Введение

Таламус (зрительный бугор)

Гипоталамус

Заключение

Медиальное коленчатое тело находится позади подушки таламуса; вместе с нижними холмиками пластинки крыши среднего мозга оно является подкорковым центром слухового анализатора.

Латеральное коленчатое тело располагается книзу от подушки таламуса. Вместе с верхними бугорками четверохолмия оно образует подкорковый центр зрительного анализатора.

Эпиталамус (надталамическая область) включает шишковидное тело (эпифиз), поводки и треугольники поводков . В треугольниках поводков залегают ядра, относящиеся к обонятельному анализатору. Поводки отходят от треугольников поводков, идут каудально, соединяются посредством спайки и переходят в шишковидное тело. Последнее как бы подвешено на них и располагается между верхними бугорками четверохолмия. Шишковидное тело является железой внутренней секреции. Его функции полностью не установлены, предполагается, что оно регулирует наступление полового созревания.

Таламус (зрительный бугор)

Общее строение и расположение таламуса.

Рисунок 1. Промежуточный мозг на сагиттальном разрезе.

Толща серого вещества таламуса разделена вертикальной Y-образной прослойкой (пластинкой) белого вещества на три части - переднюю, медиальную и латеральную.

Медиальная поверхность таламуса хорошо видна на сагиттальном (сагиттальный - стреловидный (лат. "sagitta" - стрела), делящей на симметричные правую и левую половины) разрезе мозга (рис.1). Медиальная (т.е. располагающаяся ближе к середине) поверхность правого и левого таламусов, обращенные друг к другу, образуют боковые стенки III мозгового желудочка (полость промежуточного мозга) посередине они соединены между собой межталамическим сращением .

Передняя (нижняя) поверхность таламусов сращена с гипоталамусом, через нее с каудальной стороны (т.е. находящейся ближе к нижней части тела) в промежуточный мозг входят проводящие пути из ножек мозга.

Латеральная ( т.е. боковая) поверхность таламуса граничит с внутренней капсулой - слоем белого вещества полушарий головного мозга, состоящего из проекционных волокон, соединяющих кору полушарий с нижележащими мозговыми структурами.

В каждой из этих частей таламуса находится несколько групп таламических ядер . Всего в таламусе содержится от 40 до 150 специализированных ядер .

Функциональное значение ядер таламуса.

По топографии ядра таламуса объединяют в 8 основных групп:

1. переднюю группу;

2. медиодорсальную группу;

3. группу ядер средней линии;

4. дорсолатеральную группу;

5. вентролатеральную группу;

6. вентральную заднемедиальную группу;

7. заднюю группу (ядра подушки таламуса);

8. интраламинарную группу.

Ядра таламуса делят на сенсорные ( специфические и неспецифические), моторные и ассоциативные . Рассмотрим основные группы ядер таламуса, необходимые для понимания его функциональной роли в передаче сенсорной информации в кору больших полушарий.

В передней части таламуса располагается передняя группа таламических ядер ( рис.2). Наиболее крупные из них - передневентральное ядро и переднемедиальное ядро. Они получают афферентные волокна от сосцевидных тел - обонятельного центра промежуточного мозга. Эфферентные волокна (нисходящие, т.е. выносящие импульсы из мозга) от передних ядер направляются к поясной извилине коры больших полушарий.

Передняя группа таламических ядер и связанные с нею структуры являются важным компонентом лимбической системы мозга, управляющей психоэмоциональным поведением .

Рис. 2. Топография ядер таламуса

В медиальной части таламуса различают медиодорсалъное ядро и группу ядер средней линии.

Медиодорсальное ядро имеет двусторонние связи с обонятельной корой лобной доли и поясной извилиной больших полушарий, миндалевидным телом и переднемедиальным ядром таламуса. Функционально оно тесно связано также с лимбической системой и имеет двусторонние связи с корой теменной, височной и островковой долей мозга.

Медиодорсальное ядро участвует в реализации высших психических процессов. Его разрушение приводит к снижению беспокойства, тревожности, напряженности, агрессивности, устранению навязчивых мыслей.

Ядра средней линии многочисленны и занимают наиболее медиальное положение в таламусе. Они получают афферентные (т.е. восходящие) волокна от гипоталамуса, от ядер шва, голубого пятна ретикулярной формации ствола мозга и частично от спинно-таламических путей в составе медиальной петли. Эфферентные волокна от ядер средней линии направляются к гиппокампу, миндалевидному телу и поясной извилине больших полушарий, входящих в состав лимбической системы. Связи с корой больших полушарий двусторонние.

Ядра средней линии играют важную роль в процессах пробуждения и активации коры больших полушарий, а также в обеспечении процессов памяти.

В латеральной (т.е. боковой) части таламуса располагаются дорсолатералъная, вентролатеральная, вентральная заднемедиальная и задняя группы ядер.

Ядра дорсолатералъной группы относительно мало изучены. Известно, что они причастны к системе восприятия боли.

Ядра вентролатералъной группы анатомически и функционально различаются между собой. Задние ядра вентролатеральной группы часто рассматриваются как одно вентролатеральное ядро таламуса. Эта группа получает волокна восходящего пути общей чувствительности в составе медиальной петли. Сюда приходят также волокна вкусовой чувствительности и волокна от вестибулярных ядер. Эфферентные волокна, начинающиеся от ядер вентролатеральной группы, направляются в кору теменной доли больших полушарий, куда проводят соматосенсорную информацию от всего тела.

К ядрам задней группы (ядра подушки таламуса) идут афферентные волокна от верхних холмиков четверохолмия и волокна в составе зрительных трактов. Эфферентные волокна широко распространяются в коре лобной, теменной, затылочной, височной и лимбической долей больших полушарий.

Ядерные центры подушки таламуса причастны к комплексному анализу различных сенсорных раздражителей. Они играют значительную роль в перцептивной (связанной с восприятием) и когнитивной (познавательной, мыслительной) деятельности мозга, а также в процессах памяти - хранения и воспроизведения информации.

Интраламинарная группа ядер таламуса лежит в толще вертикальной Y-образной прослойки белого вещества. Интраламинарные ядра взаимосвязаны с базальными ядрами, зубчатым ядром мозжечка и корой больших полушарий.

Эти ядра играют важную роль в активационной системе мозга. Повреждение интраламинарных ядер в обоих таламусах приводит к резкому снижению двигательной активности, а также апатии и разрушению мотивационной структуры личности.

Кора больших полушарий благодаря двусторонним связям с ядрами таламуса способна оказывать регулирующее воздействие на их функциональную активность.

Таким образом, основными функциями таламуса являются:

переработка сенсорной информации от рецепторов и подкорковых переключающих центров с последующей передачей её коре;

участие в регуляции движений;

обеспечение связи и интеграции различных отделов мозга .

Гипоталамус

Общее строение и расположение гипоталамуса.

Гипоталамус ( hypothalamus) представляет собой вентральный отдел (т.е. брюшной) промежуточного мозга. В его состав входит комплекс образований, расположенных под III желудочком. Гипоталамус спереди ограничивается зрительным перекрестом ( хиазмой), латерально - передней частью субталамуса, внутренней капсулой и зрительными трактами, отходящими от хиазмы. Сзади гипоталамус продолжается в покрышку среднего мозга. К гипоталамусу относят сосцевидные тела, серый бугор и зрительный перекрест. Сосцевидные тела располагаются по бокам средней линии кпереди от заднего продырявленного вещества. Это образования неправильной шаровидной формы белого цвета. Спереди от серого бугра располагается зрительный перекрёст . В нём происходит переход на противоположную сторону части волокон зрительного нерва, идущей от медиальной половины сетчатки. После перекрёста формируются зрительные тракты.

Серый бугор располагается кпереди от сосцевидных тел, между зрительными трактами. Серый бугор является полым выступом нижней стенки III желудочка, образованной тонкой пластинкой серого вещества. Верхушка серого бугра вытянута в узкую полую воронку , на конце которой находится гипофиз [ 4; 18].

Гипофиз: строение и функционирование

Гипофиз (hypophysis) - железа внутренней секреции, он располагается в специальном углублении основания черепа, "турецком седле" и при помощи ножки связан с основанием мозга. В гипофизе выделяют переднюю долю (аденогипофиз - железистый гипофиз ) и заднюю долю (нейрогипофиз ).

Задняя доля, или нейрогипофиз, состоит из нейроглиальных клеток и является продолжением воронки гипоталамуса. Более крупная доля - аденогипофиз, построена из железистых клеток. Благодаря тесному взаимодействию гипоталамуса с гипофизом в промежуточном мозге функционирует единая гипиталамо-гипофизарная система, управляющая работой всех эндокринных желез, а с их помощью - вегетативными функциями организма (рис.3).

Рисунок 3. Гипофиз и его влияние на другие эндокринные железы

В сером веществе гипоталамуса выделяют 32 пары ядер. Взаимодействие с гипофизом осуществляется посредством выделяемых ядрами гипоталамуса нейрогормонов - рилизинг-гормонов . По системе кровеносных сосудов они попадают в переднюю долю гипофиза (аденогипофиз), где способствуют высвобождению тропных гормонов, стимулирующих синтез специфических гормонов в других эндокринных железах.

В передней доле гипофиза вырабатываются тропные гормоны (тиреотропный гормон - тиреотропин, адренокортикотропный гормон - кортикотропин и гонадотропные гормоны - гонадотропины) и эффекторные гормоны (гормоны роста - соматотропин и пролактин) .

Гормоны передней доли гипофиза

Тиреотропный гормон (тиреотропин) стимулирует функцию щитовидной железы. Если удалить или разрушить гипофиз у животных, то наступает атрофия щитовидной железы, а введение тиреотропина восстанавливает ее функции.

Адренокортикотропный гормон (кортикотропин) стимулирует функцию пучковой зоны коры надпочечников, в которой образуются гормоны глюкокортикоиды. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Удаление гипофиза у животных приводит к атрофии коркового слоя надпочечников. Атрофические процессы захватывают все зоны коры надпочечников, но наиболее глубокие изменения происходят в клетках сетчатой и пучковой зонах. Вненадпочечниковое действие кортикотропина выражается в стимуляции процессов липолиза, усилении пигментации, анаболическом влиянии.

Гонадотропные гормоны (гонадотропины). Фолликулостимулирующий гормон (фоллитропин) стимулирует рост везикулярного фолликула в яичнике. Влияние фоллитропина на образование женских половых гормонов (эстрогенов) небольшое. Этот гормон имеется как у женщин, так и у мужчин. У мужчин под влиянием фоллитропина происходит образование половых клеток (сперматозоидов). Лютеинизирующий гормон (лютропин) необходим для роста везикулярного фолликула яичника на стадиях, предшествующих овуляции, и для самой овуляции (разрыва оболочки созревшего фолликула и выхода из него яйцеклетки), образования желтого тела на месте лопнувшего фолликула. Лютропин стимулирует образование женских половых гормонов - эстрогенов. Однако для того чтобы этот гормон осуществил свое действие на яичник, необходимо предварительное длительное действие фоллитропина. Лютропин стимулирует выработку прогестерона желтым телом. Лютропин имеется как у женщин, так и у мужчин. У мужчин он способствует образованию мужских половых гормонов - андрогенов.

Эффекторные:

Гормон роста (соматотропин) стимулирует рост организма путем усиления образования белка. Под влиянием роста эпифизарных хрящей в длинных костях верхних и нижних конечностей происходит рост костей в длину. Гормон роста усиливает секрецию инсулина посредством соматомединов, образующихся в печени.

Пролактин стимулирует образование молока в альвеолах молочных желез. Свое действие на молочные железы пролактин оказывает после предварительного действия на них женских половых гормонов прогестерона и эстрогенов. Акт сосания стимулирует образование и выделение пролактина. Пролактин обладает также и лютеотропным действием (способствует продолжительному функционированию желтого тела и образованию им гормона прогестерона) .

Процессы в задней доле гипофиза

В задней доле гипофиза гормоны не вырабатываются. Сюда поступают неактивные гормоны, которые синтезируются в паравентрикулярном и супраоптическом ядрах гипоталамуса.

В нейронах паравентрикулярного ядра образуется преимущественно гормон окситоцин, а в нейронах супраоптического ядра - вазопрессин (антидиуретический гормон). Эти гормоны накапливаются в клетках задней доли гипофиза, где они превращаются в активные гормоны.

Вазопрессин (антидиуретический гормон) играет важную роль в процессах мочеобразования и в меньшей степени в регуляции тонуса кровеносных сосудов. Вазопрессин, или антидиуретический гормон - АДГ (диурез - выделение мочи) - стимулирует обратное всасывание (резорбцию) воды в почечных канальцах.

Окситоцин (оцитонин) усиливает сокращение матки. Ее сокращение резко усиливается, если она предварительно находилась под действием женских половых гормонов эстрогенов. Во время беременности окситоцин не влияет на матку, так как под влиянием гормона желтого тела прогестерона она становится нечувствительной к окситоцину. Механическое раздражение шейки матки вызывает отделение окситоцина рефлекторно. Окситоцин обладает способностью стимулировать также выделение молока. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза и выделению молока. В состоянии напряжения организма гипофиз выделяет дополнительное количество АКТГ, стимулирующего выброс адаптивных гормонов корой надпочечников .

Функциональное значение ядер гипоталамуса

В передне-боковой части гипоталамусаразличают переднюю и среднюю группы гипоталамических ядер (рис.4).


Рисунок 4. Топография ядер гипоталамуса

К передней группе относятся супрахиазматические ядра, преоптическое ядро, и самые крупные - супраоптическое и паравентрикулярное ядра.

В ядрах передней группы локализуются:

центр парасимпатического отдела (ПСНС) вегетативной нервной системы.

Стимуляция переднего отдела гипоталамуса приводит к реакциям парасимпатического типа: сужению зрачка, снижению частоты сокращений сердца, расширению просвета сосудов, падению артериального давления, усилению перистальтики (т.е. волнообразного сокращения стенок полых трубчатых органов, способствующего продвижению их содержимого к выходным отверстиям кишечника);

центр теплоотдачи. Разрушение переднего отдела сопровождается необратимым повышением температуры тела;

центр жажды;

нейросекреторные клетки, продуцирующие вазопрессин (супраоптическое ядро ) и окситоцин (паравентрикулярное ядро ). В нейронах паравентрикулярного и супраоптических ядер образуется нейросекрет, который по их аксонам перемещается в задний отдел гипофиза (нейрогипофиз), где высвобождается в виде нейрогормонов - вазопрессина и окситоцина , поступающих в кровь.

Повреждение передних ядер гипоталамуса приводит к прекращению выделения вазопрессина, вследствие чего развивается несахарный диабет . Окситоцин оказывает стимулирующее действие на гладкую мускулатуру внутренних органов, например матки. В целом от этих гормонов зависит водносолевой баланс организма.

В преоптическом ядре образуется один из рилизинг-гормонов - люлиберин, стимулирующий выработку в аденогипофизе лютеинизирующего гормона, контролирующего активность половых желез.

Супрахиазматические ядра принимают активное участие в регуляции циклических изменений активности организма - циркадианных, или суточных, биоритмов (например, в чередовании сна и бодрствования).

К средней группе гипоталамических ядер относят дорсомедиальное и вент-ромедиальное ядра, ядро серого бугра и ядро воронки.

В ядрах средней группы локализуются:

центр голода и насыщения. Разрушение вентромедиального ядра гипоталамуса приводит к избыточному потреблению пищи (гиперфагии) и ожирению, а повреждение ядра серою бугра - к снижению аппетита и резкому исхуданию (кахексии);

центр полового поведения;

центр агрессии;

центр удовольствия, играющий важную роль в процессах формирования мотиваций и психоэмоциональных форм поведения;

нейросекреторные клетки, продуцирующие рилизинг-гормоны (либерины и статины), регулирующие продукцию гипофизарных гормонов: соматостатин, соматолиберин, люлиберин, фоллиберин, пролактолиберин, тиреолиберин и др. Через гипоталамо-гипофизарную систему они оказывают влияние на ростовые процессы, скорость физического развития и полового созревания, формирование вторичных половых признаков, функции половой системы, а также на обмен веществ.

Средняя группа ядер контролирует водный, жировой и углеводный обмен, влияет на уровень сахара в крови, ионный баланс организма, проницаемость сосудов и клеточных мембран.

Задняя часть гипоталамусарасположена между серым бугром и задним продырявленным веществом и состоит из правого и левого сосцевидных тел.

В задней части гипоталамуса наиболее крупными ядрами являются: медиальное и латеральное ядра, заднее гипоталамическое ядро .

В ядрах задней группы локализуются:

центр, координирующий активность симпатического отдела (СНС) вегетативной нервной системы (заднее гипоталамическое ядро ). Стимуляция этого ядра приводит к реакциям симпатического типа: расширению зрачка, повышению частоты сокращений сердца и артериального давления, учащению дыхания и уменьшению тонических сокращений кишечника;

центр теплопродукции (заднее гипоталамическое ядро ). Разрушение заднего отдела гипоталамуса вызывает вялость, сонливость и снижение температуры тела;

подкорковые центры обонятельного анализатора. Медиальное и латеральное ядра в каждом сосцевидном теле являются подкорковыми центрами обонятельного анализатора, а также входят в лимбическую систему;

нейросекреторные клетки, продуцирующие рилизинг-гормоны, регулирующие продукцию гипофизарных гормонов .

Особенности кровоснабжения гипоталамуса

Ядра гипоталамуса получают обильное кровоснабжение. Капиллярная сеть гипоталамуса по своей разветвлённости в несколько раз больше, чем в других отделах ЦНС. Одной из особенностей капилляров гипоталамуса является их высокая проницаемость, обусловленная истонченностью стенок капилляров и их фенестрированностью ("окончатостью" - наличие промежутков - "окон" - между смежными эндотелиальными клетками капилляров (от лат. "fenestra " - окно). В результате этого в гипоталамусе слабо выражен гематоэнцефалический барьер (ГЭБ), и нейроны гипоталамуса способны воспринимать изменения состава спинномозговой жидкости и крови (температуру, содержание ионов, наличие и количество гормонов и т.д.).

Функциональное значение гипоталамуса

Гипоталамус является центральным звеном, связующим нервные и гуморальные механизмы регуляции вегетативных функций организма. Управляющая функция гипоталамуса обусловлена способностью его клеток к секреции и аксональному транспорту регуляторных веществ, которые переносится в другие структуры мозга, спинномозговую жидкость, кровь или в гипофиз, изменяя функциональную активность органов-мишеней.

В гипоталамусе выделяют 4 нейроэндокринные системы:

Гипоталамо-экстрагипоталамная система представлена нейросекреторными клетками гипоталамуса, аксоны которых уходят в таламус, структуры лимбической системы, продолговатый мозг. Эти клетки выделяют эндогенные опиоиды, соматостатин и др.

Гипоталамо-аденогипофизарная система связывает ядра заднего гипоталамуса с передней долей гипофиза. По этому пути транспортируются рилизинг-гормоны (либерины и статины). Посредством их гипоталамус регулирует секрецию тропных гормонов аденогипофиза, определяющих секреторную активность желёз внутренней секреции (щитовидной, половых и др.).

Гипоталамо-метагипофизарная система связывает нейросекреторные клетки гипоталамуса с гипофизом. По аксонам этих клеток транспортируются меланостатин и меланолиберин, которые регулируют синтез меланина - пигмента, определяющего окраску кожи, волос, радужки и других тканей организма.

Гипоталамо-нейрогипофизарная система связывает ядра переднего гипоталамуса с задней (железистой) долей гипофиза. По этим аксонам транспортируются вазопрессин и окситоцин, которые накапливаются в задней доле гипофиза и выделяются в кровоток по мере необходимости .

Заключение

Таким образом, дорсальный отдел промежуточного мозга представляет собой филогенетически более молодой таламический мозг, являющийся высшим подкорковым сенсорным центром, в котором переключаются практически все афферентные пути, несущие сенсорную информацию от органов тела и органов чувств к большим полушариям головного мозга. К задачам гипоталамуса относится также управление психоэмоциональным поведением и участие в реализации высших психических и психологических процессов, в частности памяти.

Вентральный отдел - гипоталамус являетсяболее старым в филогенетическом отношении образованием. Гипоталамо-гипофизарная система осуществляет контроль над гуморальной регуляцией водносолевого баланса, обменом веществ и энергии, работой иммунной системы, терморегуляцией, репродуктивной функцией и т.д. Выполняя и этой системе регулирующую роль, гипоталамус является высшим центром, управляющим автономной (вегетативной) нервной системой.

Список литературы

1. Анатомия человека / Под ред. М.Р. Сапина. - М.: Медицина, 1993.

2. Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум поведение. - М.: Мир, 1988.

3. Гистология / Под ред. В.Г. Елисеева. - М.: Медицина, 1983.

4. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. - М.: Медицина, 1985.

5. Синельников Р.Д., Синельников Я.Р. Атлас анатомии человека. - М.: Медицина, 1994.

6. Тишевской И.А. Анатомия центральной нервной системы: Учебное пособие. - Челябинск: Изд-во ЮУрГУ, 2000.

И другие образования .

Таламус расположен латеральнее III желудочка. Он занимает дорсальную часть промежуточного мозга и отделяется от нижележащего бороздой. Два таламуса соединены по средней линии у 70% людей посредством межталамической промежуточной ткани серого вещества. От базальных ядер таламус отделяется внутренней капсулой, состоящей из нервных волокон, соединяющих кору со стволовыми структурами и спинным мозгом. Многие волокна внутренней капсулы продолжают ход в каудальном направлении в составе ножек мозга.

Ядра и функции таламуса

В таламусе выделяют до 120 ядер серого вещества . По месту их расположения ядра делят на передние, латеральные и медиальные группы. В задней части латеральной группы ядер таламуса выделяют подушку, медиальное и латеральное коленчатые тела.

анализ, отбор и передача в кору головного мозга сенсорных сигналов , поступающих к нему из большинства сенсорных систем ЦНС. В этой связи таламус называют воротами, через которые в поступают различные сигналы ЦНС. По выполняемым функциям ядра таламуса делятся на специфические, ассоциативные и неспецифические.

Специфические ядра характеризуются несколькими общими особенностями. Все они получают сигналы от вторых нейронов длинных восходящих афферентных путей, проводящих в кору мозга соматосенсорные, зрительные, слуховые сигналы. Эти ядра, иногда называемые сенсорными, передают обработанные сигналы в хорошо очерченные области коры — соматосенсорную, слуховую, зрительную сенсорные области, а также в премоторную и первичную моторные области коры. С нейронами этих областей коры специфические ядра таламуса имеют реципрокные связи. Нейроны ядер дегенерируют при разрушении (удалении) специфических областей коры, в которые они проецируются. При низкочастотной стимуляции специфических таламических ядер регистрируется усиление активности нейронов в тех областях коры, в которые нейроны ядер посылают сигналы.

К специфическим ядрам таламуса подходят волокна проводящих путей от коры, и ядер ствола мозга. По этим путям могут передаваться как возбуждающие, так и тормозные влияния на активность нейронов ядер. Благодаря таким связям кора мозга может регулировать потоки идущей к ней информации и отбирать наиболее значимую в данный момент. При этом кора может блокировать передачу сигналов одной модальности и облегчать передачу другой.

Среди специфических ядер таламуса имеются также несенсорные ядра. Они обеспечивают обработку и переключение сигналов не от чувствительных восходящих путей, а от других областей мозга. К нейронам таких ядер поступают сигналы от красного ядра, базальных ганглиев, лимбической системы, зубчатого ядра мозжечка, которые после их обработки проводятся к нейронам моторной коры.

Ядра передней группы таламуса участвуют в передаче сигналов от мамиллярных тел к лимбической системе, обеспечивая круговую циркуляцию нервных импульсов по кольцу: лимбическая кора — гиппокамп — — миндалевидное тело — таламус — лимбическая кора. Нейронную сеть, сформированную этими структурами, называют кругом (кольцом) Пайпеца. Циркуляция сигналов по структурам этого круга связана с запоминанием новой информации и формированием эмоций — эмоциональное кольцо Пайпеца.

Ассоциативные ядра таламуса расположены преимущественно медиодорсально, латерально и в ядре подушки. Они отличаются от специфических тем, что к их нейронам не поступают сигналы из чувствительных восходящих путей, а поступают сигналы уже обработанные в других нервных центрах и ядрах таламуса. Ассоциативность нейронов этих ядер выражается в том, что на один и тот же нейрон ядра приходят сигналы разных модальностей. Изменение активности нейронов ядер может быть связано (ассоциировано) с поступлением разнородных сигналов из разных источников (например, от центров, обеспечивающих зрительную, тактильную и болевую чувствительность).

Нейроны ассоциативных ядер являются полисенсорными и обеспечивают возможность осуществления интегративных процессов, в результате которых формируются обобщенные сигналы, передающиеся в ассоциативные области коры лобной, теменной и височной долей мозга. Потоки этих сигналов способствуют осуществлению корой таких психических процессов, как узнавание предметов и явлений, согласование речевых, зрительных и двигательных функций, формирование представления о позе тела, трехмерности пространства и положении в нем тела человека.

Неспецифические ядра таламуса представлены преимущественно интраламинарными, центральными и ретикулярными группами ядер таламуса. Они состоят из мелких нейронов, к которым по многочисленным синаптическим связям поступают сигналы от нейронов других ядер таламуса, лимбической системы, базальных ядер, гипоталамуса, ствола мозга. По чувствительным восходящим путям к неспецифическим ядрам поступает сигнализация от болевых и температурных рецепторов, а по сетям нейронов ретикулярной формации — сигнализация практически от всех других сенсорных систем .

Эфферентные пути от неспецифических ядер идут ко всем зонам коры как непосредственно, так и через другие талами- ческие и ретикулярные ядра. От неспецифических ядер таламуса начинаются также нисходящие пути к стволу мозга. При повышении активности неспецифических ядер таламуса (например, при электрической стимуляции в эксперименте) регистрируется диффузное повышение нейронной активности практически во всех областях коры больших полушарий.

Принято считать, что неспецифические ядра таламуса благодаря своим многочисленным нейронным связям обеспечивают взаимодействие, координацию работы различных областей коры и других отделов головного мозга. Они оказывают модулирующее влияние на состояние активности нервных центров, создают условия для их оптимальной настройки на выполнение работы.

Нейроны различных ядер таламуса оказывают эффекты через высвобождение ГАМК из нервных окончаний, формирующих синапсы на нейронах бледного шара, нейронах локальных цепей, нейронах ретикулярного ядра латерального коленчатого тела; возбуждающие глутамат и аспартат в кортикоталамических, мозжечковых терминалях; таламокортикальных проекционных нейронах. Нейронами секретируются несколько нейропептидов преимущественно в окончаниях восходящих трактов (субстанция Р, сомагостатин, нейропептид Y, энкефалин, холецистокинин).

Метаталамус

Метаталамус включает два таламических ядра — медиальное коленчатое тело (MKT) и латеральное коленчатое тело (ЛКТ).

Ядро медиального коленчатого тела является одним из ядер слуховой системы. Его получают афферентные волокна из латерального лемниска прямо или более часто, после их синаптического переключения на нейронах нижних холмиков. Эти слуховые волокна достигают MKT через соединительную ветвь нижних холмиков. MKT получает также волокна обратной связи из первичной слуховой коры височной области. Эфферентный выход ядра MKT формирует слуховую радиацию внутренней капсулы, волокна которой следуют к нейронам первичной слуховой коры (поля 41, 42).

Нейроны MKT вместе с нейронами нижних холмиков среднего мозга формируют нейронную сеть, выполняющую функцию первичного центра слуха. В нем осуществляется недифференцированное восприятие звуков, их первичный анализ и использование для формирования настораживания, повышения внимания и организации рефлекторного поворота глаз и головы в сторону неожиданного источника звука.

Ядро латерального коленчатого тела является одним из ядер зрительной системы. Его нейроны получают афферентные волокна от ганглиозных клеток обоих сетчаток по зрительному тракту. Ядро ЛКТ представлено нейронами, расположенными в нескольких слоях (пластинках). Сигналы из сетчатки поступают в ЛКТ так, что ипсилатеральная сетчатка проецируется к нейронам 2, 3 и 5-го слоев; контралатеральная — к нейронам 1,4 и 6-го слоев. К нейронам ЛКТ поступают также волокна обратной связи из первичной зрительной коры затылочной доли (поле 17). Нейроны ЛКТ, получив и обработав зрительные сигналы сетчатки, посылают сигналы по эфферентным волокнам, формирующим зрительную радиацию внутренней капсулы в первичную зрительную кору затылочной доли. Некоторые волокна проецируются в ядро подушки и вторичную зрительную кору (поля 18 и 19).

Латеральные коленчатые тела вместе с верхними холмиками относят к подкорковым зрительным центрам. В них осуществляется недифференцированное восприятие света, его первичный анализ и использование для формирования настораживания, повышения внимания и организации рефлекторного поворота глаз и головы в сторону неожиданного источника света.

Внутренняя капсула представляет собой широкий плотный пучок афферентных и эфферентных нервных волокон, соединяющих ствол и кору больших полушарий мозга. Волокна внутренней капсулы продолжаются рострально до радиации мозга и каудально до ножек мозга. Во внутренней капсуле проходят волокна таких важнейших нейронных нисходящих путей, как кортикоспинальный, кортикобульбарный, кортикорубральный, кортикоталамический, лобномостовой, кортикотекальный, кортиконигральный, кортикотегментальный и волокна восходящих таламокоркового, слухового и части зрительного путей.

Во внутренней капсуле тесно располагаются кортикоталамические и таламокортикальные волокна, поэтому при кровоизлияниях и заболеваниях этой области мозга возникают нарушения, характеризующиеся большим разнообразием, чем при повреждении какой-либо другой области ЦНС. Они могут проявиться развитием контралагеральной гемиплегии, потерей чувствительности на половине тела, потерей зрения на контралатеральной стороне (гемианопсия) и потерей слуха (гемигипоакузия).

Функции таламуса и последствия их нарушении

Таламус играет центральную роль в обработке сенсорной информации поступающей к . Все сенсорные сигналы соматической и других видов чувствительности, за исключением обоняния, проходят к коре через таламус. Как уже упоминалось, сенсорная информация направляется таламусом в кору по трем каналам : в строго специфичные сенсорные области — от специфических ядер, MKT, ЛKT; в ассоциативные области коры — от ассоциативных ядер и ко всей коре — от неспецифических ядер таламуса.

Таламус участвует в частичном восстановлении таких сенсорных ощущений, как болевые, температурные и грубое осязание, которые исчезают после повреждения сенсорной коры. При этом восстановление ощущения боли, сигналы которого передаются волокнами С-типа, проявляется ноющей, жгучей, нс адресованной к какой-либо части тела болью. Предполагают, что центром таких болевых ощущений является таламус, в то время как ощущение острой, хорошо локализованной боли, передаваемой волокнами А-типа, является соматосенсорная кора. Это болевое ощущение исчезает после повреждения или удаления данной области коры.

У больных с острыми нарушениями кровообращения в области таламуса могут развиться признаки таламического синдрома . Одним из его проявлений является потеря всех видов чувствительности на контралатеральной половине тела по отношению к стороне поврежденного таламуса. Однако через некоторое время грубые ощущения боли, осязания и температуры восстанавливаются.

Одной из важнейших функций таламуса является интеграция сенсорной и моторной деятельности . Ее основой является поступление в таламус не только сенсорных, но и сигналов из моторных областей мозжечка, базальных ганглиев, коры. Предполагается, что в вентральном латеральном ядре таламуса локализован треморогенный центр.

Таламус, в котором находится часть нейронов ретикулярной формации ствола мозга, играет центральную роль в поддержании сознания и внимания. При этом его роль в осуществлении реакций активации и пробуждения реализуется при участии холинергических, серотонинергических, норадренергических и гнетаминергических нейромедиаторных систем, которые начинаются в стволе мозга (ядро шва, голубоватое пятно), основании переднего мозга или гипоталамусе.

Через связи медиального таламуса с прсфронтальной корой таламус участвует в формировании аффективного поведения. Удаление префронтальной коры или ее связей с дорзомедальным ядром таламуса вызывает изменения личности, характеризующиеся потерей инициативы, вялостью аффективной реакции, индифферентностью к боли.

Через связи передних таламических и других ядер таламуса с гипоталамусом и лимбическими структурами мозга обеспечивается их участие в механизмах памяти, контроля висцеральных функций, эмоционального поведения. При заболеваниях таламуса могут развиться различные типы нарушений памяти от мягкой забывчивости с рассеянностью до выраженной амнезии.

Промежуточный мозг впроцессе эмбриогенеза развивается из переднего мозгового пузыря. Он образует стенки третьего мозгового желудочка. Промежуточный мозг расположен под мозолистым телом и состоит из таламусов, эпиталамуса, метаталамуса и гипоталамуса.

Таламусы (зрительные бугры) представляют собой скопление серого вещества, имеющего яйцевидную форму. Таламус является крупным подкорковым образованием, через которое в кору больших полушарий проходят разнообразные афферентные пути. Нервные клетки его группируются в большое количество ядер (до 40). Топографически последние разделяют на переднюю, заднюю, срединную, медиальную и латеральную группы. По функции таламические ядра можно дифференцировать на специфические, неспецифические, ассоциативные и моторные.

От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки 3-4 слоев коры. Функциональной основной единицей специфических таламических ядер являются «релейные» нейроны, которые имеют мало дендритов, длинный аксон и выполняют переключательную функцию. Здесь происходит переключение путей, идущих в кору от кожной, мышечной и других видов чувствительности. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности.

Неспецифические ядра таламуса связаны со многими участками коры и принимают участие в активизации ее деятельности, их относят к ретикулярной формации.

Ассоциативные ядра образованы мультиполярными, биполярными нейронами, аксоны которых идут в 1-ый и 2-ой слои, ассоциативных и частично проекционных областей, по пути отдавая в 4 и 5 слои коры, образуя ассоциативные контакты с пирамидными нейронами. Ассоциативные ядра связаны с ядрами полушарий головного мозга, гипоталамусом, средним и продолговатым мозгом. Ассоциативные ядра участвуют в высших интегративных процессах, однако их функции изучены еще недостаточно.

К моторным ядрам таламуса относится вентральное ядро, которое имеет вход от мозжечка и базальных ганглиев, и одновременно дает проекции в моторную зону коры больших полушарий. Это ядро включено в систему регуляции движений.

Таламус – структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору головного мозга от нейронов спинного мозга, среднего мозга, мозжечка. Возможность получить информацию о состоянии множества систем организма позволяет ему участвовать в регуляции и определять функциональное состояние организма в целом. Это подтверждается уже тем, что в таламусе около 120 разно функциональных ядер.

Функциональная значимость ядер таламуса определяется не только их проекцией на другие структуры мозга, но и тем, какие структуры посылают к нему свою информацию. В таламус приходят сигналы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепно-мозговых нервов, ствола, мозжечка, продолговатого и спинного мозга. В связи с этим таламус фактически является подкорковым чувствительным центром. Отростки нейронов таламуса направляются отчасти к ядрам полосатого тела конечного мозга (в связи с этим таламус рассматривается как чувствительный центр экстропирамидной системы), отчасти к коре большого мозга, образуя таламокортикальные пути.

Таким образом, таламус является подкорковым центром всех видов чувствительности, кроме обонятельного. К нему подходят и переключаются восходящие (афферентные) проводящие пути, по которым передается информация от различных рецепторов. От таламуса идут нервные волокна к коре большого мозга, составляя таламокортикальные пучки.

Гипоталамус – филогенетический старый отдел промежуточного мозга, который играет важную роль в поддержании постоянства внутренней среды и обеспечении интеграции функций вегетативной, эндокринной и соматической систем. Гипоталамус участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, серый бугор с воронкой и сосцевидное тело. Структуры гипоталамуса имеют различное происхождение. Из конечного мозга образуется зрительная часть (зрительный перекрест, зрительный тракт, серый бугор с воронкой, нейрогипофиз), а из промежуточного – обонятельная часть (сосцевидное тело и подбугорье).

Зрительный перекрест имеет вид поперечно лежащего валика, образованного волокнами зрительных нервов (II пара), частично переходящими на противоположную сторону. Этот валик с каждой стороны латерально и кзади продолжается в зрительный тракт, который проходит сзади от переднего продырявленного вещества, огибает ножку мозга с латеральной стороны и заканчивается двумя корешками в подкорковых центрах зрения. Более крупный латеральный корешок подходит к латеральному коленчатому телу, а более тонкий медиальный корешок направляется к верхнему холмику крыши среднего мозга.

К передней поверхности зрительного перекреста прилежит и срастается с ним относящаяся к конечному мозгу терминальная (пограничная, или конечная) пластинка. Она замыкает передний отдел продольной щели большого мозга и состоит из тонкого слоя серого вещества, которое в латеральных отделах пластинки продолжается в вещество лобных долей полушарий.

Зрительный перекрест (хиазма) – место в мозге, где встречаются и частично перекрещиваются зрительные нервы, идущие от правого и левого глаза.

Сзади от зрительного перекреста находится серый бугор, позади которого лежат сосцевидные тела, а по бокам – зрительные тракты. Книзу серый бугор переходит в воронку, которая соединяется с гипофизом. Стенки серого бугра образованы тонкой пластинкой серого вещества, содержащего серо-бугорные ядра. Со стороны полости III желудочка в область серого бугра и далее в воронку вдается суживающееся книзу, слепо заканчивающееся углубление воронки.

Сосцевидные тела расположены между серым бугром спереди и задним продырявленным веществом сзади. Они имеют вид двух небольших, диаметром около 0,5 см каждый, сферических образований белого цвета. Белое вещество расположено только снаружи сосцевидного тела. Внутри находится серое вещество, в котором выделяют медиальные и латеральные ядра сосцевидного тела. В сосцевидных телах заканчиваются столбы свода. По своей функции сосцевидные тела относятся к подкорковым обонятельным центрам.

Цитоархитектонически в гипоталамусе выделяются три области скопления ядер: передняя, средняя (медиальная) и задняя.

В передней области гипоталамуса находится супраоптическое ядро и паравентрикулярные ядра. Отростки клеток этих ядер образуют гипоталамо-гипофизарный пучок, заканчивающийся в задней доле гипофиза. Внейросекреторных клетках этих ядер вырабатываются вазопресин и окситоцин, которые поступают в заднюю долю гипофиза.

В средней области расположены дугообразные, серо-бугорные и другие поля, где вырабатываются рилизинг-факторы, либерины и статины, регулирующие деятельность аденогипофиза.

К ядрам задне й области относятся рассеянные крупные клетки, среди которых имеются скопления мелких клеток, а также ядра сосцевидного тела. Последние являются подкорковыми центрами обонятельных анализаторов.

В гипофизе залегают 32 пары ядер, которые являются звеньями экстропирамидной системы, а также ядра, относящиеся к подкорковым структурам лимбической системы.

Под III желудочком расположены сосцевидные тела, которые относятся к подкорковым обонятельным центрам, серый бугор и зрительный перекрест, образованный перекрестом зрительных нервов. В конце воронки расположен гипофиз. В сером бугре залегают ядра вегетативной нервной системы.

Гипофиз имеет обширные связи как со всеми отделами ЦНС, так и с периферическими эндокринными железами. Благодаря этим обширным многофункциональным связям гипоталамус выступает в качестве высшего подкоркового регулятора обмена веществ, температуры тела, мочеобразования, функции эндокринных желез.

Посредством нервных импульсов медиальная область гипоталамуса (медиобазальное ядро) управляет деятельностью задней доли гипофиза, а посредствам гормональных механизмов (рилизинг-факторов) – передней долей гипофиза. Под влиянием различных афферентных импульсов, поступающих в медиальный гипоталамус, последние начинают синтезировать рилизинг-гормоны, которые через систему крови (срединное возвышение) поступают в аденогипофиз. Они регулируют выработку различных тропных гормонов в передней доле гипофиза. Каждый либерин ответствен за синтез и высвобождение в гипофизе строго определенного тропного гормона. Тропный гормон из передней доли гипофиза поступает в кровь и регулирует синтез и поступление в кровь гормонов из периферических эндокринных желез. Отсюда, следует, что каждому тропному гормону соответствует строго определенная периферическая железа. Единственный соматотропный гормон (СТГ) не имеет периферической железы, он – белковый гормон, действующий непосредственно на ткани организма, образуя гормон – рецепторный комплекс на поверхности клеточных мембран. Гормональная регуляция заключается в том, что при понижении содержания в плазме крови гормонов периферических эндокринных желез или же при действии какого-то стрессора, при физических нагрузках медиальный гипофиз увеличивает выброс либеринов в кровь. Последние воздействуют на аденогипофиз и стимулируют выработку тропных гормонов. Если же содержание гормонов периферических эндокринных желез, напротив, повышено, то в медиальном гипоталамусе увеличивается образование и соответствующий выброс подавляющих гормонов (статинов), которые тормозят секрецию тропных гормонов и уменьшают их содержание в плазме крови. Такой механизм регуляции называется регуляцией по принципу отрицания обратной связи.

Гипоталамус и поведение.

Гипоталамус выполняет следующие функции:

    участвует в регуляции пищеварения, поведения, которое тесно связано с уменьшением содержания глюкозы в крови;

    обеспечивает терморегуляцию организма;

    участвует в регуляции осмотического давления;

    участвует в регуляции деятельности половых желез;

    участвует в формировании оборонительных реакций – оборонительного поведения и бегства.

Пищевое поведение сопровождается поиском пищи. При этом вегетативная реакция несколько иная – увеличивается слюноотделение, повышается моторика и кровоснабжение кишечника, уменьшается мышечный кровоток, так как повышается активность парасимпатической нервной системы.

В гипоталамусе имеются области, отвечающие за те или иные поведенческие реакции, которые перекрываются между собой. Морфологически выделяют области, которые четко отвечают строго определенным поведенческим реакциям. При нарушении боковых (латеральных) областей гипоталамуса, где расположены ядра голода и насыщения, возникает афагия (отказ от приема пищи) и гиперфагия (чрезмерное потребление пищи).

В гипоталамусе вырабатывается большое количество медиаторов: адреналин, нордадреналин – возбуждающие медиаторы, глицин, -аминомасляная кислота – тормозящие медиаторы.

Таким образом, гипоталамус занимает ведущее место в регуляции многих функций организма и прежде всего гомеостаза. Под его контролем находятся функции автономной нервной системы и эндокринных желез.

Эпиталамус . Эпиталамическая область расположена дорсально по отношению к каудальным отделам зрительного бугра и занимает относительно небольшой объем. В ее состав входит треугольник поводков, образованный как расширение каудальной части мозговых полосок таламуса и расположенных в его основании ядер поводков. Треугольники соединены комиссурой поводков, в глубине которой проходит задняя комиссура. На поводках – парных тяжах, начинающихся от треугольника, подвешено непарное шишковидное тело, или эпифиз – коническое образование длиной около 6 мм. В передней части он связан с обеими комиссурами и лежащим в задней стенке III желудочка субкомиссуральным органом.

Ядра поводков сформированы двумя клеточными группами – медиальными и латеральными ядрами. Афферентами медиального ядра являются волокна мозговых полосок, проводящие импульсацию от лимбических образований конечного мозга (области перегородок, гиппокампа, миндалины), а также от медиального ядра, бледного шара и гипоталамуса. Латеральное ядро получает входы от латеральной преоптической области, внутреннего сегмента бледного шара и медиального ядра. Эфференты медиального ядра, адресованные интерпедункулярному ядру среднего мозга, формируют отогнутый пучок. Эфференты латерального ядра поводков следуют в составе этого же пути, проходят межножковое ядро без переключений и адресуются компактной части черной субстанции, центральному серому веществу среднего мозга и ретикулярным ядрам среднего мозга.

Эпифиз находится посередине под утолщенной задней частью мозолистого тела и располагается в неглубокой борозде, отделяющей друг от друга верхние холмики крыши среднего мозга. Снаружи эпифиз покрыт соединительнотканной капсулой, содержащей большое количество кровеносных сосудов. От капсулы внутрь органа проникают соединительнотканные трабекулы, подразделяющие паренхиму эпифиза на дольки.

Эпифиз является железой внутренней секреции (пинеальная железа) и состоит из глиальных элементов и особых клеток пинеалоцитов. Он иннервируется ядрами поводков, к нему подходят также волокна мозговых полосок задней комиссуры и проекции верхнего шейного симпатического ганглия. Аксоны, входящие в железу, ветвятся среди пинеалоцитов, обеспечивая регуляцию их активности. К числу биологически активных веществ, вырабатываемых эпифизом, относятся мелатонин и вещества, играющие важную роль в регуляции процессов развития, в частности, полового созревания и деятельности надпочечников.

В шишковидном теле у взрослых людей, особенно в старческом возрасте, нередко встречаются причудливой формы отложения, которые придают эпифизу определенное сходство с еловой шишкой, чем и объясняется его название.

Метаталамус представлен латеральным и медиальным коленчатыми телами – парными образованиями. Они имеют продолговато-овальную форму и соединяется с холмиками крыши среднего мозга при помощи ручек верхнего и нижнего холмиков. Латеральное коленчатое тело находится возле нижнебоковой поверхности таламуса, сбоку от его подушки. Его легко можно обнаружить, следуя по ходу зрительного тракта, волокна которого направляются к латеральному коленчатому телу.

Несколько кнутри и сзади от латерального коленчатого тела, под подушкой, находится медиальное коленчатое тело, на клетках ядра которого заканчиваются волокна латеральной (слуховой) петли.

Метаталамус состоит из серого вещества.

Латеральное коленчатое тело, правое и левое, является подкорковым, первичным центром зрения. К нейронам его ядра подходят нервные волокна зрительного тракта (от сетчатки глаза). Аксоны этих нейронов идут в зрительную зону коры. Медиальные коленчатые тела являются подкорковыми первичными центрами слуха.

III желудочек представляет собой узкую вертикальную щель, которая служит продолжением водопровода вперед в область промежуточного мозга. По бокам своей передней части III желудочек сообщается правым и левым межжелудочковыми отверстиями с боковыми желудочками, лежащими внутри полушарий. Спереди III желудочек ограничен тонкой пластинкой серого вещества – конечной пластинкой, которая представляет собой самую переднюю часть первоначальной стенки мозга, оставшейся посередине между двумя сильно выросшими полушариями. Соединяя оба полушария конечного мозга, эта пластинка и сама принадлежит ему. Непосредственно над ней располагается соединительный пучок волокон, идущих из одного полушария в другое в поперечном направлении; эти волокна связывают участки полушарий, имеющие отношение к обонятельным нервам. Это – передняя комиссура. Ниже конечной пластинки полость III желудочка ограничена перекрестом зрительных нервов.

Боковые стенки III желудочка образованы медиальными сторонами зрительных бугров. На этих стенках проходит продольное углубление – подбугровая борозда. Назад она ведет к Сильвиеву водопроводу, вперед – к межжелудочковым отверстиям. Дно III желудочка построено из следующих образований (спереди назад): перекреста зрительных нервов, воронки, серого бугра, сосцевидных тел и заднего продырявленного пространства. Крышу образует эпендема, входящая в состав сосудистых сплетений III и бокового желудочков. Над ней расположен свод и мозолистое тело.

Каждый человек – это личность со своими привычками, пристрастиями и чертой характера. Однако мало кто подозревает о том, что все привычки, как и черты характера, являются особенностями строения и функционирования гипоталамуса – части головного мозга. Именно гипоталамус несет ответственность за все жизненные процессы человека.

Например, людей, которые рано встают и поздно ложатся спать, называют жаворонками. И эта особенность организма формируется благодаря работе гипоталамуса.

Несмотря на мизерный размер, эта часть мозга регулирует эмоциональное состояние человека и оказывает непосредственное влияние на деятельность эндокринной системы. Поэтому понять особенности человеческой души можно, если разобраться с функциями гипоталамуса и его строением, а также с тем, за какие процессы гипоталамус отвечает.

Что такое гипоталамус

Мозг человека состоит из множества частей, каждая из которых выполняет определенные функции. Гипоталамус вместе с таламусом являются отделом головного мозга. Несмотря на это, оба этих органа выполняют совершенно иные функции. Если в обязанности таламуса входит передача сигналов, поступающих от рецепторов, в кору головного мозга, гипоталамус, напротив, воздействует на рецепторы, находящиеся во внутренних органах, с помощью особых гормонов – нейропептидов.

Основная функция гипоталамуса заключается в управлении двумя системами организма – вегетативной и эндокринной. Правильное функционирование вегетативной системы позволяет человеку не задумываться над тем, когда ему нужно сделать вдох или выдох, когда нужно усилить кровоток в сосудах, а когда, наоборот, замедлить. То есть вегетативная нервная система управляет всеми автоматическими процессами в организме с помощью двух ветвей – симпатической и парасимпатической.

Если функции гипоталамуса по каким-либо причинам нарушаются, происходит сбой практически во всех системах организма.

Месторасположение гипоталамуса

Слово «гипоталамус» состоит из двух частей, одна из которых означает «под», а другая «таламус». Из этого следует, что гипоталамус находится в нижней части мозга под таламусом. От последнего он отделен гипоталамической бороздой. Данный орган тесно взаимодействует с гипофизом, составляя единую гипоталамо-гипофизарную систему.

Размер гипоталамуса у каждого конкретного человека может различаться. Однако он не превышает 3 см³, а его вес варьируется в пределах 5 г. Несмотря на мизерный размер, устройство органа достаточно сложное.

Следует заметить, что клетки гипоталамуса проникают в другие отделы головного мозга, поэтому четкие границы органа обозначить не представляется возможным. Гипоталамус представляет собой промежуточную часть мозга, которая помимо всего прочего образует стенки и дно 3 желудочка мозга. При этом передняя стенка 3 желудочка выступает в роли передней границы гипоталамуса. Граница задней стенки проходит от задней спайки свода головного мозга до мозолистого тела.

Нижняя часть гипоталамуса, находящаяся возле сосцевидного тела, состоит из следующих структур:

  • серого бугра;
  • сосцевидных тел;
  • воронки и других.

Всего насчитывается порядка 12 отделов. Воронка начинается от серого бугра, а так как ее средняя часть слегка возвышается, она получила название «срединное возвышение». Нижняя часть воронки связывает гипофиз и гипоталамус, выступая в роли ножки гипофиза.

В структуру гипоталамуса входят три отдельные зоны:

  • перивентрикулярная или околожелудочковая;
  • медиальная;
  • латеральная.

Особенности гипоталамических ядер

Внутренняя часть гипоталамуса состоит из ядер – групп нейронов, каждая из которых выполняет определенные функции. Ядра гипоталамуса представляют собой скопление тел нейронов (серого вещества) в проводящих путях. Количество ядер индивидуально и зависит от половой принадлежности человека. В среднем их количество превышает 30 штук.

Ядра гипоталамуса образуют три группы:

  • переднюю, которая располагается в одном из участков зрительного перекреста;
  • среднюю, располагающуюся в сером бугре;
  • заднюю, которая расположена в области сосцевидных тел.

Контроль над всеми жизненными процессами человека, его желаниями, инстинктами и поведением осуществляется особыми центрами, расположенными в ядрах. Например, при раздражении одного центра человек начинает ощущать голод либо чувство насыщения. Раздражение другого центра способно вызывать чувство радости или грусти.

Функции гипоталамических ядер

Передние ядра стимулируют работу парасимпатической нервной системы. Они осуществляют следующие функции:

  • сужают зрачки и глазные щели;
  • снижают частоту сердечных сокращений;
  • снижают уровень артериального давления;
  • усиливают моторику желудочно-кишечного тракта;
  • повышают выработку желудочного сока;
  • повышают восприимчивость клеток к инсулину;
  • оказывают влияние на половое развитие;
  • регулируют теплообменные процессы.

Задние ядра осуществляют регуляцию симпатической нервной системы и выполняют следующие функции:

  • расширяю зрачки и глазные щели;
  • увеличивают частоту сердечных сокращений;
  • повышают давление крови в сосудах;
  • снижают моторику желудочно-кишечного тракта;
  • увеличивают концентрацию в крови ;
  • тормозят половое развитие;
  • снижают восприимчивость клеток тканей к инсулину;
  • повышают устойчивость к физическим нагрузкам.

Средняя группа гипоталамических ядер регулирует обменные процессы и воздействует на пищевое поведение.

Функции гипоталамуса

Организм человека, впрочем, как и любого другого живого существа, способен сохранять определенное равновесие даже под действием внешних раздражителей. Такая способность помогает существам выживать. А называется она гомеостазом. Поддержкой гомеостаза занимаются нервная и эндокринная системы, функции которых регулируются гипоталамусом. Благодаря слаженной работе гипоталамуса человек наделен способностью не только выживать, но и воспроизводить потомство.

Особую роль играет гипоталамо-гипофизарная система, в которой гипоталамус связан с гипофизом. Вместе они составляют единую гипоталамо-гипофизарную систему, где гипоталамус выполняет командующую роль, посылая гипофизу сигналы к действию. При этом сам гипофиз принимает сигналы, поступающие из нервной системы, и посылает их к органам и тканям. Причем влияние на них оказывается с помощью гормонов, воздействующих на органы-мишени.

Виды гормонов

Все гормоны, вырабатываемые гипоталамусом, имеют белковую структуру и делятся на два вида:

  • рилизинг-гормоны, к числу которых относятся статины и либерины;
  • гормоны задней доли гипофиза.

Выработка рилизинг-гормонов осуществляется при изменении активности гипофиза. При снижении активности гипоталамус производит гормоны-либерины, призванные компенсировать гормональную недостаточность. Если же гипофиз, напротив, вырабатывает чрезмерное количество гормонов, гипоталамус вбрасывает в кровь статины, которые угнетают синтез гормонов гипофиза.

К либеринам относятся следующие вещества:

  • гонадолиберины;
  • соматолиберин;
  • пролактолиберин;
  • тиролиберин;
  • меланолиберин;
  • кортиколиберин.

В перечень статинов входит следующее:

  • соматостатин;
  • меланостатин;
  • пролактостатин.

Среди других гормонов, вырабатываемых нейроэндокринным регулятором, можно отметить окситоцин, орексин и нейротензин. Эти гормоны через портальную сеть попадают в заднюю долю гипофиза, где происходит их накопление. По мере необходимости гипофиз осуществляет выброс гормонов в кровь. Например, когда молодая мама кормит малыша, ей требуется окситоцин, который воздействуя на рецепторы, помогает проталкивать молоко.

Патологии гипоталамуса

В зависимости от особенностей синтеза гормонов, все заболевания гипоталамуса делятся на три группы:

  • в первую группу входят заболевания, характеризующиеся повышенной выработкой гормонов;
  • во вторую группу входят заболевания, характеризующиеся пониженной выработкой гормонов;
  • третью группу составляют патологии, при которых синтез гормонов не нарушается.

Учитывая тесное взаимодействие двух участков мозга -гипоталамус, а также общность кровоснабжения и особенности анатомического строения, некоторые их патологии объединены в общую группу.

Наиболее частой патологией является аденома, которая может формироваться как в гипоталамусе, так и в гипофизе. Аденома – это доброкачественное образование, которое состоит из железистой ткани и самостоятельно продуцирует гормоны.

Чаще всего в данных участках головного мозга формируются опухоли, продуцирующие соматотропин, тиреотропин и кортикотропин. Для женщин наиболее характерной является пролактинома – опухоль, продуцирующая пролактин – гормон, отвечающий за выработку грудного молока.

Еще одним заболевание, которое нередко нарушает функции гипоталамуса и гипофиза, является . Развитие этой патологии не только нарушает баланс гормонов, но и вызывает сбой в работе вегетативной нервной системы.

Негативным влиянием на гипоталамус могут обладать различные факторы, как внутренние, так и внешние. Кроме опухоли, в этих частях мозга могут возникать воспалительные процессы, вызванные попаданием в организм вирусных и бактериальных инфекций. Патологические процессы также могут развиваться вследствие ушибов и инсультов.

Заключение

  • так как гипоталамус регулирует цикардные ритмы, очень важно соблюдать режим дня, ложась спать и вставая в одно и то же время;
  • улучшить кровообращение во всех отделах мозга и насытить их кислородом помогают прогулки на свежем воздухе и занятия спортом;
  • нормализовать выработку гормонов и улучшить деятельность вегетативной нервной системы помогает отказ от курения и алкоголя;
  • употребление яиц, жирной рыбы, морской капусты, грецких орехов, овощей и сухофруктов обеспечит поступление в организм питательных веществ и витаминов, необходимых для нормальной функции гипоталамо-гипофизарной системы.

Разобравшись с тем, что такое гипоталамус, и какое воздействие этот участок мозга оказывает на жизнедеятельность человека, следует помнить, что его повреждение приводит к развитию серьезных заболеваний, которые нередко заканчиваются летальным исходом. Поэтому необходимо следить за своим здоровьем и при появлении первых недомоганий обращаться к врачу.

Как и любой другой орган мозга, таламус имеет крайне важную и незаменимую функцию для организма. Трудно представить, но этот сравнительно маленький орган несет ответственность за все психические функции: восприятие и понимание, память и мышление, ведь благодаря ему мы видим, понимаем, ощущаем мир и воспринимаем все, что нас окружает. Благодаря его работе мы ориентируемся в пространстве и во времени, чувствуем боль, этот «коллектор чувствительности» воспринимаем и перерабатывает информацию, полученную от всех рецепторов, кроме обоняния и передает необходимый сигнал в нужный отдел коры головного мозга. В итоге организм дает правильную реакцию, проявляет правильные модели поведения на соответствующий раздражитель или сигнал.

Общие сведения

Промежуточный мозг расположен под мозолистым телом и состоит из: таламуса (таламического мозга) и гипоталамуса.

Таламус (он же: зрительный бугор, коллектор чувствительности, информатор организма) – это отдел промежуточного мозга, находящийся в его верхней части, над стволом мозга. Сюда стекаются сенсорные сигналы, импульсы из самых разных частей организма и от всех рецепторов (кроме обоняния). Тут они перерабатываются, орган оценивает, насколько важны приходящие импульсы для человека и отправляет информацию дальше в ЦНС (центральная нервная система) или к коре головного мозга. Этот кропотливый и жизненно важный процесс происходит благодаря составляющим таламуса – 120 разнофункциональным ядрам, которые несут ответственность за принятие сигналов, импульсов и за отправку переработанной информации в соответствующий .

Благодаря сложной структуре, «зрительный бугор» способен не только принимать и перерабатывать сигналы, но и анализировать их.

Готовая информация о состоянии организма и его проблемах поступает к коре головного мозга, которая, в свою очередь, разрабатывает стратегию решения и устранения проблемы, стратегию дальнейших действий и поведения.

Строение

Таламус - парное яйцевидное образование, состоящее из нервных клеток, которые объединяются в ядра, благодаря которым и происходит восприятия и обработка сигналов и импульсов, идущих от разных органов чувств. Таламус занимает основную часть промежуточного мозга (приблизительно 80%). Состоит из 120 разнофункциональных ядер серого вещества. По форме он напоминает небольшое куриное яйцо.

Исходя из строения и расположения отдельных частей, таламический мозг можно разделить на: метаталамус, эпиталамус и субталамус.

Метаталамус (подкорковый слуховой и зрительный центр) - состоит из медиальных и латеральных коленчатых тел. В ядро медиального коленчатого тела заканчивается слуховая петля, а в латеральную – зрительные тракты.

Медиальные коленчатые тела составляют слуховой центр. В медиальной части метаталамуса из подкоркового слухового центра аксоны клеток направляются к корковому концу слухового анализатора (верхняя височная извилина). Дисфункция этой части метаталамуса может привести к снижению слуха или к глухоте.

Латеральные коленчатые тела составляют подкорковый зрительный центр. Тут заканчиваются зрительные тракты. Аксоны клеток, формируют зрительную лучистость, по которой зрительные импульсы достигают коркового конца зрительного анализатора (затылочная доля). Дисфункция этого центра может привести к проблемам со зрением, а серьезные поражения – к слепоте.

Эпиталамус (надталамус) – верхняя задняя часть таламуса, которая возвышается над ним: включает эпифиз, который является надмозговой железой внутренней секреции (шишковидное тело). Эпифиз находится в подвешенном состоянии, так как расположен на поводках. Он отвечает за выработку гормонов: днем он вырабатывает гормон серотонин (гормон радости), а ночью – мелатонин (регулятор режима дня и гормон ответственный за цвет кожи и глаз). Эпиталамус играет роль в регуляции жизненных циклов, регулирует период наступления полового созревания, режимы сна и бодрствования, тормозит процессы старения.

Поражения эпиталамуса приводят к нарушению жизненных циклов, в том числе к бессоннице, а также к половым дисфункциям.

Субталамус (подталамус) или преталамус является мозговым веществом маленького объема. Состоит в основном из субталамического ядра и имеет соединения с бледным шаром. Субталамус контролирует мышечные ответы и отвечает за выбор действия. Поражение субталамуса приводят к двигательным нарушениям, тремору, параличу.

Кроме всего перечисленного, таламус имеет связи со спинным мозгом, с гипоталамусом, подкорковыми ядрами и, естественно, с корой головного мозга.

Каждый отдел этого уникального органа несет определенную функцию и отвечает за жизненно важные процессы, без которых нормальное функционирование организма невозможно.

Функции таламуса

«Коллектор чувствительности» получает, фильтрует, перерабатывает, интегрирует и направляет в мозг информацию, которая поступает от всех рецепторов (кроме обоняния). Можно сказать, что в его центрах происходит формирование восприятия, ощущения, понимания, после чего обработанная информация или сигнал поступают в кору больших полушарий.

Главными функциями органа являются:

  • переработка информации получаемой от всех органов (рецепторы зрения, слуха, вкуса и осязания) чувств (кроме обоняния);
  • управление эмоциональными реакциями;
  • регулирование непроизвольной двигательной активности и мышечного тонуса;
  • поддерживание определенного уровня активности и возбудимости головного мозга, что необходимо для восприятия информации, сигналов, импульсов и раздражений исходящих извне, из окружающей среды;
  • отвечает за интенсивность и чувство боли.

Как мы уже говорили, каждая доля таламуса состоит из 120 ядер, которые исходя из функциональности, можно разделить на 4 основные группы:

  • латеральную (боковые);
  • медиальную (срединные);
  • ассоциативную.

Ретикулярная группа ядер (отвечает за равновесие) – отвечает за обеспечение равновесия при ходьбе и баланса в организме.

Латеральная группа (центр зрения) – отвечает за зрительное восприятие, принимает и передает импульсы в теменную, затылочную часть коры головного мозга – зрительной зоне.

Медиальная группа (центр слуха) - отвечает за слуховое восприятие, принимает и передает импульсы в височную часть коры — слуховой зоне.

Ассоциативная группа (тактильные ощущения) - принимает и передает в кору головного мозга тактильную информацию, то есть сигналы, исходящие от рецепторов кожных покровов и слизистых оболочек: болевые ощущения, зуд, удар, прикосновение, раздражение и т.д.

Также, с функциональной точки зрения, ядра можно разделить на: специфические и неспецифические.

К специфическим ядрам поступают сигналы от всех рецепторов (кроме обоняния). Они обеспечивают эмоциональную реакцию человека и отвечают за возникновение болевых ощущений.

Специфические ядра, в свою очередь, бывают:

  • внешние - получают импульсы от соответствующих рецепторов и отправляют информацию в конкретные зоны коры. Благодаря этим импульсам возникают чувства и ощущения;
  • внутренние - не имеют прямых связей с рецепторами. Получают информацию уже переработанной со стороны релейных ядер. От них импульсы идут в кору головного мозга в ассоциативные зоны. Благодаря этим импульсам возникают примитивные ощущения и обеспечивается взаимосвязь между сенсорными зонами и корой больших полушарий.

Неспецифические ядра поддерживают общую активность коры головного мозга, посылая неконкретные импульсы и стимулируя мозговую активность. Не имея прямой связи с корой, неспецифические ядра таламуса передают свои сигналы в подкорковые структуры.

Отдельно о зрительном бугре

Ранее считалось, что таламус обрабатывает только зрительные импульсы, тогда орган и получил название — зрительные бугры. Сейчас это название считается устаревшим, так как орган обрабатывает практически весь спектр афферентных систем (кроме обоняния).

Система, которая обеспечивает зрительное восприятие – одна из самых интересных. Основной внешний орган зрения – глаз – рецептор, который имеет сетчатку и оснащен особенными клетками (колбочки, палочки), которые трансформируют световой пучок и электрический сигнал. Электрический сигнал, в свою очередь, проходя по нервным клеткам, попадает в латеральный центр таламуса, который отправляет обработанный сигнал в центральный отдел коры головного мозга. Тут происходит окончательный анализ сигнала, благодаря чему формируется увиденное, то есть – картинка.

Чем опасны дисфункции зон таламуса

У таламуса сложная и налаженная структура, поэтому, если возникают сбои или проблемы в работе даже отдельно взятой зоны органа – это приводит к разным последствиям, влияя на отдельные функции организма и даже на весь организм в целом.

Прежде чем попасть в соответствующий центр коры, сигналы с рецепторов поступают в таламус, а точнее, в его определенную часть. Если определенные ядра таламуса повреждены, то импульс не обрабатывается, не доходит до коры или доходит в необработанной форме, следовательно, кора головного мозга и весь организм не получают нужную информацию.

Клинические проявления дисфункций таламуса зависят от конкретной зоны поражения и могут проявляться: проблемами с памятью, вниманием, пониманием, потерей ориентации в пространстве и во времени, нарушениями двигательной системы, проблемами со зрением, слухом, бессонницей, психическими расстройствами.

Одним из проявлений дисфункций органа может быть специфическая амнезия, которая ведет к частичной потере памяти. В этом случае, человек забывает события, произошедшие после повреждения или поражения соответствующей зоны органа.

Еще одно редкое заболевание, затрагивающее таламус – фатальная бессонница, которая может распространяться на нескольких представителей одной семьи. Болезнь возникает по причине мутации соответствующей зоны таламуса, которая отвечает за регулирование процессов сна и бодрствования. Из-за мутации происходит сбой в правильной работе соответствующего участка, и человек перестает спать.

Таламус – также является центр болевой чувствительности. При поражении соответствующих ядер таламуса возникает невыносимая боль либо, наоборот, полная потеря чувствительности.

Таламус, да и мозг в целом продолжают оставаться не до конца изученными структурами. И дальнейшие исследования сулят большие научные открытия и помощь в познании этого жизненно важного и сложного органа.