико - 3 х 10 -7 % по массе. Гелий накапливается в свободных газовых скоплениях недр и в нефтях; такие месторождения достигают промышленных масштабов. Максимальные концентрации гелия (10 -13 %) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше гелия в составе природных газов.

Добыча гелия

Добыча гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объёму); рядовые (0,10-0,50) и бедные < 0,10). Значительные его концентрации известны в некоторых месторождениях природного газа Канады, США (шт. Канзас, Техас, Нью-Мексико, Юта).

Мировые запасы гелия составляют 45,6 млрд. кубометров. Крупные месторождения находятся в США (45% от мировых ресурсов), далее идут Россия (32%), Алжир (7%), Канада (7%) и Китай (4%).
По производству гелия также лидируют США (140 млн. кубометров в год), затем - Алжир (16 млн.).

Россия занимает третье место в мире – 6 млн. кубометров в год. Оренбургский гелиевый завод является в настоящее время единственным отечественным источником получения гелия, причем производство газа снижается. В связи с этим, газовые месторождения Восточной Сибири и Дальнего Востока с высокими концентрациями гелия (до 0,6%) приобретают особое значение. Одним из наиболее перспективных является Ковыктинское газоконденсатное месторождение, находящееся на севере Иркутской области. По оценкам специалистов здесь содержится около 25% общемировы х запасов гелия.

Наименование показателя

Гелий (марки А) (по ТУ 51-940-80)

Гелий (марки Б) (по ТУ 51-940-80)

Гелий высокой чистоты, марки 5.5 (по ТУ 0271-001-45905715-02)

Гелий высокой чистоты, марки 6.0 (по ТУ 0271-001-45905715-02)

Гелий, не менее

Азот, не более

Кислород + аргон

Неон, не более

Водяные пары, не более

Углеводороды, не более

СО2 + СО, не более

Водород, не более

Безопасность

– Гелий не токсичен, не горюч, не взрывоопасен
– Гелий разрешено применять в любых местах массового скопления людей: на концертах, рекламных акциях, стадионах, магазинах.
– Газообразный гелий физиологически инертен и не представляет опасности для человека.
– Гелий не опасен и для окружающей среды, поэтому обезвреживания, утилизации и ликвидации его остатков в баллонах не требуется.
– Гелий значительно легче воздуха и рассеивается в верхних слоях атмосферы Земли.

Гелий (марки А и Б по ТУ 51-940-80)

Техническое наименование

Гелий газообразный

Химическая формула

Номер по списку OON

Класс опасности при перевозках

Физические свойства

Физическое состояние

При нормальных условиях - газ

Плотность, кг/м³

При нормальных условиях (101,3 кПа, 20 С), 1627

Температура кипения, С при 101,3 кПа

Температура 3-ной точки и равновесное ей давление С, (мПа)

Растворимость в воде

незначительная

Пожаро- и взрывоопасность

пожаро-взрывобезопасен

Стабильность и химическая активность

Стабильность

Стабилен

Реакционная способность

Инертный газ

Опасность для человека

Токсическое воздействие

Не токсичен

Экологическая опасность

Вредного влияния на окружающую среду не оказывает

Средства

Применимы любые средства

Хранение и перевозка гелия

Газообразный гелий можно транспортировать всеми видами транспорта согласно правилам перевозок грузов на конкретном виде транспорта. Перевозка производится в специальных стальных баллонах коричневого цвета и контейнерах для перевозки гелия. Жидкий гелий транспортируют в транспортных сосудах типа СТГ-40, СТГ-10 и СТГ-25 объемом 40, 10 и 25 литров.

Правила перевозки баллонов с техническими газами

Перевозка опасных грузов в Российской Федерации регламентируется следующими документами:

1. "Правила перевозки опасных грузов автомобильным транспортом" (в ред. Приказов Минтранса РФ от 11.06.1999 №37, от 14.10.1999 №77; зарегистрированы в Министерстве юстиции Российской Федерации 18 декабря 1995 года, регистрационный N 997).

2. "Европейское соглашение о международной дорожной перевозке опасных грузов" (ДОПОГ), к которому Россия официально присоединилась 28 апреля 1994 (постановление Правительства РФ от 03.02.1994 №76).

3. "Правила дорожного движения" (ПДД 2006), а именно статья 23.5, устанавливающая что "Перевозка... опасных грузов... осуществляется в соответствии со специальными правилами".

4. "Кодекс РФ об административных правонарушениях", статья 12.21 ч.2 которого предусматривает ответственность за нарушение правил перевозки опасных грузов в виде "административного штрафа на водителей в размере от одного до трех минимальных размеров оплаты труда или лишения права управления транспортными средствами на срок от одного до трех месяцев; на должностных лиц, ответственных за перевозку - от десяти до двадцати минимальных размеров оплаты труда".

В соответствии с п.п.3 п.1.2 "Действие Правил не распространяется на... перевозки ограниченного количества опасных веществ на одном транспортном средстве, перевозку которых можно считать как перевозку неопасного груза". Там же разъяснено, что "Ограниченное количество опасных грузов определяется в требованиях по безопасной перевозке конкретного вида опасного груза. При его определении возможно использование требований Европейского соглашения о международной перевозке опасных грузов (ДОПОГ)". Таким образом, вопрос о максимальном количестве веществ, которое можно перевозить как неопасный груз сводится к изучению раздела 1.1.3 ДОПОГ , устанавливающему изъятия из европейских правил перевозки опасных грузов, связанные с различными обстоятельствами.

Так, например, в соответствии с п. 1.1.3.1 "Положения ДОПОГ не применяются... к перевозке опасных грузов частными лицами, когда эти грузы упакованы для розничной продажи и предназначены для их личного потребления, использования в быту, досуга или спорта, при условии, что приняты меры для предотвращения любой утечки содержимого в обычных условиях перевозки".

Однако, формально признаваемая правилами перевозки опасных грузов группа изъятий - изъятия связанные с количествами, перевозимыми в одной транспортной единице (п.1.1.3.6 ).

Все газы отнесены ко второму классу веществ по классификации ДОПОГ. Негорючие, неядовитые газы (группы А - нейтральные и О - окисляющие) относятся к третьей транспортной категории, с ограничением максимального количества в 1000 единиц. Легковоспламеняющиеся (группа F) - ко второй, с ограничением максимального количества в 333 единицы. Под "единицей" здесь понимается 1 литр вместимости сосуда, в котором находится сжатый газ, или 1 кг сжиженного или растворенного газа. Таким образом, максимальное количество газов, которое можно перевозить в одной транспортной единице как неопасный груз, следующее:

Гелий

ГЕ́ЛИЙ -я; м. [от греч. hēlios - солнце]. Химический элемент (He), не имеющий запаха химически инертный газ, самый лёгкий после водорода.

Ге́лиевый, -ая, -ое. Г-ое ядро.

Ге́лий

(лат. Helium), химический элемент VIII группы периодической системы, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при -268,93ºC); единственное вещество, которое не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. Жидкий гелий - квантовая жидкость, обладающая сверхтекучестью ниже 2,17ºК (-270,98ºC). В небольшом количестве гелий содержится в воздухе и земной коре, где он постоянно образуется при распаде урана и других α-радиоактивных элементов (α-частицы - это ядра атомов гелия). Значительно более распространён гелий во Вселенной, например на Солнце, где он впервые был открыт (отсюда название: от греч. hēlios - Солнце). Получают гелий из природных газов. Применяют в криогенной технике, для создания инертных сред, в аэронавтике (для заполнения стратостатов, воздушных шаров и др.).

ГЕЛИЙ

ГЕ́ЛИЙ (лат. Helium), He (читается «гелий»), химический элемент с атомным номером 2, атомная масса 4,002602. Относится к группе инертных, или благородных, газов (группа VIIIA периодической системы), находится в 1-м периоде.
Природный гелий состоит из двух стабильных нуклидов: 3 Не (0,00013% по объему) и 4 Не. Почти полное преобладание гелия-4 связано с образованием ядер этого нуклида при -радиоактивном распаде урана, тория, радия и других атомов, происходившем в течение длительной истории Земли.
Радиус нейтрального атома гелия 0,122 нм. Электронная конфигурация нейтрального невозбужденного атома 1s 2 . Энергии последовательной ионизации нейтрального атома равны, соответственно, 24,587 и 54,416 эВ (у атома гелия самая высокая среди нейтральных атомов всех элементов энергия отрыва первого электрона).
Простое вещество гелий - легкий одноатомный газ без цвета, вкуса, запаха.
История открытия
Открытие гелия началось с 1868, когда при наблюдении солнечного затмения астрономы француз П. Ж. Жансен (см. ЖАНСЕН Пьер Жюль Сезар) и англичанин Д. Н. Локьер (см. ЛОКЬЕР Джозеф Норман) независимо друг от друга обнаружили в спектре солнечной короны (см. СОЛНЕЧНАЯ КОРОНА) желтую линию (она получила название D 3 -линии), которую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил ее происхождение присутствием на Солнце нового элемента. В 1895 англичанин У. Рамзай (см. РАМЗАЙ Уильям) выделил из природной радиоактивной руды клевеита газ, в спектре которого присутствовала та же D 3 -линия. Новому элементу Локьер дал имя, отражающее историю его открытия (греч. Helios-солнце). Поскольку Локьер полагал, что обнаруженный элемент - металл, он использовал в латинском названии элемента окончание «lim» (соответствует русскому окончанию «ий»), которое обычно употребляется в названии металлов. Таким образом, гелий задолго до своего открытия на Земле получил имя, которое окончанием отличает его от названий остальных инертных газов.
Нахождение в природе
В атмосферном воздухе содержание гелия очень мало и составляет около 5,27·10 -4 % по объему. В земной коре его 0,8·10 -6 %, в морской воде - 4·10 -10 %. Источником гелия служат нефти и гелионосные природные газы, в которых содержание гелия достигает 2-3%, а в редких случаях и 8-10% по объему. Зато в космосе гелий - второй по распространенности элемент (после водорода): на его долю приходится 23% космической массы.
Получение
Технология получения гелия очень сложна: его выделяют из природных гелионосных газов, пользуясь методом глубокого охлаждения. Месторождения таких газов имеются в России, США, Канаде и ЮАР. Гелий содержится также в некоторых минералах (монаците, торианите и других), при этом из 1 кг минерала при нагревании можно выделить до 10 л гелия.
Физические свойства
Гелий - легкий негорючий газ, плотность газообразного гелия при нормальных условиях 0,178 кг/м 3 (меньше только у газа водорода). Температура кипения гелия (при нормальном давлении) около 4,2К (или –268,93 °C, это - самая низкая температура кипения).
При нормальном давлении жидкий гелий не удается превратить в твердое вещество даже при температурах, близких к абсолютному нулю (0К). При давлении около 3,76 МПа температура плавления гелия 2,0К. Наименьшее давление, при котором наблюдается переход жидкого гелия в твердое состояние - 2,5МПа (25 ат), температура плавления гелия при этом около 1,1 К (–272,1 °C).
В 100 мл воды при 20 °C растворяется 0,86 мл гелия, в органических растворителях его растворимость еще меньше. Легкие молекулы гелия хорошо проходят (диффундируют) через различные материалы (пластмассы, стекло, некоторые металлы).
Для жидкого гелия-4, охлажденного ниже –270,97 °C, наблюдается ряд необычных эффектов, что дает основание рассматривать эту жидкость как особую, так называемую квантовую, жидкость. Эту жидкость обычно обозначают как гелий-II в отличие от жидкого гелия-I - жидкости, существующей при чуть более высоких температурах. График изменения теплоемкости жидкого гелия с изменением температуры напоминает греческую букву лямбда (l). Температура перехода гелия-I в гелий-II 2,186 К. Эту температуру часто называют l-точкой.
Жидкий гелий-II способен быстро проникать через мельчайшие отверстия и капилляры, не обнаруживая при этом вязкости (так называемая сверхтекучесть (см. СВЕРХТЕКУЧЕСТЬ) жидкого гелия-II). Кроме того, пленки гелия-II быстро перемещаются по поверхности твердых тел, в результате чего жидкость быстро покидает тот сосуд, в который она была помещена. Это свойство гелия-II называют сверхползучестью. Сверхтекучесть гелия-II открыта в 1938 советским физиком П. Л. Капицей (см. КАПИЦА Петр Леонидович) (Нобелевская премия по физике, 1978). Объяснение уникальным свойствам гелия-II дано другим советским физиком Л. Д. Ландау (см. ЛАНДАУ Лев Давидович) в 1941-1944 (Нобелевская премия по физике, 1962).
Никаких химических соединений гелий не образует. Правда, в разреженном ионизированном гелии удается обнаружить достаточно устойчивые двухатомные ионы Не 2 + .
Применение
Гелий используют для создания инертной и защитной атмосферы при сварке, резке и плавке металлов, при перекачивании ракетного топлива, для заполнения дирижаблей и аэростатов, как компонент среды гелиевых лазеров. Жидкий гелий, самая холодная жидкость на Земле, - уникальный хладагент в экспериментальной физике, позволяющий использовать сверхнизкие температуры в научных исследованиях (например, при изучении электрической сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) ). Благодаря тому, что гелий очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам. Замена азота на гелий предотвращает кессонную болезнь (см. КЕССОННАЯ БОЛЕЗНЬ) (при вдыхании обычного воздуха азот под повышенным давлением растворяется в крови, а затем выделяется из нее в виде пузырьков, закупоривающих мелкие сосуды).


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "Гелий" в других словарях:

    - (лат. Helium) Не, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при 268,93 .С);… … Большой Энциклопедический словарь

    - (греч., от helyos солнце). Элементарное тело, открытое в солнечном спектре и имеющееся на земле в некоторых редких минералах; в ничтожном количестве входит в состав воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

    - (символ Не), газообразный неметаллический элемент, БЛАГОРОДНЫЙ ГАЗ, открытый в 1868 г. Впервые получили из минерала клевита (разновидности уранита) в 1895 г. В настоящее время основным источником его является природный газ. Содержится также в… … Научно-технический энциклопедический словарь

    Я, муж. , стар. Елий, я.Отч.: Гелиевич, Гелиевна.Производные: Геля (Гела); Еля.Происхождение: (От греч. hēlios солнце.)Именины: 27 июля Словарь личных имён. Гелий См. Эллий. День Ангела. Справоч … Словарь личных имен

    ГЕЛИЙ - хим. элемент, символ Не (лат. Helium), ат. н. 2, ат. м. 4,002, относится к инертным (благородным) газам; без цвета и запаха, плотность 0,178 кг/м3. В обычных условиях Г. одноатомный газ, атом которого состоит из ядра и двух электронов; образуется … Большая политехническая энциклопедия

    - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93шC), единственное не отвердевающее при нормальном давлении;… … Современная энциклопедия

    Хим. элемент восьмой гр. периодической системы, порядковый номер 2; инертный газ с ат. в. 4,003. Состоит из двух стабильных изотопов Не4 и Не3. Содер. их непостоянно и зависит от источника образования, но тяжелый изотоп всегда преобладает. В… … Геологическая энциклопедия

    Гелий - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93°C), единственное не отвердевающее при нормальном давлении;… … Иллюстрированный энциклопедический словарь

    Солнечный Словарь русских синонимов. гелий сущ., кол во синонимов: 4 газ (55) имя (1104) … Словарь синонимов

Гелий – подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай , Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман , Онсагер (США), Капица , Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях – ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия – альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов – то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью – показать, что элемент №2 – элемент весьма необычный.

Земной гелий

Гелий – элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер – 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы – высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – 4 Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, – это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой – самородные металлы, магнетит, гранат, апатит, циркон и другие, – прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко – десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений – явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·10 14 м 3 ; судя же по вычислениям, его образовалось в земной коре за 2 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий – легкий газ и, подобно водороду (хотя и медленнее), не улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся – старый улетучивался в космос, а вместо него в атмосферу поступал свежий – «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли – в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий – редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе – 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.

Рис. 1. Кривые распространенности элементов на Земле (вверху) и в космосе.
«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16 О, 20 Ne, 24 Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные – и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим – 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования – план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты – Юпитер V – армады кибернетических машин на криотронах (о них – ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость – необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона – конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3 Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней – реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле – 26,7 МэВ на один атом гелия.

Реакция синтеза гелия – основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3 Be, 12 C, 16 O, 20 Ne, 24 Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами – элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый...

Атом гелия (он же молекула) – прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию – 78,61 МэВ. Отсюда – феноменальная химическая пассивность гелия.

За последние 15 лет химикам удалось получить более 150 химических соединений тяжелых благородных газов (о соединениях тяжелых благородных газов будет рассказано в статьях «Криптон» и «Ксенон»). Однако инертность гелия остается, как и прежде, вне подозрений.

Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики – меньше, чем в любом другом веществе. Отсюда – самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью – способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3 Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его ныне немало – сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком – жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий – идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения – при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле – криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена – частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 – 2,4·10 –21 секунды, гелия-6 – 0,83 секунды, гелия-8 – 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше – 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый – в 1926 г.

Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких – быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни – довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался.

I.
Необычность гелия проявилась уже в самой историк его открытия. Как известно, этот элемент впервые обнаружили в 1868 году не на Земле, а на Солнце, точнее, в спектре солнечной короны. Конечно, никто воочию не наблюдал гелий - и подозревали, что никогда и никому не удастся его наблюдать: гелия на Земле не было. Предполагали, что наука нашла протовещество, из которого построены звезды. Впоследствии оказалось, что это не совсем так, хотя в строительном материале звезд присутствовал и гелий.
Но вот в 1895 году в английском журнале «Нейчур» друг за другом появились две статьи с одинаковым названием: «Земной гелий». Автором одной из них был известный экспериментатор В. Рамзай, открывший к тому времени химический элемент аргон, другой - В. Крукс, знаменитый своими исследованиями катодных лучей. Гелий, до сих пор наблюдавшийся только в спектре Солнца, обнаружили при анализе вполне земного минерала клевеита. Вскоре его нашли и в ряде других минералов, содержавших, как и клевеит, уран и торий.
А вот в атмосфере гелий не был найден, вернее, это случилось гораздо позднее. Такое обстоятельство, правда, никого особенно не удивило: полагали, что благодаря своей летучести гелий, как и свободный водород, давно уже ушел в мировое пространство.
Открытие земного гелия обострило интерес к проблеме происхождения химических элементов. О том, что в их основе лежит некая праматерия и что «каждый элемент превращается в природу другого элемента», догадывался еще Роджер Бэкон. Простейшим среди них, безусловно, следовало бы считать водород. Но в цепочке радиоактивных превращений упорно появлялся не водород, а гелий. Почему? Может быть, в качестве «праматерии» выступают не водород и не гелий, а какой-то другой, пока не найденный на нашей планете элемент?
Гелий обнаружили не только в солнечной короне и на Земле, но и в спектрах других звезд. Более того, выяснилось, что по распространенности в звездном веществе, так же как и вообще во Вселенной, гелий занимает второе после водорода мести.
Но вот на нашей железокремниевой планете относительное содержание гелия оказалось в десятки миллиардов раз меньшим, чем во Вселенной. На Земле вообще нет областей, о которых можно было бы сказать, что они богаты гелием. И тем не менее этот элемент присутствует повсюду: в атмосфере, океане и земной коре, в подземных газах, водах и нефти. Он рассеян по планете.
В тридцатые годы были открыты изотопы гелия. Со временем выявилась интересная закономерность: во внутренних областях метеоритов, в составе космической пыли и лунного грунта наблюдалось удивительное постоянное соотношение гелия-3 и гелия-4: 3 * 10-4, то есть на десять тысяч атомов гелия-4 приходилось в среднем три его легких изотопа. Земная же природа очень невзлюбила легкий изотоп гелия. Если гелия вообще в земных образцах мало, то гелия-3, мягко говоря, ничтожно мало: на долю легкого изотопа приходится в среднем десятимиллионная доля природного гелия.
И самым странным показалось даже не крайне низкое содержание гелия-3 в веществе Земли, а необычные вариации изотопного состава. Возникал вопрос: имеет ли какое-либо отношение распространенность гелия-3 к проблеме происхождения гелия на Земле? Теперь внимание ученых привлекла распространенность стабильных изотопов гелия в природе. Начинался второй гелиевый век.
Прежде всего: откуда взялся на Земле гелий? Предполагали, что существуют три возможных его источника.
Первый из них - это первичный, или первозданный гелий, который входил в состав вещества планеты 4,5 миллиарда лет назад и который, по-видимому, к настоящему времени планетой потеряй.
Вторым источником гелия на Земле считался радиогенный гелий, возникающий как продукт естественных ядерных реакций. Изотопное соотношение, характерное для радиогенного гелия, как правило, колеблется в пределах 10-5 - 10-10 - в зависимости от состава окружающего вещества.
И наконец гелий космогенного происхождения, который появляется в результате взаимодействия жесткого космического излучения с веществом Земли. Кроме того, он попадает в верхние слои атмосферы вместе с метеоритами и космической пылью.
О наблюдении первозданного гелия на Земле даже и не говорили: считали, что на Земле его просто не осталось. И действительно, измерения изотопного соотношения гелия земной коры упорно свидетельствовали в пользу его радиогенного, следовательно, вторичного происхождения. Однако в атмосфере нашей планеты происходили непонятные вещи. Изотопное отношение гелия было пример-" но в сто раз выше, чем для гелия, наблюдавшегося в земной коре. Известно, что попадающий в атмосферу гелий может двигаться только в одном направлении - уходить вверх, в космическое пространство. Каким же образом попадал в атмосферу этот избыточный гелий-3? Все собранные воедино мыслимые источники легкого изотопа не могли объяснить этого факта.
В свое время академик В. И. Вернадский задавал вопрос: «Почему так мало гелия на Земле? Куда он девался? Мы стоим здесь при изучении земной коры перед загадками более общего масштаба». Теперь же приходилось удивляться не тому, что гелия вообще мало на Земле, а тому, что легкого изотопа слишком «много» в атмосфере.

2.
Читатель, наверное, догадался, что коль скоро проблемы ставятся, намечены и некоторые пути к их решению. Но прежде чем переходить к «отгадкам», хотелось бы сделать маленькое отступление.
Как правило, применение принципиально новых методов исследования, расширяя наши горизонты в познании природы, неизбежно ведет к открытиям.
Среди методов исследования свойств вещества особое место занимает масс-спектрометрия разделение заряженных частиц по массам с помощью электрического и магнитного полей. Идея масс-спектрометрии со временем получила широкое " развитие. Во многих лабораториях мира появились масс-спектрометры «собственной конструкции». Выяснилось, что очень многие химические элементы состоят из смеси изотопов, но, к огорчению и недоумению исследователей, к их числу долгие годы не относился гелий.
Во многих образцах, как уже говорилось, гелий-3 содержался в гораздо меньшем количестве, чем гелий-4. Значит, нужны были приборы с высокой чувствительностью. Другая трудность - во всех пробах гелия неизбежно присутствовали ионы и молекулы, близкие по поведению в электромагнитном поле к ионам гелия-3. Как избавиться от этого фона?
Для того чтобы разорвать цепочку трудностей, необходимо было искать новые методы разделения изотопов. Одно из удачных решений было предложено учеными Ленинградского физико-технического института имени А. Ф. Иоффе Академии наук СССР.
Работа по созданию новой масс-спектрометрической методики началась в лаборатории профессора Н. И. Ионова около четверти века назад. И первые аппараты, созданные в стенах института, до сих пор работают в промышленности. Но прибор, о котором пойдет речь и которому суждено было совершить переворот в изотопии природного гелия, еще до недавнего времени существовал в одном лишь лабораторном экземпляре.
Ученые попытались разделить изотопы не только за счет их различного отклонения в магнитном поле, как это и делалось в масс-спектрометрах статических, но также и за счет их различного времени пролета. Для этого достаточно было наложить высокочастотное электрическое поле. И первые же измерения, выполненные на МРМС - магнитном резонансном масс-спектрометре, привлекли внимание специалистов. Оказалось, что качества прибора настолько высоки, что позволяли ему чувствовать присутствие в гелиевых пробах миллиардной доли легкого изотопа.
Но гелий оказался весьма капризным и трудным для измерения объектом. И не потому, что гелия-3 было очень мало в предназначенных для исследования пробах, а потому, что в окружающем нас атмосферном воздухе гелия порой было в сотни и тысячи раз больше. И если в пробу попадал хотя бы один процент атмосферного воздуха, результаты измерений искажались на сотни процентов!
Необходимо было решительно исключить попадание атмосферного воздуха в пробу и при ее отборе, и, что очень трудно, в процессе герметизации сосуда. Образцы минералов, из которых извлекали гелий, предварительно дробились и нагревались до температуры 1300 градусов по Цельсию без контакта с атмосферой. А работать приходилось С исчезающе малыми количествами этого газа: ведь гелий составлял сотые и тысячные доли процента от общего веса исследуемого вещества.
При создании МРМС ленинградские ученые столкнулись с еще одним непредвиденным свойством гелия, которое было названо «эффект памяти». Сколь идеальной ни была герметизация прибора и сколь хороший вакуум ни удавалось создать, после откачки в камере масс-спектрометра появлялось заметное количество гелия. Откуда он брался? Оказалось, что гелий, внезапно появлявшийся в приборе, в свое время проник путем диффузии в элементы конструкции и теперь при снижении давления выделялся обратно. С этим эффектом тоже приходилось бороться: остаточный гелий мог свободно конкурировать с гелием, предназначенным для исследования. А это могло затруднить любой анализ, но особенно эффект памяти мешал исследованию уникальных проб, например лунного грунта или космической пыли.

3.
Когда удалось преодолеть все эти трудности, новая масс-спектрометрическая техника открыла и новые возможности. И прежде всего это коснулось изотопии гелия.
В течение последних полутора десятилетий ленинградские ученые произвели несколько тысяч анализов изотопного соотношения гелия в самых различных природных образцах. Объектами исследования служили горные породы, минералы, вулканические и природные газы, воды и нефть, взятые буквально со всего света. Постепенно вырисовывалась картина распределения изотопов гелия в веществе Земли.
Прежде всего удалось обнаружить такую зависимость: изотопный состав гелия на Земле непостоянен, он определяется геологической историей региона, откуда были взяты пробы. Например, самые высокие изотопные соотношения - 10 - наблюдались в районах, непосредственно связанных с мантией Земли, там, где интенсивна вулканическая деятельность, где имеются разломы и трещины в земной коре и где возможен выход глубинных потоков вещества на поверхность.
В стабильных районах земной коры, где тектоническая деятельность давно закончилась, изотопное соотношение оказывалось чуть ли не в тысячу раз более низким: 2 . 10-8. Районы же, занимающие промежуточное положение по геологической активности, характеризуются и промежуточным изотопным соотношением: 10-6 - 10-7.
А вот в атмосфере изотопное соотношение гелия вновь начинает подниматься, достигая величины около 10-6. И наконец, за ее пределами, в околосолнечном пространстве, изотопное соотношение гелия оказывается достаточно высоким и постоянным, достигая своеобразной константы природы: 3 . 10-4.
Очередную гелиевую проблему можно было бы сформулировать так: почему в вулканических газах, появляющихся на поверхности в любом районе Земли, гелия-3 в сотни и тысячи раз больше, чем в образцах земной коры? Поскольку вулканические газы - естественные посланцы мантии Земли, получалось, что избыточный гелий находится в мантии. Но с одной оговоркой - этот мантийный гелий (в том числе и гелий-3) не мог иметь чисто радиогенное происхождение. Расчеты показали, что ни ядерные превращения элементов, ни попадание в земную кору космических лучей не могли объяснить наблюдаемое в мантийных газах количество гелия-3.
Оставалось только одно предположение: тот гелий, который выделяется на поверхность Земли вместе с вулканическими газами, представляет смесь радиогенного и первичного гелия. Это означало, что в недрах Земли сохранился гелий, захваченный Землей при ее образовании. По-видимому, около 4,5 миллиарда лет назад изотопное соотношение гелия молодой Земли было близко к космической константе. Но находившиеся в мантии тяжелые элементы из-за радиоактивного распада увеличивали долю гелия-4, а дегазация недр уменьшала в первую очередь количество легкого изотопа вследствие его большей летучести. Кстати, в мантии Земли сохранился не только первичный гелий, но и другие газы.
В конце 1981 года обнаружение первичного солнечного гелия в мантии Земли было зарегистрировано в Государственном реестре СССР как открытие. «Суть нашего открытия,- сказал один из его авторов, профессор Б. А. Мамырин,- заключается в том, что мы выяснили новую особенность устройства нашей планеты. Всем известно, что земной шар имеет слоистую структуру - сверху тонкая (10 - 70 километров) земная кора, далее мантия толщиной около 3 тысяч километров, внутри тяжелое ядро. Мы установили, что гелии, которыми «пропитаны» породы земной коры и породы мантии, резко отличны по изотопному составу. В гелии мантии отношение Не3Д1е4 в тысячу раз больше, чем в гелии земной коры. Это редчайший феномен природы, поскольку сдвиги в изотопном отношении для различных элементов на Земле не превышают обычно нескольких процентов».
А теперь обещанные разгадки.
Итак, представление о полной потере Землей первичного гелия не подтвердилось. Но каким же образом была обеспечена сохранность самого легкого на планете газа? Оказалось, что первичный гелий мог сохраниться до наших дней лишь в одном случае: максимальная температура Земли при ее образовании не превышала 500-700 градусов по Цельсию. Иными словами, наша планета никогда не пребывала в расплавленном состоянии, иначе первичный гелий действительно мог бы испариться. Таким образом, проблема гелия, и гелия-3 в частности, должна учитываться при обсуждении истории образования планет Солнечной системы.
Дальнейший путь гелия лежит через атмосферу. И оказалось, что именно мантия с ее высокой концентрацией легкого изотопа гелия поставляет тот самый гелий-3, содержание которого в воздухе не поддавалось объяснению.
Сам факт сохранности первичного гелия в мантии очень многое дал для изучения планеты. Через глубинные разломы в земной коре, через подводные и материковые вулканы происходит постоянный выход гелия на поверхность - он как бы просвечивает, подобно рентгену, земную кору изнутри. И вещество, мигрирующее из мантии к поверхности, всегда оказывается помеченным гелием-3. Но в земной коре преобладает радиогенный гелий, и изотопная метка растворяется, а само изотопное соотношение постепенно уменьшается. Разумеется, это очень и очень медленный процесс. Только через миллиард лет после завершения геологической активности региона в горных породах установится характерное для радиогенного гелия изотопное соотношение.
Проблема первозданного гелия уводит в те далекие от нашего века времена, когда, по представлениям ученых, Вселенная являла собой сверхплотную и сверхгорячую материю. Потом началось расширение, или, как его называют ученые. Большой взрыв. Почему это произошло, современная наука не может дать ответа. Но восстановить предполагаемый ход событий оказалось возможным.
На самых ранних стадиях эволюции Вселенная была наполнена элементарными частицами. По мере ее остывания образовались ядра дейтерия, гелия-3 и гелия-4. лишь через миллион лет Вселенная остыла настолько, что электроны смогли присоединиться к атомным ядрам и образовались первые атомы. К этому времени наша Вселенная была только водородно-гелиевой. Остальные химические элементы родиться не успели. Они возникли позднее, спустя миллиарды лет, в процессе эволюции звезд. В первозданном же веществе Вселенной было около 70 процентов водорода и 30 процентов гелия, и примерно одна десятитысячная доля этого гелия приходилась на гелий-3.
Возможно, найден еще один, помимо реликтового излучения, свидетель первых мгновений Вселенной - гелий с характерным изотопным отношением. Недаром же, перефразируя известное высказывание Архимеда, физики утверждают: «Дайте нам водород и гелий, и мы построим Вселенную».

А. Ассовская, кандидат физико-математических наук