Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.

В математике существуют специальные приемы, с которыми многие квадратные уравнения решаются очень быстро и без всяких дискриминантов. Более того, при надлежащей тренировке многие начинают решать квадратные уравнения устно, буквально «с первого взгляда».

К сожалению, в современном курсе школьной математики подобные технологии почти не изучаются. А знать надо! И сегодня мы рассмотрим один из таких приемов - теорему Виета. Для начала введем новое определение.

Квадратное уравнение вида x 2 + bx + c = 0 называется приведенным. Обратите внимание: коэффициент при x 2 равен 1. Никаких других ограничений на коэффициенты не накладывается.

  1. x 2 + 7x + 12 = 0 - это приведенное квадратное уравнение;
  2. x 2 − 5x + 6 = 0 - тоже приведенное;
  3. 2x 2 − 6x + 8 = 0 - а вот это нифига не приведенное, поскольку коэффициент при x 2 равен 2.

Разумеется, любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведенным - достаточно разделить все коэффициенты на число a . Мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.

Правда, далеко не всегда эти преобразования будут полезны для отыскания корней. Чуть ниже мы убедимся, что делать это надо лишь тогда, когда в итоговом приведенном квадратом уравнении все коэффициенты будут целочисленными. А пока рассмотрим простейшие примеры:

Задача. Преобразовать квадратное уравнение в приведенное:

  1. 3x 2 − 12x + 18 = 0;
  2. −4x 2 + 32x + 16 = 0;
  3. 1,5x 2 + 7,5x + 3 = 0;
  4. 2x 2 + 7x − 11 = 0.

Разделим каждое уравнение на коэффициент при переменной x 2 . Получим:

  1. 3x 2 − 12x + 18 = 0 ⇒ x 2 − 4x + 6 = 0 - разделили все на 3;
  2. −4x 2 + 32x + 16 = 0 ⇒ x 2 − 8x − 4 = 0 - разделили на −4;
  3. 1,5x 2 + 7,5x + 3 = 0 ⇒ x 2 + 5x + 2 = 0 - разделили на 1,5, все коэффициенты стали целочисленными;
  4. 2x 2 + 7x − 11 = 0 ⇒ x 2 + 3,5x − 5,5 = 0 - разделили на 2. При этом возникли дробные коэффициенты.

Как видите, приведенные квадратные уравнения могут иметь целые коэффициенты даже в том случае, когда исходное уравнение содержало дроби.

Теперь сформулируем основную теорему, для которой, собственно, и вводилось понятие приведенного квадратного уравнения:

Теорема Виета. Рассмотрим приведенное квадратное уравнение вида x 2 + bx + c = 0. Предположим, что это уравнение имеет действительные корни x 1 и x 2 . В этом случае верны следующие утверждения:

  1. x 1 + x 2 = −b . Другими словами, сумма корней приведенного квадратного уравнения равна коэффициенту при переменной x , взятому с противоположным знаком;
  2. x 1 · x 2 = c . Произведение корней квадратного уравнения равно свободному коэффициенту.

Примеры. Для простоты будем рассматривать только приведенные квадратные уравнения, не требующие дополнительных преобразований:

  1. x 2 − 9x + 20 = 0 ⇒ x 1 + x 2 = − (−9) = 9; x 1 · x 2 = 20; корни: x 1 = 4; x 2 = 5;
  2. x 2 + 2x − 15 = 0 ⇒ x 1 + x 2 = −2; x 1 · x 2 = −15; корни: x 1 = 3; x 2 = −5;
  3. x 2 + 5x + 4 = 0 ⇒ x 1 + x 2 = −5; x 1 · x 2 = 4; корни: x 1 = −1; x 2 = −4.

Теорема Виета дает нам дополнительную информацию о корнях квадратного уравнения. На первый взгляд это может показаться сложным, но даже при минимальной тренировке вы научитесь «видеть» корни и буквально угадывать их за считанные секунды.

Задача. Решите квадратное уравнение:

  1. x 2 − 9x + 14 = 0;
  2. x 2 − 12x + 27 = 0;
  3. 3x 2 + 33x + 30 = 0;
  4. −7x 2 + 77x − 210 = 0.

Попробуем выписать коэффициенты по теореме Виета и «угадать» корни:

  1. x 2 − 9x + 14 = 0 - это приведенное квадратное уравнение.
    По теореме Виета имеем: x 1 + x 2 = −(−9) = 9; x 1 · x 2 = 14. Несложно заметить, что корни - числа 2 и 7;
  2. x 2 − 12x + 27 = 0 - тоже приведенное.
    По теореме Виета: x 1 + x 2 = −(−12) = 12; x 1 · x 2 = 27. Отсюда корни: 3 и 9;
  3. 3x 2 + 33x + 30 = 0 - это уравнение не является приведенным. Но мы это сейчас исправим, разделив обе стороны уравнения на коэффициент a = 3. Получим: x 2 + 11x + 10 = 0.
    Решаем по теореме Виета: x 1 + x 2 = −11; x 1 · x 2 = 10 ⇒ корни: −10 и −1;
  4. −7x 2 + 77x − 210 = 0 - снова коэффициент при x 2 не равен 1, т.е. уравнение не приведенное. Делим все на число a = −7. Получим: x 2 − 11x + 30 = 0.
    По теореме Виета: x 1 + x 2 = −(−11) = 11; x 1 · x 2 = 30; из этих уравнений легко угадать корни: 5 и 6.

Из приведенных рассуждений видно, как теорема Виета упрощает решение квадратных уравнений. Никаких сложных вычислений, никаких арифметических корней и дробей. И даже дискриминант (см. урок «Решение квадратных уравнений ») нам не потребовался.

Разумеется, во всех размышлениях мы исходили из двух важных предположений, которые, вообще говоря, не всегда выполняются в реальных задачах:

  1. Квадратное уравнение является приведенным, т.е. коэффициент при x 2 равен 1;
  2. Уравнение имеет два различных корня. С точки зрения алгебры, в этом случае дискриминант D > 0 - по сути, мы изначально предполагаем, что это неравенство верно.

Однако в типичных математических задачах эти условия выполняются. Если же в результате вычислений получилось «плохое» квадратное уравнение (коэффициент при x 2 отличен от 1), это легко исправить - взгляните на примеры в самом начале урока. Про корни вообще молчу: что это за задача, в которой нет ответа? Конечно, корни будут.

Таким образом, общая схема решения квадратных уравнений по теореме Виета выглядит следующим образом:

  1. Свести квадратное уравнение к приведенному, если это еще не сделано в условии задачи;
  2. Если коэффициенты в приведенном квадратном уравнении получились дробными, решаем через дискриминант. Можно даже вернуться к исходному уравнению, чтобы работать с более «удобными» числами;
  3. В случае с целочисленными коэффициентами решаем уравнение по теореме Виета;
  4. Если в течение нескольких секунд не получилось угадать корни, забиваем на теорему Виета и решаем через дискриминант.

Задача. Решите уравнение: 5x 2 − 35x + 50 = 0.

Итак, перед нами уравнение, которое не является приведенным, т.к. коэффициент a = 5. Разделим все на 5, получим: x 2 − 7x + 10 = 0.

Все коэффициенты квадратного уравнения целочисленные - попробуем решить по теореме Виета. Имеем: x 1 + x 2 = −(−7) = 7; x 1 · x 2 = 10. В данном случае корни угадываются легко - это 2 и 5. Считать через дискриминант не надо.

Задача. Решите уравнение: −5x 2 + 8x − 2,4 = 0.

Смотрим: −5x 2 + 8x − 2,4 = 0 - это уравнение не является приведенным, разделим обе стороны на коэффициент a = −5. Получим: x 2 − 1,6x + 0,48 = 0 - уравнение с дробными коэффициентами.

Лучше вернуться к исходному уравнению и считать через дискриминант: −5x 2 + 8x − 2,4 = 0 ⇒ D = 8 2 − 4 · (−5) · (−2,4) = 16 ⇒ ... ⇒ x 1 = 1,2; x 2 = 0,4.

Задача. Решите уравнение: 2x 2 + 10x − 600 = 0.

Для начала разделим все на коэффициент a = 2. Получится уравнение x 2 + 5x − 300 = 0.

Это приведенное уравнение, по теореме Виета имеем: x 1 + x 2 = −5; x 1 · x 2 = −300. Угадать корни квадратного уравнения в данном случае затруднительно - лично я серьезно «завис», когда решал эту задачу.

Придется искать корни через дискриминант: D = 5 2 − 4 · 1 · (−300) = 1225 = 35 2 . Если вы не помните корень из дискриминанта, просто отмечу, что 1225: 25 = 49. Следовательно, 1225 = 25 · 49 = 5 2 · 7 2 = 35 2 .

Теперь, когда корень из дискриминанта известен, решить уравнение не составит труда. Получим: x 1 = 15; x 2 = −20.

Любое полное квадратное уравнение ax 2 + bx + c = 0 можно привести к виду x 2 + (b/a)x + (c/a) = 0 , если предварительно разделить каждое слагаемое на коэффициент a перед x 2 . А если ввести новые обозначения (b/a) = p и (c/a) = q , то будем иметь уравнение x 2 + px + q = 0 , которое в математике называется приведенным квадратным уравнением .

Корни приведенного квадратного уравнения и коэффициенты p и q связаны между собой. Это подтверждается теоремой Виета , названной так в честь французского математика Франсуа Виета, жившего в конце XVI века.

Теорема . Сумма корней приведенного квадратного уравнения x 2 + px + q = 0 равна второму коэффициенту p , взятому с противоположным знаком, а произведение корней – свободному члену q .

Запишем данные соотношения в следующем виде:

Пусть x 1 и x 2 различные корни приведенного уравнения x 2 + px + q = 0 . Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q .

Для доказательства подставим каждый из корней x 1 и x 2 в уравнение. Получаем два верных равенства:

x 1 2 + px 1 + q = 0

x 2 2 + px 2 + q = 0

Вычтем из первого равенства второе. Получим:

x 1 2 – x 2 2 + p(x 1 – x 2) = 0

Первые два слагаемых раскладываем по формуле разности квадратов:

(x 1 – x 2)(x 1 – x 2) + p(x 1 – x 2) = 0

По условию корни x 1 и x 2 различные. Поэтому мы можем сократить равенство на (x 1 – x 2) ≠ 0 и выразить p.

(x 1 + x 2) + p = 0;

(x 1 + x 2) = -p.

Первое равенство доказано.

Для доказательства второго равенства подставим в первое уравнение

x 1 2 + px 1 + q = 0 вместо коэффициента p равное ему число – (x 1 + x 2):

x 1 2 – (x 1 + x 2) x 1 + q = 0

Преобразовав левую часть уравнения, получаем:

x 1 2 – x 2 2 – x 1 x 2 + q = 0;

x 1 x 2 = q, что и требовалось доказать.

Теорема Виета хороша тем, что, даже не зная корней квадратного уравнения, мы можем вычислить их сумму и произведение .

Теорема Виета помогает определять целые корни приведенного квадратного уравнения. Но у многих учащихся это вызывает затруднения из-за того, что они не знают четкого алгоритма действия, особенно если корни уравнения имеют разные знаки.

Итак, приведенное квадратное уравнение имеет вид x 2 + px + q = 0, где x 1 и x 2 его корни. Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q.

Можно сделать следующий вывод .

Если в уравнении перед последним членом стоит знак «минус», то корни x 1 и x 2 имеют различные знаки. Кроме того, знак меньшего корня совпадает со знаком второго коэффициента в уравнении.

Исходя из того, что при сложении чисел с разными знаками их модули вычитаются, а перед полученным результатом ставится знак большего по модулю числа, следует действовать следующим образом:

  1. определить такие множители числа q, чтобы их разность была равна числу p;
  2. поставить перед меньшим из полученных чисел знак второго коэффициента уравнения; второй корень будет иметь противоположный знак.

Рассмотрим некоторые примеры.

Пример 1 .

Решить уравнение x 2 – 2x – 15 = 0.

Решение .

Попробуем решить данное уравнение с помощью предложенных выше правил. Тогда можно точно сказать, что данное уравнение будет иметь два различных корня, т.к. D = b 2 – 4ac= 4 – 4 · (-15) = 64 > 0.

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Это будут числа 3 и 5. Перед меньшим числом ставим знак «минус», т.е. знак второго коэффициента уравнения. Таким образом, получим корни уравнения x 1 = -3 и x 2 = 5.

Ответ. x 1 = -3 и x 2 = 5.

Пример 2 .

Решить уравнение x 2 + 5x – 6 = 0.

Решение .

Проверим, имеет ли данное уравнение корни. Для этого найдем дискриминант:

D = b 2 – 4ac= 25 + 24 = 49 > 0. Уравнение имеет два различных корня.

Возможные множители числа 6 - это 2 и 3, 6 и 1. Разность равна 5 у пары 6 и 1. В этом примере коэффициент второго слагаемого имеет знак «плюс», поэтому и меньшее число будет иметь такой же знак. А вот перед вторым числом будет стоять знак «минус».

Ответ: x 1 = -6 и x 2 = 1.

Теорему Виета можно записать и для полного квадратного уравнения. Так, если квадратное уравнение ax 2 + bx + c = 0 имеет корни x 1 и x 2 , то для них выполняются равенства

x 1 + x 2 = -(b/a) и x 1 · x 2 = (c/a) . Однако применение этой теоремы в полном квадратном уравнении довольно проблематично, т.к. при наличии корней, хотя бы один из них является дробным числом. А работать с подбором дробей достаточно трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение ax 2 + bx + c = 0. Умножим его левую и правую части на коэффициент a. Уравнение примет вид (ax) 2 + b(ax) + ac = 0. Теперь введем новую переменную, например t = ax.

В этом случае полученное уравнение превратиться в приведенное квадратное уравнение вида t 2 + bt + ac = 0, корни которого t 1 и t 2 (при их наличии) могут быть определены по теореме Виета.

В этом случае корни исходного квадратного уравнения будут

x 1 = (t 1 / a) и x 2 = (t 2 / a).

Пример 3 .

Решить уравнение 15x 2 – 11x + 2 = 0.

Решение .

Составляем вспомогательное уравнение. Умножим каждое слагаемое уравнения на 15:

15 2 x 2 – 11 · 15x + 15 · 2 = 0.

Делаем замену t = 15x. Имеем:

t 2 – 11t + 30 = 0.

По теореме Виета корнями данного уравнения будут t 1 = 5 и t 2 = 6.

Возвращаемся к замене t = 15x:

5 = 15x или 6 = 15x. Таким образом, x 1 = 5/15 и x 2 = 6/15. Сокращаем и получаем окончательный ответ: x 1 = 1/3 и x 2 = 2/5.

Ответ. x 1 = 1/3 и x 2 = 2/5.

Чтобы освоить решение квадратных уравнений с помощью теоремы Виета, учащимся необходимо как можно больше тренироваться. Именно в этом и заключается секрет успеха.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При изучении способов решения уравнений второго порядка в школьном курсе алгебры, рассматривают свойства полученных корней. Они в настоящее время известны под названием теоремы Виета. Примеры использования ее приводятся в данной статье.

Квадратное уравнение

Уравнение второго порядка представляет собой равенство, которое показано на фото ниже.

Здесь символы a, b, c являются некоторыми числами, носящими название коэффициентов рассматриваемого уравнения. Чтобы решить равенство, необходимо найти такие значения x, которые делают его истинным.

Заметим, что поскольку максимальное значение степени, в которую возводится икс, равно двум, тогда число корней в общем случае также равно двум.

Для решения этого типа равенств существует несколько способов. В данной статье рассмотрим один из них, который предполагает использование так называемой теоремы Виета.

Формулировка теоремы Виета

В конце XVI известный математик Франсуа Виет (француз) заметил, анализируя свойства корней различных квадратных уравнений, что определенные их комбинации удовлетворяют конкретным соотношениям. В частности, этими комбинациями является их произведение и сумма.

Теорема Виета устанавливает следующее: корни квадратного уравнения при их сумме дают отношение коэффициентов линейного к квадратичному взятое с обратным знаком, а при их произведении приводят к отношению свободного члена к квадратичному коэффициенту.

Если общий вид уравнения записан так, как это представлено на фото в предыдущем разделе статьи, тогда математически эту теорему можно записать в виде двух равенств:

  • r 2 + r 1 = -b / a;
  • r 1 х r 2 = c / a.

Где r 1 , r 2 - это значение корней рассматриваемого уравнения.

Приведенные два равенства можно использовать для решения ряда самых разных математических задач. Использование теоремы Виета в примерах с решением приведены в следующих разделах статьи.