Введение

1. Формирование взглядов Галилея в свете истории

2. Галилей как основоположник экспериментально-математического метода исследования природы

Заключение

Библиографический список

Введение

В середине XVI столетия гуманизм платоновской школы в Италии перешел свой зенит, его основное время ушло. Во второй половине XVI и в начале XVII в. на сцену выходит специфическая философская область - философия природы. Философия природы типичное выражение природы Ренессанса. Ее родиной была Италия, наиболее знаменитым представителем Джордано Бруно. Параллельно с философией природы развивается новое естествознание, реализующее радикальную переоценку старых традиций и предпосылок. Оно приносит ряд эпохальных открытий, становится одним из важнейших источников новой философии. Отбрасываются господствовавшие в средние века философские и методологические основы науки, и создаются новые. Схоластическое учение о природе, высший уровень которого был достигнут парижской и оксфордскими школами в XIV в., в сущности никогда не переходило границ теоретических спекуляций. В противоположность этому ученые Ренессанса на первый план выдвигают опыт, исследование природы, экспериментальный метод исследований. Видное место завоевывает математика, принцип математизации науки соответствует основным прогрессивным тенденциям развития науки, научного и философского мышления.

Новые тенденции в науке получили отражение в творчестве Леонардо да Винчи (1452-1519) , Николая Коперника (1473-1543) , Иоганна Кеплера (1571-1630) и Галилео Галилея (1546-1642) .

Важнейшим полем боя, на котором происходило сражение между новым и старым миром, между консервативными и прогрессивными силами общества, религией и наукой, была астрономия. Средневековое религиозное учение было основано на представлении о Земле как богом избранной планета и о привилегированном положении человека во вселенной. Изучая астрономические объекты ученые того времени на практике постигали законы движения небесных тел и заложили фундаментальные понятия для развития другой науки-физики. Одним из основоположников фундаментальных законов физики и стал Галилео Галилей.

В представленной работе нами даны краткие биографические сведения об ученым, а также раскрыты его взгляды на мир природы в философском и научном плане, поскольку ученые того времени познавая мир природы и осмысляя его в философском плане делали глубокие научные выводы, основываясь на применяемых ими логических методах философии.

1. Краткая биографическая справка

Основоположником экспериментально-математического метода исследования природы был великий итальянский ученый Галилео Галилей (1564- 1642) . Леонардо да Винчи дал лишь наброски такого метода изучения природы, Галилей же оставил развернутое изложение этого метода и сформулировал важнейшие принципы механического мира.

Галилей родился в семье обедневшего дворянина в городе Пизе 15февраля 1564 года (недалеко от Флоренции) в семье знатной, но обедневшей. Отец ученого был композитором и музыкантом, однако на вырученные деньги жить было скудно, и последний подрабатывал торговлей сукном.. До 11 лет Галилей учился в обычной школе, но после переезда семьи во Флоренцию стал учится в школе при монастыре бенедиктинцев,а в 17 лет поступил в Пизанский университет и стал готовиться к профессии врача.Первая научная работа Галилея «Маленькие гидростатические весы» вышла в свет в 1586 году и она принесла некоторую известность Галилею в среде ученых. По рекомендации одного из них- Гвидо Убальде дель Монте Галилей в 1589 году получил кафедру математики в Пизанском университете и в 25 лет стал профессором.

Галилей преподавал студентам математику и астрономию в соответствии с учением Птолемея и к этому же периоду времени относятся его опыты,которые он ставил,бросая различные тела с наклонной Пизанской башни,чтобы убедиться падают ли они в соответствии с учением Аристотеля- тяжелые быстрее, чем легкие. Ответ получился отрицательным.

В работе « О движении» вышедшей в 1590 году Галилей подверг критике аристотелевское учение о падении тел. Критика Галилеем взглядов Аристотеля вызвала недовольство и ученый принял предложение занять кафедру математики в Падуанском университете. Биографы ученого отметили падуанский период как самый плодотворный и счастливый в его жизни. Здесь Галилей обрел семью,женившись на Марине Гамба и у него родились две дочери: Вирджиния (1600), Ливия (1601) и сын Винченцо (1606). В 1606 году Галилей увлекся астрономией

Для торжества теории Коперника и идей, высказанных Джордано Бруно, а следовательно, и для прогресса материалистического мировоззрения вообще огромное значение имели астрономические открытия, сделанные Галилеем с помощью сконструированного им телескопа. Он обнаружил кратеры и хребты на Луне (в его представлении - "горы" и "моря") , разглядел бесчисленные, скопления звезд, образующих Млечный Путь, увидел спутники, Юпитера, разглядел пятна на Солнце и т.д. Благодаря этим открытиям Галилей стяжал всеевропейскую славу "Колумба неба". Астрономические открытия Галилея, в первую очередь спутников Юпитера, стали наглядным доказательством истинности гелиоцентрической теории Коперника, а явления, наблюдаемые на Луне, представлявшейся планетой, вполне аналогичной Земле, и пятна на Солнце подтверждали идею Бруно о физической однородности Земли и неба. Открытие же звездного состава Млечного Пути явилось косвенным доказательством бесчисленности миров во Вселенной. Работы Галилея по астрономии в марте 1610 года он опубликовал в своем труде «Звездный вестник », и это стало началом его новой жизни. тосканский герцог Козимо 11 Медичи предложил Галилею стать придворным математиком и тот принял предложение,возвратившись на жительство во Флоренцию.

Указанные открытия Галилея положили начало его ожесточенной полемике со схоластиками и церковниками, отстаивавшими аристотелевско-птолемеевскую картину мира. Если до сих пор католическая церковь по изложенным выше причинам была вынуждена терпеть воззрения тех ученых, которые признавали теорию Коперника в качестве одной из гипотез, а ее идеологи считали, что доказать эту гипотезу невозможно, то теперь, когда эти доказательства появились, римская церковь принимает решение запретить пропаганду взглядов Коперника даже в качестве гипотезы, а сама книга Коперника вносится в "Список запрещенных книг" (1616 г.) . Все это поставило деятельность Галилея под удар, но он продолжал работать над совершенствованием доказательств истинности теории Коперника. В этом отношении огромную роль сыграли работы Галилея и в области механики. Еще будучи студентом Галилео Галилей наблюдал в соборе города Пиза,.что люстры различных размеров и веса,но имеющие одинаковую длину,имеют и одинаковые периоды колебаний. Он сравнил люстры с маятником и на основании этого сделал вывод что период колебаний маятника будет тем больше, чем маятник будет длиннее. Так как в то время механические часы еще не были изобретены для измерения времени при определении периода колебаний Галилей использовал удары собственного пульса.

Господствовавшая в эту эпоху схоластическая физика, основавшаяся на поверхностных наблюдениях и умозрительных выкладках, была засорена представлениями о движении вещей в соответствии с их "природой" и целью, о естественной тяжести и легкости тел, о "боязни пустоты", о совершенстве кругового движения и другими ненаучными домыслами, которые сплелись в запутанный узел с религиозными догматами и библейскими мифами. Галилей путем ряда блестящих экспериментов постепенно распутал его и создал важнейшую отрасль механики - динамику, т.е. учение о движении тел.

Уже с 1616 года Галилея обвиняли в стремлении к ереси, так как учение Коперника в этом году 11 богословов признали ложным и книга Коперника «Об обращении небесных сфер» внесена в индекс запрещенных книг, соответственно запрещалась любая пропаганда учения Коперника.

В 1623 году под именем Урбана V111 папой становиться друг Галилея кардинал Маффео Барберини и Галилей надеялся на отмену указанного выше запрета,но получив отказ вернулся во Флоренцию. Там Галилей продолжил работу над своей книгой «Диалог о двух главнейших системах мира» и в 1632 году она увидела свет. Выход книги вызвал острую реакцию церкви и ученого вызвали в Рим. В одном из своих писем Галилей писал: « Я прибыл в Рим 10 февраля 1633 года и положился на милость инквизиции и святого отца…. Сначала меня заперли в замке Троицы на горе,а на следующий день меня посетил комиссар инквизиции и увез меня в своей карете. По дороге он задавал мне разные вопросы и высказал пожелание, чтобы я прекратил скандал,вызванный в Италии моим открытием,касающимся движения земли… На все математические доказательства, которые я мог ему противопоставить, он отвечал мне словами из священного писания: «Земля была и будет неподвижна во веки веков» ».

Следствие по делу Галилея тянулось с апреля по июнь 1633 года и 22 июня Галилей, произнес перед судом инквизиции текст отречения, а после этого выслан на свою виллу. находясь под домашним арестом Галилей пишет «Беседы и математические доказательства,касающиеся двух новых областей науки», где в частности излагает основы динамики(закон свободного падения , закон сложения перемещений, учение о сопротивлении материалов) однако книгу отказываются печатать и она выходит только в Голландии в июле 1638 года, однако ослепший ученый так и не смог увидеть свой труд воочию, а мог лишь пощупать его руками.

В ноябре 1979 года римский папа Иоанн Павел 11 официально признал, что инквизиция в 1633 году в отношении ученого допустила ошибку заставив его силой отречься от теории Коперника.

Но, так как оно основывалось лишь на созерцании и размышлении, то Галилей считал, что все происходящее в природе необходимо подтверждать опытами. Это утверждал Галилей о свободном падении тел . В 1585 году Винченцо Галилей, (подробнее: и ) обеднел настолько, что не смог уже помогать сыну, и Галилео вынужден был покинуть университет, хотя до окончания курса ему оставался только один год.

Галилей не прекращал научных занятий

Дома Галилео Галилей не прекращал научных занятий , стараясь чтением восполнить пробел в знаниях, на который его обрекла нужда. В эти годы он издал небольшое сочинение о законах плавания тел и способе определения их плотности с помощью весов особого устройства. Это сочинение Галилея, написанное на живом итальянском языке, а не на мертвом латинском, на котором обычно писали свои книги ученые того времени, привлекло всеобщее внимание. Люди, читавшие его сочинение, поняли, что недоучившийся студент стоит наравне с крупнейшими учеными .

Галилей - профессор математики

По протекции одного знатного господина Гвидо Убельди маркиза дель Монто, молодого Галилея пригласили Пизанский университет - тот самый, в котором он некогда учился, - на должность профессора математики сроком на три года и с окладом шестьдесят флоринов в год.

Галилеей сделался профессором математики и стал пересказывать Аристотеля , как это требовалось по программе. Молодой ученый не против древнегреческого философа; он только иногда делал небольшие поправки и дополнения к его рассуждениям. Галилей готовился к длительным сражениям со сторонниками, последователями Аристотеля, которых и тогда называли перипатетиками .

Первая атака Галилея

Первой атаке Галилея подверглось утверждение Аристотеля о том, что тяжелые предметы будто бы падают быстрее легких . Его студенческие опыты с разного веса показали, что тяжелые предметы , подвешенные на нитках, раскачиваются точно так же, как легкие . Длительность одного качания зависела только от длины нитки, но не от веса маятника.

Уже это одно наводило на мысль, что скорость падения не зависит от веса падающего предмета . Однако привести этот пример Галилей не решился - сторонники Аристотеля могли сказать, что одно дело качание, а другое - падение. Галилей решил бороться с аристотелевцами их же оружием - рассуждением. Перипатетики больше всего любили рассуждать. Галилей говорил им так:

Аристотель утверждает, что камень весом в десять фунтов падает в десять раз быстрее, чем камень весом в один фунт. Хорошо, согласимся с ним. Но скажите, что произойдет, если мы свяжем оба эти камня вместе. С какой скоростью они будут падать?.. Допустим, - продолжал Галилей, - мы запряжем в одну повозку рысака и старую клячу, еле передвигающую ноги. С какой скоростью поедет эта повозка? Безусловно, вы скажете, что старая кляча лишь помешает рысаку. Так и маленький камень, способный падать в десять раз медленнее большого, будет тормозить его падение, мешать ему, и потому два таких камня, связанных вместе, будут падать медленнее, чем один большой камень. Не так ли, господа?

Да, конечно!

Отвечали перипатетики, не замечая подвоха.

Вы согласны со мной? Но, посудите сами, ведь мы связали оба камня вместе так, что из них получился один предмет весом в одиннадцать фунтов. И этот одиннадцатифунтовый предмет тяжелее десятифунтового, и поэтому, согласно Аристотелю, он должен падать не медленнее, а быстрее десятифунтового камня! Не так ли, господа?

Перипатетики молчали, не зная, что возразить Галилею. Ведь, если поверить Аристотелю, действительно получается, что два камня, связанных вместе, должны падать с какой-то неопределенной скоростью - с одной стороны, быстрее, а с другой - как будто медленнее… Галилей тут же пояснял:

Аристотель ошибся . Скорость падения не зависит от веса падающих предметов. Все предметы независимо от их веса падают одинаково быстро.

Галилей смеялся над смущением и растерянностью своих противников и говорил:

Свяжите два камня одинакового веса и уроните их с одной и той же высоты. Если верить вам, то в связанном виде они будут падать вдвое быстрее, чем поодиночке. Словом, если одна лошадь пробегает расстояние между двумя городами за два часа, то вы, наверно, скажете, что две такие лошади, запряженные в повозку, пробегут это же расстояние за один час. Сеньоры, где вы видели таких удивительных лошадей?

Перипатетики расходились, рассерженные насмешками Галилея, а он на них не скупился. Они говорили между собой:

Он осмеливается критиковать Аристотеля. Невежда! Мальчишка! Вот уже два тысячелетия все величайшие умы человечества почитают Аристотеля как мудрейшего из людей. Все сказанное Аристотелем - великая истина! И только безнадежный глупец осмелится это оспаривать!

Галилей пытался приводить новые доводы и примеры, но где уж там - его и слушать не хотели.

Смелый и решительный опыт

Двадцатипятилетний ученый понял, что рассуждениями и доводами перипатетиков не проймешь. Нужен был смелый и решительный опыт , чтобы они воочию убедились в своем заблуждении. На городской площади в Пизе и поныне стоит знаменитая наклонная башня-колокольня, построенная еще в 1174 году.

Ученик Галилея и его биограф - Вивиани рассказывает, что для своих опытов Галилей воспользовался этой башней. Она и в самом деле очень удобна - достаточно высока (пятьдесят семь с половиной метров, или, на флорентийские меры, сто локтей) и наклона. Как сообщает Вивиани, Галилей взбирался на площадку седьмого этажа колокольни, ронял оттуда предметы различного веса: камни, куски железа и дерева - и смотрел, как они падают.

На площадку Пизанской башни затащили два железных ядра : одно весом в сто фунтов , а другое, маленькое, в один фунт . Эти ядра были выбраны не случайно: Аристотель в своих рассуждениях упоминал о предметах как раз такого веса.

У башни собрался народ, пришли профессора-перипатетики, стремившиеся подловить Галилея на какой-нибудь оплошности, собрались студенты, заинтересованные спором, и просто любопытные. Один старый профессор, в темной профессорской шапочке, ревностный сторонник Аристотеля , подошел почти вплотную к тому месту, куда должны были упасть ядра, и, задрав бороду, смотрел наверх, ожидая начала опыта. Галилей одним толчком сбросил ядра.

И все видели, как они одновременно скатились с площадки и полетели оба - и тяжелое и легкое - вместе, рядышком, словно связанные веревочкой. Профессор-перипатетик, злейший противник Галилея, придерживая седую бороду рукой, внимательно следил за полетом ядер. В момент падения он присел на корточки, чуть не распластался по земле, - так хотелось ему не пропустить мгновения, когда ядра коснутся земли. Раздался глухой удар. Перипатетик вскочил и, забывая почтенный свой возраст и профессорское звание, закричал, как мальчишка:

Отстало! Отстало!

И показал два пальца. Действительно, фунтовое ядро отстало от своего более тяжелого спутника примерно на расстояние, равное толщине двух пальцев. Оно ударилось о землю не одновременно с большим ядром, а чуть позже его. Это видели многие! Сторонники Аристотеля свистели и улюлюкали. Зеваки, которые ровно ничего не поняли во всей этой истории, орали, радуясь случаю пошуметь.

Зато студенты, любившие смелые речи Галилея, кидали вверх свои шапочки и кричали «ура» - отставание фунтового ядра на каких-то два пальца показалось им сущим пустяком. Рассерженный Галилей вернулся домой. Проклятое маленькое ядро! Почему оно отстало? В стенах университета спор разгорелся с новой силой. Перипатетики перешли в наступление и с озлобленным упрямством твердили:

А все-таки маленькое ядро отстало!

И, встречаясь с Галилеем, вежливо приподнимали шляпы и показывали ему два пальца. Возмущенный насмешками, Галилей говорил своим противникам:

Чему вы радуетесь! Ведь Аристотель утверждал, что стофунтовый предмет, падая с высоты в сто локтей, достигает земли в такое время, за которое маленькое ядро успеет пролететь только один локоть! Значит, расстояние между ними в этот момент должно было бы равняться девяноста девяти локтям. Вы же заметили, что большое ядро опередило маленькое не на девяносто девять локтей, а всего лишь на два пальца. И придираетесь к этому ничтожному расхождению, желая скрыть ошибку Аристотеля на девяносто девять локтей. Толкуя о моей ничтожнейшей ошибке, вы обходите молчанием величайшую ошибку Аристотеля!

«Идеализированный подход к экспериментальным фактам состоит в построении такой идеальной модели эксперимента, которая позволяет выделить существенные зависимости исследуемых явлений в чистом виде, что достигается путём абстрагирования от всех посторонних факторов, искажающих реальный эксперимент.

Например, для доказательства зависимости величины скорости тела от высоты наклонной плоскости Галилей использует эксперимент, идеальная модель которого проектируется следующим образом.

Указанная зависимость выполняется с идеальной точностью, если наклонные плоскости абсолютно твёрдые и гладкие, а движущееся тело имеет совершенно правильную круглую форму, так что между плоскостями и телом нет трения. Пользуясь этой идеальной моделью, Галилей строит реальную установку, параметры которой максимально приближены к идеальному случаю.

Таким образом, идеализированный подход Галилея предполагает использование мысленного эксперимента в качестве теоретического условия (проекта) реального эксперимента.

Обычно мысленному эксперименту предшествуют грубые опыты и наблюдения. Так, в опытах со свободным падением тел Галилей мог лишь уменьшить сопротивление воздуха, но не мог исключить его полностью. Поэтому он переходит к идеальному случаю, где сопротивление воздуха отсутствует. Нередко мысленный эксперимент используется в качестве теоретического обоснования тех или иных положений.

Так, Галилей даёт изящное опровержение тезиса Аристотеля о том, что тяжёлые тела падают быстрее, чем легкие. Допустим, говорит он, Аристотель прав. Тогда, если мы соединим два тела вместе, то более легкое тело, падая медленнее, будет задерживать более тяжёлое тело, в результате чего комбинация уменьшит свою скорость. Но два тела, соединенные вместе, имеют большую тяжесть, чем каждое из них в отдельности. Таким образом, из положения, что тяжёлое тело движется быстрее, чем лёгкое, следует, что тяжёлое тело движется медленнее, чем лёгкое. Путем reductio ad absurdum (сведения к абсурду - Прим. И.Л. Викентьева) Галилей доказывает положение, что все тела падают с одинаковой скоростью (в вакууме).

Одним из самых замечательных достижений Галилея является внедрение математики в практику научного исследования. Книга природы, считает он, написана на языке математики, буквами которой являются треугольники, окружности и другие геометрические фигуры. Поэтому предметом истинной науки может быть все то, что доступно измерению: длина, площадь, объём, скорость, время, и т.д., т.е. так называемые первичные свойства материи.

В общем виде структуру научного метода Галилея можно представить следующим образом.

1. На основе данных наблюдений и грубого опыта строится идеальная модель эксперимента, которая затем реализуется и тем самым уточняется.

2. Путём многократного повторения эксперимента выводятся средние значения измеряемых величин, в которые вносятся поправки с учетом различных возмущающих факторов.

3. Полученные экспериментальным путем величины являются отправной точкой при формулировании математической гипотезы, из которой путем логических рассуждений выводятся следствия.

4. Эти следствия проверяются затем в эксперименте и служат косвенным подтверждением принятой гипотезы.

Последний пункт выражает собой сущность гипотетико-дедуктивного метода Галилея: математическая гипотеза принимается вначале как «постулат, абсолютная правильность которого обнаруживается впоследствии, когда мы ознакомимся с выводами из этой гипотезы, точно согласующимися с данными опыта».

По его словам, «для научного трактования этого предмета [движения тел] необходимо сперва сделать отвлечённые выводы, а сделав их, проверить и подтвердить найденное на практике в тех пределах, которые допускаются опытом. Польза от этого будет немалая»

Черняк В.С., «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящиеся к механике и местному движению» в Энциклопедии эпистемологии и философии науки, М., «Канон+»; «Реабилитация», 2009 г., с. 81.

Галилео Галилей - величайший мыслитель эпохи Ренессанса, основоположник современной механики, физики и астрономии, последователь идей , предшественник .

Будущий ученый родился в Италии, городе Пиза 15 февраля 1564 года. Отец Винченцо Галилей, принадлежавший к обедневшему роду аристократов, играл на лютне и писал трактаты по теории музыки. Винченцо входил в общество Флорентийской камераты, участники которой стремились возродить древнегреческую трагедию. Результатом деятельности музыкантов, поэтов и певцов стало создание на рубеже XVI-XVII веков нового жанра оперы.

Мать Джулия Амманнати вела домашнее хозяйство и воспитывала четырех детей: старшего Галилео, Вирджинию, Ливию и Микеланджело. Младший сын пошел по стопам отца и впоследствии прославился композиторским искусством. Когда Галилео было 8 лет, семья перебралась в столицу Тосканы, город Флоренцию, где процветала династия Медичи, известная своим покровительством художникам, музыкантам, поэтам и ученым.

В раннем возрасте Галилея отдали в школу при монастыре бенедиктинцев Валломброза. Мальчик проявлял способности к рисованию, изучению языков и точным наукам. От отца Галилео унаследовал музыкальный слух и способность к композиции, но по-настоящему юношу влекла только наука.

Учеба

В 17 лет Галилео отправляется в Пизу для изучения медицины в университете. Юноша, помимо основных предметов и врачебной практики, увлекся посещением математических занятий. Молодой человек открыл для себя мир геометрии и алгебраических формул, что повлияло на мировоззрение Галилея. За те три года, которые юноша обучался в университете, он основательно изучил работы древнегреческих мыслителей и ученых, а также познакомился с гелиоцентрической теорией Коперника.


По истечении трехлетнего срока пребывания в учебном заведении Галилей вынужден был вернуться во Флоренцию в связи с отсутствием средств на дальнейшее обучение у родителей. Руководство университетом не пошло на уступки талантливому юноше, не дало возможности закончить курс и получить ученую степень. Но у Галилео уже был влиятельный покровитель, маркиз Гвидобальдо дель Монте, который восхищался талантами Галилея в области изобретательства. Аристократ похлопотал за подопечного перед тосканским герцогом Фердинандом I Медичи и обеспечил юноше жалование при дворе правителя.

Работа в университете

Маркиз дель Монте помог талантливому ученому получить место преподавателя в Болонском университете. Помимо лекций, Галилео ведет плодотворную научную деятельность. Ученый занимается вопросами механики и математики. В 1689 году на три года мыслитель возвращается в Пизанский университет, но теперь уже в качестве преподавателя математики. В 1692 году на 18 лет переезжает в Венецианскую республику, город Падую.

Совмещая преподавательскую работу в местном университете с научными опытами, Галилео издает книги «О движении», «Механика», где опровергает идеи . В эти же годы происходит одно из важных событий - ученый изобретает телескоп, который позволил наблюдать за жизнью небесных светил. Открытия, сделанные Галилеем при помощи нового прибора, астроном описал в трактате «Звездный вестник».


Вернувшись в 1610 году во Флоренцию, на попечение тосканского герцога Козимо Медичи II, Галилей издает сочинение «Письма о солнечных пятнах», которое критически было встречено католической церковью. В начале XVII столетия инквизиция действовала с большим размахом. И последователи Коперника были у ревнителей христианской веры на особом счету.

В 1600 году уже был казнен на костре , который так и не отрекся от собственных взглядов. Поэтому труды Галилео Галилея католики посчитали провокационными. Сам ученый считал себя примерным католиком и не видел противоречия между своими работами и христоцентрической картиной мира. Библию астроном и математик считал книгой, способствующей спасению души, а вовсе не научным познавательным трактатом.


В 1611 году Галилей отправляется в Рим, чтобы продемонстрировать телескоп Папе Павлу V. Презентацию прибора ученый провел максимально корректно и даже получил одобрение столичных астрономов. Но просьба ученого вынести окончательное решение по вопросу гелиоцентрической системы мира решила его участь в глазах католической церкви. Паписты объявили Галилея еретиком, обвинительный процесс был запущен в 1615 году. Понятие гелиоцентризма официально признается ложным Римской комиссией в 1616 году.

Философия

Главным постулатом мировоззрения Галилея является признание объективности мира независимо от субъективного восприятия человеком. Вселенная вечна и бесконечна, инициирована божественным первотолчком. Ничто в космосе не исчезает бесследно, происходит лишь изменение формы материи. В основе материального мира лежит механическое движение частиц, изучив которое можно познать законы вселенной. Поэтому научная деятельность должна быть основана на опыте и чувственном познании мира. Природа по Галилею - истинный предмет философии, постигая который можно приблизиться к истине и первооснове всего сущего.


Галилей был приверженцем двух методов естествознания - экспериментального и дедуктивного. С помощью первого способа ученый добивался доказательства гипотез, второй предполагал последовательное движение от одного опыта к другому, для достижения полноты знания. В работе мыслитель опирался прежде всего на учение . Критикуя воззрения , Галилей не отвергал аналитического способа, используемого философом античности.

Астрономия

Благодаря изобретенному в 1609 году телескопу, который был создан с применением выпуклого объектива и вогнутого окуляра, Галилей начал наблюдение за небесными светилами. Но трехкратного увеличения первого прибора не хватало ученому для полноценных опытов, и вскоре астроном создает телескоп с 32-кратным увеличением объектов.


Изобретения Галилео Галилея: телескоп и первый компас

Первым светилом, которое Галилей подробно изучил с помощью нового прибора, стала Луна. Ученый обнаружил множество гор и кратеров на поверхности спутника Земли. Первое открытие подтверждало, что Земля по физическим свойствам не отличается от других небесных тел. В этом состояло первое опровержение утверждения Аристотеля о разнице земной и небесной природы.


Второе основное открытие в области астрономии касалось обнаружения четырех спутников Юпитера, что в XX веке было подтверждено уже многочисленными космическими фото. Тем самым он опроверг доводы противников Коперника о том, что, если Луна вращается вокруг Земли, то Земля не может вращаться вокруг Солнца. Галилей вследствие несовершенства первых телескопов не смог установить период оборотов этих спутников. Окончательное доказательство вращения лун Юпитера было выдвинуто спустя 70 лет астрономом Кассини.


Галилео обнаружил наличие солнечных пятен, которые он наблюдал на протяжении длительного времени. Изучив светило, Галилей сделал вывод о вращении Солнца вокруг собственной оси. Наблюдая за Венерой и Меркурием, астроном определил, что орбиты планет находятся к Солнцу ближе земной. Галилей обнаружил кольца Сатурна и даже описал планету Нептун, но до конца в этих открытиях ему не удалось продвинуться, в силу несовершенства техники. Наблюдая в телескоп за звездами Млечного пути, ученый удостоверился в их необъятном количестве.


Опытным и эмпирическим путем Галилей доказывает, что Земля вращается не только вокруг Солнца, но и вокруг своей оси, что еще больше укрепило астронома в правильности гипотезы Коперника. В Риме после оказанного гостеприимного приема в Ватикане Галилей становится членом Академии деи Линчеи, которая была основана князем Чези.

Механика

Основа физического процесса в природе по мнению Галилея - механическое движение. Вселенную ученый рассматривал как сложный механизм, состоящий из простейших причин. Поэтому механика стала краеугольным камнем в научной деятельности Галилея. Галилео сделал множество открытий в области непосредственно механики, а также определил направления будущих открытий в физике.


Ученый первый установил закон падения и подтвердил его эмпирическим путем. Галилей открыл физическую формулу полета тела, движущегося под углом к горизонтальной поверхности. Параболическое движение брошенного объекта имело важное значение для расчета артиллерийских таблиц.

Галилей сформулировал закон инерции, который стал основополагающей аксиомой механики. Еще одним открытием стало обоснование принципа относительности для классической механики, а также расчет формулы колебания маятников. На основе последнего исследования были изобретены первые часы с маятником в 1657 году физиком Гюйгенсом.

Галилей первый обратил внимание на сопротивление материала, чем дал толчок развитию самостоятельной науке. Рассуждения ученого легли впоследствии в основу законов физики о сохранении энергии в поле тяжести, момента силы.

Математика

Галилей в математических суждениях приблизился к идее теории вероятности. Собственные исследования на этот счет ученый изложил в трактате «Рассуждения об игре в кости», который был издан через 76 лет после смерти автора. Галилей стал автором знаменитого математического парадокса о натуральных числах и их квадратах. Расчеты Галилей зафиксировал в труде «Беседы о двух новых науках». Наработки легли в основу теории множеств и их классификации.

Конфликт с церковью

После 1616 года, переломного в научной биографии Галилея, он был вынужден уйти в тень. Ученый опасался выражать собственные идеи явно, поэтому единственной книгой Галилео изданной после объявления Коперника еретиком, стало сочинение 1623 года «Пробирщик». После смены власти в Ватикане Галилей воспрянул духом, он считал, что новый Папа Урбан VIII благосклоннее отнесется к коперниковским идеям, нежели его предшественник.


Но после появления в печати в 1632 году полемического трактата «Диалог о двух главнейших системах мира» инквизиция вновь возбудила против ученого процесс. История с обвинением повторилась, но на этот раз для Галилео все закончилось гораздо хуже.

Личная жизнь

Живя в Падуе, молодой Галлилей познакомился с подданой Венецианской республики Мариной Гамба, которая стала гражданской женой ученого. В семье Галилея родилось трое детей - сын Винченцо и дочери Вирджиния и Ливия. Так как дети появились вне венчаного брака, девушкам впоследствии пришлось стать монахинями. В 55 лет Галилео удалось узаконить только сына, поэтому юноша смог жениться и подарить отцу внука, который в дальнейшем так же, как и тети, стал монахом.


Галилео Галилей был объявлен вне закона

После того, как инквизиция объявила Галилео вне закона, он переселился на виллу в Арчетри, что находилась недалеко от монастыря дочерей. Поэтому довольно часто Галилей мог видеть любимицу, старшую дочь Вирджинию, вплоть до ее смерти в 1634 году. Младшая Ливия не навещала своего отца по причине болезненности.

Смерть

В результате кратковременного заточения в 1633 году Галилей отрекся от идеи гелиоцентризма и попал под бессрочный арест. Ученого поместили под домашнюю охрану в городе Арчетри с ограничением общения. Галилео пробыл на тосканской вилле безвыездно до последних дней жизни. Сердце гения остановилось 8 января 1642 года. В момент смерти рядом с ученым находились два студента - Вивиани и Торричелли. За 30-е годы удалось издать последние труды мыслителя - «Диалоги» и «Беседы и математические доказательства, касающиеся двух новых отраслей науки» в протестантской Голландии.


Гробница Галилео Галилея

После кончины католики запретили хоронить прах Галилео в склепе базилики Санта Кроче, где хотел упокоиться ученый. Справедливость восторжествовала в 1737 году. Отныне могила Галилея находится рядом с . Еще через 20 лет церковь реабилитировала идею гелиоцентризма. Оправдания Галилео пришлось ждать гораздо дольше. Ошибка инквизиции была признана только в 1992 году Папой Иоанном Павлом II.

Сообщение на тему: Жизнь и деятельность Галилео Галилея

Основоположником экспериментально-математического метода исследования

природы был великий итальянский ученый Галилео Галилей (1564-1642).

Леонардо да Винчи дал лишь наброски такого метода изучения природы, Галилей

же оставил развернутое изложение этого метода и сформулировал важнейшие

принципы механического мира.

Галилей родился в семье обедневшего дворянина в городе Пизе (недалеко

от Флоренции). Убедившись в бесплодии схоластической учености он углубился

в математические науки. Став в дальнейшем профессором математики

Падуанского университета, ученый развернул активную научно-

исследовательскую деятельность, особенно в области механики и астрономии.

Для торжества теории Коперника и идей, высказанных Джордано Бруно, а

следовательно, и для прогресса материалистического мировоззрения вообще

огромное значение имели астрономические открытия, сделанные Галилеем с

помощью сконструированного им телескопа. Он обнаружил кратеры и хребты на

Луне (в его представлении - "горы" и "моря"), разглядел бесчисленные,

скопления звезд, образующих Млечный Путь, увидел спутники, Юпитера,

разглядел пятна на Солнце и т. д. Благодаря этим открытиям Галилей стяжал

все европейскую славу "Колумба неба". Астрономические открытия Галилея, в

первую очередь спутников Юпитера, стали наглядным доказательством

истинности гелиоцентрической теории Коперника, а явления, наблюдаемые на

Луне, представлявшейся планетой, вполне аналогичной Земле, и пятна на

Солнце подтверждали идею Бруно о физической однородности Земли и неба.

Открытие же звездного состава Млечного Пути явилось косвенным

доказательством бесчисленности миров во Вселенной.

Указанные открытия Галилея положили начало его ожесточенной полемике

со схоластиками и церковниками, отстаивавшими аристотелевско-птолемеевскую

картину мира. Если до сих пор католическая церковь по изложенным выше

причинам была вынуждена терпеть воззрения тех ученых, которые признавали

теорию Коперника в качестве одной из гипотез, а ее идеологи считали, что

доказать эту гипотезу невозможно, то теперь, когда эти доказательства

появились, римская церковь принимает решение запретить пропаганду взглядов

Коперника даже в качестве гипотезы, а сама книга Коперника вносится в

"Список запрещенных книг" (1616 г.). Все это поставило деятельность Галилея

под удар, но он продолжал работать над совершенствованием доказательств

истинности теории Коперника. В этом отношении огромную роль сыграли работы

Галилея и в области механики. Господствовавшая в эту эпоху схоластическая

физика, основавшаяся на поверхностных наблюдениях и умозрительных

выкладках, была засорена представлениями о движении вещей в соответствии с

их "природой" и целью, о естественной тяжести и лег кости тел, о "боязни

пустоты", о совершенстве кругового движения и другими ненаучными домыслами,

которые сплелись в запутанный узел с религиозными догматами и библейскими

мифами. Галилей путем ряда блестящих экспериментов постепенно распутал его

и создал важнейшую отрасль механики - динамику, т. е. учение о движении