Рассмотрим структуру радиосвязи (рис. 2.15).

Микрофон (М) преобразует звуковые колебания речи в электрические колебания тока звуковой (низкой) частоты. Одним из основных блоков радиопередатчика является задающий генератор (ЗГ) (или генератор высокой частоты), преобразующий энергию постоянного тока (специального источника питания) в энергию колебания токов высокой частоты (ВЧ). Усиленный в усилителе низкой частоты (УНЧ) ток звуковой частоты поступает на модулятор (Мод), воздействуя на один из параметров (амплитуду, частоту или фазу) тока высокой частоты. Вырабатываемого задающим генератором. В результате в антенну передатчика подаются токи высокой частоты (радиочастоты), изменяющиеся по амплитуде, частоте или фазе в соответствии с передаваемыми звуковыми колебаниями (передаваемыми первоначальным сообщением). Процесс воздействия на один из параметров ВЧ-сигнала по закону изменения передаваемого первоначального сообщения называется модуляцией , соответственно амплитудной, частотной или фазовой.

Рисунок 2.15 – Структурная схема радиосвязи

Токи высокой частоты, проходя по антенне передатчика, образуют вокруг нее электромагнитное поле. Электромагнитные волны (радиоволны) отделяются от антенны и распространяются в пространстве со скоростью 300000 км/с.

В приемной антенне радиоволнами (электромагнитным полем) наводится ЭДС радиочастоты, создающая модулированный ток ВЧ, который в точности повторяет все изменения тока в передающей антенне. Токи высокой частоты от приемной антенны по фидерной линии передаются на избирательный усилитель высокой частоты (УВЧ). Избирательность обеспечивается резонансным контуром, чаще всего состоящим из параллельно включенных катушки индуктивности и конденсатора, образующих параллельный колебательный контур, имеющий резонанс тока на частоте электромагнитных колебаний, передаваемых передатчиком. К передатчикам радиостанций, работающих на других частотах, данный радиоприемник практически не чувствителен.

Усиленный сигнал подается на детектор (Дет), преобразующий принятые сигналы ВЧ в токи звуковых колебаний, изменяющиеся подобно токам звуковой частоты, создаваемым микрофоном на передающем пункте. Такое преобразование называется детектированием (демодуляцией). Полученный после детектирования ток звуковой или низкой частоты (НЧ) обычно еще усиливается в УНЧ и передается на громкоговоритель (динамик или наушники), который преобразует этот ток НЧ в звуковые колебания.

Радиосвязь бывает одно- и двухсторонней. При односторонней радиосвязи одна из радиостанций осуществляет только передачу, а другая (или другие) – только прием. При двухсторонней радиосвязи радиостанции осуществляют одновременно передачу и прием.

Симплексная радиосвязь – это двухсторонняя радиосвязь, при которой каждый абонент ведет только передачу или только прием поочередно, выключая свой передатчик на время приема (рис. 2.16). Для симплексной связи достаточно одной радиочастоты (одночастотная симплексная радиосвязь). Каждая радиостанция имеет одну антенну, которая при приеме и передаче переключается соответственно на вход радиоприемника или на вход радиопередатчика.

Рисунок 2.16 – Структурная схема симплексной радиосвязи

Симплексная радиосвязь обычно используется при наличии относительно небольших информационных потоков. Для радиосетей с большой нагрузкой характерна дуплексная связь.

Дуплексная радиосвязь – это двухсторонняя радиосвязь, при которой прием и передача ведутся одновременно. Для дуплексной радиосвязи требуются две разные несущие частоты, а передатчики и приемники должны иметь свои антенны (рис. 2.17). Кроме того, на входе каждого приемника устанавливают специальный фильтр (дуплексер ), не пропускающий колебаний радиочастоты собственного передатчика. Достоинствами дуплексной радиосвязи являются ее высокая оперативность и пропускная способность радиосети.

Рисунок 2.17 – Структурная схема дуплексной радиосвязи

Радиосвязь имеет следующие преимущества перед проводной связью:

Ø быстрое развертывание на любой местности и в любых условиях;

Ø высокая оперативность и живучесть радиосвязи;

Ø возможность передачи различных сообщений любому количеству абонентов циркулярно, избирательно или группе абонентов;

Ø возможность связи с подвижными объектами.

Радиопередающие устройства

В функциональном смысле под радиопередающим устройством понимается комплекс оборудования, предназначенный для формирования и излучения радиочастотного сигнала (радиосигнала). В качестве функциональных узлов в состав радиопередатчика входят генератор несущей и модулятор. Кроме того, радиопередающие устройства (особенно мощные) содержат много другого оборудования: источники питания, средства охлаждения, автоматического и дистанционного управления, сигнализации, защиты и блокировки и пр.

Основные показатели радиопередающих устройств условно могут быть разделены на 2 группы: энергетические и показатели электромагнитной совместимости.

Важнейшими энергетическими показателями радиопередающего устройства являются номинальная мощность и промышленный коэффициент полезного действия. Под номинальной мощностью (Р) понимают среднее за период радиочастотного колебания значение энергии, подводимой к антенне. Промышленный коэффициент полезного действия (КПД) представляет собой отношение номинальной мощности Р к общей Р общ, потребляемой от сети переменного тока радиопередающим устройством: η = Р/Р общ · 100% .

Основными показателями электромагнитной совместимости являются диапазон рабочих частот, нестабильность частоты колебаний и внеполосные излучения.

Диапазоном рабочих частот называют полосу частот, в которой радиопередающее устройство обеспечивает работу в соответствии с требованиями стандарта.

Под нестабильностью частоты радиопередатчика понимают отклонение частоты колебаний на его выходе за определенный промежуток времени относительно установленной частоты. Малая нестабильность (высокая стабильность) частоты позволяет ослабить помехи радиоприему.

Внеполосными называют такие излучения , которые расположены вне полосы, отведенной для передачи полезных сообщений. Внеполосные излучения являются источником дополнительных помех радиоприему. При подавлении внеполосных излучений качество передачи сигнала не ухудшается.

По назначению радиопередающие устройства делятся на связные. Радиовещательные и телевизионные. По диапазону рабочих частот радиопередающие устройства подразделяются в соответствии с классификацией видов радиоволн. В зависимости от номинальной мощности радиопередающие устройства делятся на маломощные (до 100 Вт), средней мощности (от 100 до 10000 Вт), мощные (от 10 до 500 кВт) и сверхмощные (свыше 500 кВт).

Специфика эксплуатации позволяет выделить стационарные и подвижные радиопередающие устройства (автомобильные, самолетные, носимые и т.д.).

Радиоприемные устройства

Радиоприем – это выделение сигналов из радиоизлучения. В том месте, где ведется радиоприем, одновременно существуют радиоизлучения от множества естественных и искусственных источников. Мощность полезного радиосигнала составляет очень малую долю мощности общего радиоизлучения в месте радиоприема. Задача радиоприемного устройства сводится к выделению полезного радиосигнала из множества других сигналов и возможных помех, а также к воспроизведению (восстановлению) передаваемого сообщения.

Основными (в смысле универсальности) показателями радиоприемных устройств являются: диапазон рабочих частот, чувствительность, избирательность, помехоустойчивость.

Диапазон рабочих частот определяется диапазоном возможных частот настройки. Другими словами, это область частот настройки, в пределах которой радиоприемное устройство может плавно или скачкообразно перестраиваться с одной частоты на другую.

Чувствительность является мерой способности радиоприемного устройства обеспечивать прием слабых радиосигналов. Количественно оценивается минимальным значением электродвижущей силы (ЭДС) сигнала на входе радиоприемного устройства, при котором имеет место требуемое отношение сигнал-шум на выходе при отсутствии внешних помех.

Избирательностью называется свойство радиоприемного устройства, позволяющее отличать полезный радиосигнал от радиопомехи по определенным признакам, свойственным радиосигналу. Иначе: это способность радиоприемного устройства выделять нужный радиосигнал из спектра электромагнитных колебаний в месте приема, снижая мешающие радиосигналы. Различают пространственную и частотную избирательности. Пространственная избирательность достигается за счет использования антенны, обеспечивающей прием нужных сигналов с одного направления и ослабления радиосигналов с других направлений от посторонних источников. Частотная избирательность количественно характеризует способность радиоприемного устройства выделять из всех радиочастотных сигналов и радиопомех, действующих на входе, сигнал, соответствующий частоте настройки радиоприемника.

Помехоустойчивостью радиоприемного устройства называется его способность противодействовать мешающему действию помех. Количественно помехоустойчивость оценивается тем максимальным значением уровня помехи в антенне, при котором еще обеспечивается прием радиосигналов.

Радиоприемные устройства можно классифицировать по различным признакам. По назначению можно выделить радиовещательные (обычно называемые радиоприемниками или приемниками), телевизионные (телевизоры), профессиональные, специальные радиоприемные устройства. К профессиональным относятся магистральные радиоприемные устройства декаметрового диапазона, радиорелейных и спутниковых линий связи. Среди радиоприемных устройств специального назначения следует назвать, например, радиолокационные, радионавигационные, самолетные и т.д.

Антенны и фидеры

Антенна представляет собой элемент сопряжения между передающим или приемным оборудованием и средой распространения радиоволн. Антенны, имеющие вид проводов или поверхностей, обеспечивают излучение электромагнитных колебаний при передаче, а при приеме они «собирают» падающую энергию. Антенны, состоящие из проводов небольшого поперечного сечения по сравнению с длиной волны и продольными разрезами, называют проволочными . Антенны, излучающие через свой раскрыв – апертуру, называют апертурными . Иногда их называют дифракционными, рефлекторными, зеркальными. Электрические токи таких антенн протекают по проводящим поверхностям, имеющим размеры, соизмеримые с длиной волны или много большие ее.

Электрическая цепь и вспомогательные устройства, с помощью которых энергия радиочастотного сигнала проводится от радиопередатчика к антенне или от антенны к радиоприемнику, называется фидером . К фидерам предъявляются следующие требования: потери энергии высокочастотных сигналов в нем должны быть минимальными; они не должны иметь антенного эффекта, т.е. не должны излучать или принимать электромагнитные волны; обладать достаточной электрической прочностью, т.е. передавать требуемую мощность без опасности электрического пробоя изоляции.

Передающие антенны, используемые в километровом и гектометровом диапазонах радиоволн, соединяются с радиопередатчиком с помощью многопроводных коаксиальных фидеров. В декаметровом диапазоне фидеры обычно выполняются в виде проволочных двух- или четырехпроводных линий. К антеннам метровых радиоволн энергия, как правило, проводится с помощью коаксиального кабеля. На более коротких волнах, в частности в сантиметровом диапазоне, фидер выполняется в виде полой металлической трубы – волновода прямоугольного, эллиптического или круглого сечения.

Классификация и способы распространения радиоволн приведены в таблицах ниже.



Любой вид связи предназначен для передачи информации на расстояние. Информация - это совокупность сведений о событиях в окружающем мире. Формой представления информации является сообщение, которое может представлять собой речь, текст, последовательность чисел и т.д.

Чтобы передать сообщение от источника информации получателю, необходимо использовать любой физический процесс, способный распространяться с некоторой скоростью от источника к получателю информации, например: звуковые колебания, электрический ток в проводниках, свет, электромагнитное поле и др.. физическая величина, определяющая данный процесс, изменяющаяся во времени и отображающая передаваемое сообщение (сила тока, интенсивность электромагнитного поля, яркость света и т.д.называется сигналом. Сигналы не являются передаваемым сообщением, а лишь отображают его. Часто сигнал, полученный в результате преобразования сообщения, называют первичным электрическим сигналом.

В зависимости от характера сообщения.первичные электрические сигналы могут быть непрерывными или дискретными

Непрерывные сигналы принимают любые значения по состояниям в некотором интервале. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала является речевой сигнал, его амплитуда непрерывно меняется во времени в пределах ±Umax. При передаче такого телефонного сигнала необходимо в первую очередь учитывать его спектр частот.

Известно, что спектр звуков, воспринимаемых человеческим ухом, занимает полосу частот в пределах от 16 до 20000 Гц. Однако передача такого широкого спектра частот по каналам связи сопряжена с определёнными трудностями, связанными с увеличением полосы частот, занимаемой каналом связи, а, следовательно, и с уменьшением количества каналов связи, обеспечиваемых в определённом диапазоне частот. Поэтому при телефонной связи спектр речевого сигнала ограничивают полосой частот от 300 до 3400 Гц, в которой расположены основные частотные составляющие и основная энергия звуков человеческой речи (рис. 2.1).

При этом такое ограничение спектра частот телефонного сигнала не ведёт к заметному искажению сигнала. Ширина спектра 0,3¸3,4 КГц получила название стандартного телефонного канала.

Дискретные сигналы принимают конечное число вполне определённых значений по состоянию. Наиболее общим примером дискретных сигналов могут служить телеграфные сигналы, отображающие текст сообщения с помощью определённого алфавита (кода). При этом каждая буква или цифра кода выражается вполне определённым дискретным состоянием сигнала. На рис.2.2. показаны дискретные состояния, которые принимает сигнал при передаче буквы «Ж» с помощью кода Морзе.


Передача телеграфных сигналов может осуществляться с различной скоростью телеграфирования. Скорость телеграфирования определяется количеством элементарных импульсов, передаваемых в единицу времени (1с) и измеряется в Бодах (Б).

1 Б = 1 имп / 1 с

Для большинства буквопечатающих телеграфных аппаратов скорость телеграфирования составляет 50 Бод.

Первичный электрический сигнал независимо от его вида носит низкочастотный характер. Он может быть непосредственно переданным по проводным линиям связи, но не может эффективно излучаться в среду распространения радиоволн, так как практически невозможно создать антенны, геометрические размеры которых были бы соизмеримы с длинной волн сигнала.

Например, при F=1кГц длина волны l=300(км), а длина антенны L=l/4 = 75(км), что практически не осуществимо.

Следовательно, для передачи по радио первичный электрический сигнал должен быть преобразован в высокочастотный сигнал, способный эффективно излучаться в окружающее пространство.

Такой сигнал принято называть радиосигналом. Преобразование первичных низкочастотных электрических сигналов в радиосигналы осуществляется в радиопередатчиках, являющихся основной частью радиопередающих устройств. Процесс преобразования непрерывных первичных сигналов в радиосигналы носит название модуляции, а дискретных - манипуляции.

Радиосигнал, сформированный и излучённый в окружающую среду в виде радиоволн, распространяясь с определённой скоростью, достигает места расположения получателя информации. При прохождении радиосигнала в среде распространения на него воздействуют другие сигналы, определяемые как свойствами самой среды распространения, так и другими источниками электрических сигналов. В точке получения переданной информации необходимо произвести обратное преобразование радиосигнала в сообщение. Преобразование радиосигналов, пришедших в точку приёма, в исходное сообщение осуществляется радиоприёмным устройством. Задача преобразования принимаемого радиосигнала в сообщение более сложная, чем преобразование сообщения в радиосигнал, так как преобразованию подвергаются не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение.

Источник информации, радиопередающее устройство, среда распространения радиоволн, радиоприёмное устройство и получатель информации образуют линию радиосвязи (рис. 2.3).

Структурная схема линии радиосвязи, изображённая на рис.2.3., обеспечивает передачу сообщения только в одном направлении - от источника информации к получателю, т.е. одностороннюю радиосвязь. Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее радиоприемное устройство. В этом случае источник информации и получатель информации периодически меняются функциями, выполняемыми в линии радиосвязи, поэтому их принято объединять одним понятием корреспондент.

Для двусторонней радиосвязи режим работы радиолинии может быть симплексным или дуплексным.

Линия радиосвязи, в которой передача и приём сообщений осуществляются поочерёдно, называется симплексной, если же линия радиосвязи обеспечивает одновременную передачу и приём информации, то такая радиолиния называется дуплексной. Линия радиосвязи, которая позволяет одновременно передавать несколько сигналов, отображающих независимые сообщения, называется многоканальной (двухканальной, трёхканальной и т.д.), если же линия радиосвязи предназначена для передачи только одного сигнала, соответствующего одному сообщению, то она называется одноканальной. Таким образом, под каналом радиосвязи понимают часть линии, обеспечивающую передачу и приём сигнала.

В общем случае под каналом радиосвязи понимают часть радиопередающего устройства, среду распространения радиоволн и часть радиоприёмного устройства. Какие части радиопередающего и радиоприёмного устройства входят в понятие радиоканала, оговаривается отдельно. Наиболее часто канал радиосвязи (радиоканал) ограничивается только средой распространения радиоволн. Это объясняется тем, что наиболее характерные особенности радиоканала, отличающие его от других каналов связи, определяются именно средой распространения. В дальнейшем, если не будет специально оговорено, под радиоканалом будем понимать среду распространения радиоволн.

Таким образом, любое радиопередающее устройство должно обеспечивать выполнение следующих трех функций:

1. Преобразование сообщения в первичный электрический сигнал, которое осуществляется оконечной передающей аппаратурой (микрофон, телеграфный ключ, телеграфный аппарат, передающая телевизионная трубка и т.д.).

2. Преобразование первичного электрического сигнала путём модуляции (манипуляции) высокочастотного колебания в радиосигнал, способный эффективно излучаться и распространяться в виде радиоволн на заданное расстояние. Эту функцию выполняет собственно радиопередатчик.

3. Излучение сформированных радиопередатчиком радиосигналов в виде электромагнитных волн, осуществляемое передающим антенно-фидерным устройством (АФУ).

На приёмном конце линии радиосвязи с помощью радиоприёмного устройства производиться обратное преобразование радиосигналов в сообщение. Радиоприёмное устройство также выполняет следующие три основные функции:

1. Приёмное антенно-фидерное устройство (АФУ) улавливает энергию электромагнитных волн и преобразует её в радиосигнал.

2. Выделение принимаемого радиосигнала из множества сигналов, наводимых в антенне, и преобразование его в первичный низкочастотной сигнал необходимой мощности, осуществляемые радиоприёмником.

3. Преобразование первичного сигнала в сообщение, выполняемое приёмной оконечной аппаратурой (головные телефоны, динамик, приёмный телеграфный аппарат, телевизионная трубка и т.д.). Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее и радиоприёмное устройства, которые организационно, а часто и конструктивно, вместе с устройствами управления объединяются в единый комплекс-радиостанцию.


На рис.2.4 представлена обобщенная структурная схема линии радиосвязи между корреспондентами А и Б.

Основные свойства радиоканала, отличающие его от других каналов связи, определяются, главным образом, свойствами среды распространения. Поэтому, при рассмотрении данного вопроса понятие радиоканала ограничим средой распространения радиоволн.

В радиосвязи в качестве среды распространения используется пространство, окружающее земную поверхность. Такая среда не обладает направленными свойствами, как это имеет место, например в проводных и кабельных линиях связи. В линиях радиосвязи излучённые передающей антенной, распространяются практически во все стороны от излучателя и только незначительная часть их энергии излучается в сторону радиоприёмного устройства корреспондента. Происходит рассеивание энергии радиоволн в среде распространения. Кроме того, за счет поглощения энергии радиоволн в земной поверхности и ионосфере, а также за счет преломления радиоволн происходит дополнительное уменьшение энергии радиоволн, приходящих в точку приёма. В тех случаях, когда энергия радиоволн, пришедших в точку приёма оказывается недостаточной для преобразования её в первичный сигнал, радиосвязь оказывается невозможной.

Первое свойство радиоканала и заключается в том, что в процессе распространения радиоволн из-за их рассеивания и поглощения в земной поверхности и ионосфере происходит резкое уменьшение мощности радиосигналов на входе радиоприёмников. Поэтому радиоканал в отличии от других каналов связи рассматривается, как канал с большим затуханием.

Большое затухание радиоканала приводит к тому, что уровень радиосигнала на входе радиоприёмного устройства оказывается соизмеримым с уровнем флуктуационных токов (собственных шумов) радиоприёмника, что затрудняет, а в некоторых случаях делает и невозможным, распознавание принимаемых сигналов и отделение их от шумов.

«Уменьшить» затухание радиоканала можно за счет выбора оптимальных рабочих частот для данного времени требуемой дальности радиосвязи, а также за счет более направленных и эффективных передающих и приёмных антенных устройств.

Вторым свойством радиоканала является изменение затухания во времени в
весьма широких пределах, поэтому радиоканал принято считать каналом связи с
переменными параметрами.

Изменение затухания радиоканала может происходить по различным причинам. На величину затухания в радиоканале влияют изменения взаимного расположения радиостанций на местности и расстояний между ними, что особенно заметно при осуществлении радиосвязи земными волнами. Поскольку напряжённость электромагнитного поля убывает практически пропорционально квадрату длины пути, проходимому волной в процессе распространения, то любое изменение расстояния между работающими радиостанциями приводит к изменению мощности радиосигнала в точке приёма. Очевидно, что эти изменения особенно сильно влияют на обеспечение радиосвязи между подвижными объектами. Но даже в случаях, когда расстояние между работающими радиостанциями остаётся постоянным, а изменяется только их взаимное расположение на местности, могут происходить достаточно резкие изменения затухания в радиоканале, вызываемые изменениями параметров почвы, а, следовательно, и её поглощающих свойств. Параметры сухой почвы отличаются от параметров влажной почвы и от параметров водной поверхности, а также зависят от вида самой почвы - песок, глина и т.д.

В диапазоне метровых волн, на поглощающие свойства среды распространения сильное влияние оказывают рельеф местности и местные предметы - холмы, горы, растительный покров, строения и т.д. Всё это приводит к изменению величины затухания радиоканала, которое может достигать сотен децибел.

Третьим свойством радиоканала является его общедоступность, т.е. возможность использования одной и той же среды распространения любыми радиотехническими устройствами. Общедоступность среды распространения обеспечивает возможность одновременного функционирования большого количества линий радиосвязи.

Таким образом, на входе приёмного устройства всегда кроме принимаемого радиосигнала будут присутствовать помехи, которые искажают его, а. следовательно, и первичный сигнал, непосредственно отображающих переданное сообщение. Степень искажения первичною сигнала определяет правильность принятого сообщения, т.е. его достоверность.

Итак, для повышения надежности радиосвязи и обеспечения высокой достоверности принятого сообщения необходимо принимать следующие меры:

Осуществлять радиосвязь на оптимально выбранных по радио прогнозам частотах, свободных от помех;

Использовать такие виды радиосигналов, которые обеспечивают требуемую надёжность радиосвязи при возможно меньших значениях степени превышения сигнала над помехой;

Применять эффективные и направленные передающие и приёмные антенны;

Уменьшать полосу пропускания радиоприёмника до возможно меньших значений, определяемых спектром принимаемого радиосигнала.

Структурная схема системы радиосвязи

Системы радиосвязи предназначены для передачи и приема информации с помощью радиосигналов по линии связи при пространственно разнесенных передающем и приемном устройствах. Информация, выраженная в определенной форме, представляет собой сообщение , которое подлежит передаче на расстояние. Отправителем и получателем сообщений могут выступать как человек, так и различные технические устройства, обеспечивающие формирование, регистрацию, хранение и использование сообщений. Системы связи могут быть разомкнутыми и замкнутыми (с обратными связями). Структурная схема разомкнутой системы связи показана на рис. 2.1.

Для передачи сообщений осуществляют их преобразование в электрические сигналы с помощью устройств формирования первичных сигналов (УФПС). Первичные сигналы подаются на вход радиопередающего устройства, включающего модулятор, возбудитель и антенно-фидерное устройство (АФУ), которое осуществляет передачу сообщений с помощью радиосигналов по линии связи.

В радиоприемном устройстве принятый антенной радиосигнал усиливается и фильтруется в линейном тракте, осуществляется его демодуляция для выделения первичного электрического сигнала, который

используется для восстановления сообщения с помощью устройства восстановления сообщения (УВПС).

Часто приемные и передающие устройства объединяют. Их комбинация образует радиостанцию (РС). Такое построение характерно для авиационных радиостанций.

В теории связи используют понятия "канал связи" и "система радиосвязи", которые определяются следующим образом .

Канал связи - это совокупность передающего устройства, линии связи и приемного устройства. Канал связи имеет один вход и один выход и входит в состав системы связи.

Система радиосвязи - это упорядоченная совокупность канала связи, отправителя и получателя информации (которыми могут быть как человек, так и технические устройства), характеризуемая заданными правилами преобразования сообщения в радиосигнал и восстановления сообщения по принятому сигналу, называется системой радиосвязи.

Если в состав системы входит несколько каналов, источников и потребителей информации, а также устройства уплотнения каналов, которые обеспечивают независимую передачу сообщений от нескольких источников по одной общей радиолинии, то такие системы связи называются многоканальными.

По направлению обмена сообщениями системы радиосвязи делятся на односторонние и двухсторонние. В системе односторонней радиосвязи одна из РС осуществляет только передачу, а другая (или другие) только прием. В системе двухсторонней радиосвязи радиостанции осуществляют передачу и прием. По порядку обмена сообщениями различают симплексные, дуплексные и полудуплексные системы радиосвязи . Симплексной называется двухсторонняя радиосвязь, при которой передачу и прием на каждой станции осуществляют поочередно. В системах дуплексной радиосвязи передача осуществляется одновременно с приемом. Дуплексная связь более оперативна и обеспечивается работой передатчиков и приемников на разных частотах. Системы полудуплексной радиосвязи относятся к симплексным системам, в которых осуществляется автоматический переход с передачи на прием и возможен переспрос корреспондента.

Из-за наличия помех в линии связи и в самой аппаратуре сообщение на выходе радиоприемного устройства отличается от переданного. Способность системы связи противостоять мешающему действию радиопомех и искажений характеризуется помехоустойчивостью. Помехи, под действием которых в передаваемых сообщениях возникают искажения, можно подразделить на аддитивные и мультипликативные. Аддитивные помехи включают внутриприемные шумы, индустриальные помехи и помехи, создаваемые сигналами, излучаемыми многочисленными радиотехническими системами. Мультипликативные помехи, обусловленные особенностями распространения сигналов различных диапазонов, приводят к замиранию радиосигналов и случайным изменениям их уровня вследствие многолучевого распространения. Искажение сообщений помехами в каналах радиосвязи в значительной степени зависит от используемого вида модуляции. Выбирая малочувствительные к наиболее вероятным типам помех законы модуляции, можно повысить помехоустойчивость связи.

Полученная нами позволяет определить лишь скорость стремления к нулю остатка при $x \to x_{0}$. Однако мы ничего не можем сказать об абсолютной величине остатка формулы Тейлора для конкретных значений $x$, и даже не имеем возможности оценить его. Во многих задачах требуется оценить погрешность приближения функции ее многочленом Тейлора. Такую возможность дает формула Тейлора с остатком в форме Лагранжа.

Напомним формулировку . Если функция $f$ на $\left [ a ,b\right ]$ и на $\left (a,b\right)$, то существует такая точка $\xi \in \left (a,b \right)$, что $f \left(b \right) = f \left(a \right) + f’\left(\xi \right)\left(b-a \right)$. Можем считать, что в правой части этого равенства $f\left(a\right)$ – многочлен Тейлора нулевого порядка с центром в точке $a$, а $f’\left(\xi\right)\left(b-a\right)$ – остаток в формуле Тейлора для функции $f$, вычисленной в точке $b$. Эта формула позволяет оценить $\left | f\left(b\right) — f\left(a\right) \right |$, т. е. погрешность приближения значения функции $f\left(b\right)$ значением $f\left(a\right)$, через $\left | f’\left(\xi\right) \right | \cdot \left | b-a \right |$. Например, если $\DeclareMathOperator{\arctg}{arctg} f\left(x \right) = \arctg x$, то $$\arctg a = \arctg b +\frac{1}{1+\xi^{2}}\left (b-a \right),$$ откуда сразу получаем, что $$\left | \arctg b -\arctg a \right |\leqslant \frac{1}{1+\xi^{2}}\left | b-a \right |\leqslant \left | b-a \right |.$$
Обобщением этих рассуждений на случай произвольного натурального $n$ и есть формула Тейлора с остатком в форме Лагранжа.

Теорема. Пусть функция $f$ определена на отрезке $\left [ a ,b\right ]$ и имеет на этом отрезке непрерывные производные до порядка $n$ включительно, а на интервале $\left (a,b\right)$ существует производная $\left(n + 1\right)$-го порядка. Тогда существует такая точка $\xi \in \left (a,b \right)$, что $$f\left(b\right) = f\left(a\right) + \frac{f"{}\left(a\right)}{1!}\left(b-a\right) + \frac{f{}"{}’\left(a\right)}{2!}\left(b-a \right)^{2} + \cdots + \frac{f^{\left(n\right)}\left(a\right)}{n!}\left(b-a\right)^{n} + \\ + \frac{f^{\left(n+1 \right)}\left(\xi\right)}{n+1!}\left(b-a\right)^{n+1} .$$

Обозначим $$P_{n}\left(x\right) = f\left(a\right) + \frac{f"{}\left(a\right)}{1!}\left(b-a\right) + \frac{f {}"{}’\left(a\right)}{2!}\left(b-a\right)^{2} + \cdots + \frac{f^{\left(n\right)}\left(a\right)}{n!}\left(b-a\right)^{n} $$ – многочлен Тейлора функции f с центром в точке $a$. Рассмотрим вспомогательную функцию $\varphi = f\left(x\right) — P_{n}\left(x\right) — \lambda \left(b-a\right)^{n+1}$, где число $\lambda$
определяется из условия $\varphi(b)=0$, т. е.
$$f(b)=P_{n}\left(b \right)-\lambda \left(b-a\right)^{n+1}. \qquad (5.4)$$
Так как $P_{n}$ – многочлен Тейлора функции $f$ с центром в точке $a$, то производные функции $f$ и многочлена $P_{n}$ в точке $a$ совпадают до порядка $n$ включительно, т. е. $f^{\left(k \right)}\left(a\right)=P^{\left(k\right)}_{n}\left(a\right)\: \left(k=0,1,\dots, n\right)$. Далее, для функции $\varphi$ имеем $\varphi\left(a\right) = 0$,
$$\varphi{}’\left(x\right)=f’\left(x\right)-P’_{n}\left(x\right)-\lambda \left(n + 1 \right)\left(x-a \right)^{n}, \qquad\varphi’\left(a \right)=0,$$
$$\varphi{}"{}’\left(x\right)=f{}"{}’\left(x \right)-P_{n}{}"{}"(x)-\lambda \left(n + 1\right)n\left(x-a\right)^{n-1}, \qquad\varphi{}"{}’\left(a\right)=0,$$
$$\varphi ^{\left(k\right)}\left(x\right)=f^{\left(k\right)}\left(x\right)-P^{\left(k\right)}_{n}\left(x\right)-\lambda \left(n + 1\right)n\left(n-1\right)\dots\left(n-k+2\right)\left(x-a\right)^{n-k+1}.$$ Итак, $\varphi^{\left(k\right)}\left(a\right)=0\: \left(k=0,1,\dots, n \right)$.
Поскольку $\varphi\left(a\right)=\varphi\left(b\right)=0$, то на $\left$ к функции $\varphi$ можно применить , согласно которой существует такая точка $\xi _{1}\in \left(a, b\right)$, что $\varphi’\left(\xi _{1}\right)=0$. Далее, на $\left$ к функции $\varphi’$ снова можно применить теорему Ролля, согласно которой существует такая точка $\xi_{2}\in \left(a, \xi _{1}\right)\subset \left(a, b\right)$, что $\left (\varphi’ \right)"(\xi_{2})=\varphi{}"{}"(\xi_{2})=0$. Продолжая этот процесс, на $n$-м шаге получим такую точку $\xi _{n}\in\left(a, b\right)$, что $\varphi ^{\left(n \right)}\left(\xi_{n}\right)=0$. На отрезке $\left$ функция $\varphi^{\left(n\right)}$ все еще удовлетворяет условиям теоремы Ролля, согласно которой найдется такая точка $\xi \in \left(a, b\right)$, что $\left(\varphi^{\left(n\right)}\right)’\left(\xi\right)=\varphi^{\left(n+1\right)}\left(\xi \right)=0$. Имеем $$\varphi ^{\left(n+1\right)}\left(x\right)=\left (\varphi^{\left(n\right)} \right)’\left(x\right)=\left [ f^{\left(n\right)}\left(x\right)-P_{n}^{\left(n\right)}-\lambda\left(n+1\right)!\left(x-a\right) \right ]’=\\\\=f^{\left(n+1\right)}\left(x\right)-0-\lambda \left(n+1\right)!$$ и $\varphi ^{\left(n+1\right)}(\xi)=f^{\left(n+1\right)}\left(\xi\right)-\lambda \left(n+1\right)!=0$, откуда $\lambda=\frac{f^{\left(n+1\right)}\left(\xi\right)}{n+1!}$. Подставив найденное значение $\lambda$ в равенство $\left(5.4\right)$, получим утверждение теоремы.

Замечание. В правой части доказанного в теореме равенства записан многочлен Тейлора функции $f$ с центром в точке $a$, значение которого вычислено в точке $b$, а остаток $\frac{f^{\left(n+1\right)}\left(\xi\right)}{n+1!} \left(b-a\right)^{n+1}$ отличается от остальных слагаемых тем, что производная вычислена в точке $\xi \in \left(a, b\right)$. При $n=0$ доказанная теорема обращается в теорему Лагранжа.

Пример 1. Для функции $f\left(x\right)=e^{x}$ на $\left [ 0,x \right ]\: \left(x > 0\right)$ формула Тейлора
с остатком в форме Лагранжа принимает вид $$e^{x}=1+\frac{x}{1!}+\frac{x}{2!}+\cdots+\frac{x^{n}}{n!}+\frac{e^{\theta x}}{\left(n+1\right)!}x^{n+1},$$ где $0\leqslant \theta \leqslant 1$. Тогда для любого $n$ остаток не превосходит $R_{n}(x)=\frac{e^{x}}{(n+1)!}x^{n+1}$ и, очевидно, $R_{n}(x)\to 0$ при $n\to \infty$. Преимущество остатка в такой форме состоит в том, что мы можем оценить погрешность приближения $$e^{x}\approx 1+\frac{x}{1!}+\frac{x}{2!}+\cdots+\frac{x^{n}}{n!}.$$ Она не превосходит $$0\leqslant e^{x}-\left (1+\frac{x}{1!}+\frac{x}{2!}+\cdots+\frac{x^{n}}{n!} \right)\leqslant \frac{e^{x}}{(n+1)!}x^{n+1}\leqslant \frac{3^{\left [ x \right ]+1}}{(n+1)!}x^{n+1}.$$ В частности, при $x=1$ получаем $$e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}+\frac{e^{\theta x}}{\left(n+1\right)!},$$ где $0< \theta <1.$Отсюда следует, что $$e=\lim_{n\to\infty}\left (1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!} \right).$$

Пример 2. Доказать неравенство $(x>0)$ $$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots-\frac{x^{2n-1}}{\left(2n-1\right)!}\leqslant \sin x\leqslant \\\leqslant x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots-\frac{x^{2n-1}}{(2n-1)!}+\frac{x^{2n+1}}{(2n+1)!}.$$ Для $f(x)=\sin x$, как было вычислено ранее, $f^{(k)}(x)=\sin \left (x+\frac{k\pi }{2} \right)\: (k=0,1,\dots)$. Поэтому $$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\dots+\frac{x^{2n+1}}{\left(2n+1\right)!}\sin\left (\xi+\frac{\pi \left(2n+1\right)}{2} \right)\leqslant \\ \leqslant x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\dots+\frac{x^{2n+1}}{\left(2n+1\right)!},$$ $$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\dots-\frac{x^{2n-1}}{\left(2n-1\right)!}\sin\left (\xi+\frac{\pi \left(2n-1\right)}{2} \right)\geqslant \\ \geqslant x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\dots-\frac{x^{2n-1}}{\left(2n-1\right)!}.$$

Примеры решения задач

  1. С помощью разложить по степеням $x$ функцию $$f\left(x\right)=\ln (1+x)$$ заданную на отрезке $\left$. Оценить погрешность допускаемую при сохранении только десяти первых членов. Решение

    $$f\left(0\right)=\ln 1=0$$
    $$f^{\left(n\right)}\left(x\right)=\left(-1\right)^{\left(n-1\right)}\frac{\left(n-1\right)!}{\left(1+x\right)^{n}}$$
    $$f^{\left(n\right)}\left(0\right)=\left(-1\right)^{\left(n-1\right)}\left(n-1\right)! \qquad \left(n=1,2,3,\dots \right)$$
    Подставив в формулу Маклорена, получим
    $$\ln \left(1+x\right)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\cdots+\frac{x^{9}}{9}+R_{10}\left(x\right),$$ где остаточный член $R_{10}\left(x\right)$ в форме Лагранжа запишется так:$$R_{10}\left(x\right)=\frac{f^{(10)}(\xi)}{10!}x^{10}=-\frac{9!}{10!\left(1+\xi\right)^{10}}x^{10}=-\frac{x^{10}}{10\left(1+\xi\right)^{10}},$$ $$\left(0<\xi Оценим абсолютную величину остаточного члена $R_{10}\left(x\right)$; учитывая, что $0

  2. Сколько нужно взять членов в формуле Маклорена для функции $f\left(x\right)=e^{x}$, чтобы получить многочлен, представляющий эту функцию на отрезке $\left[-1,1\right]$, с точностью до $0,001$? Решение

    Функция $f\left(x\right)=e^{x}$ имеет производную любого порядка $$f^{\left(n\right)}\left(x\right)=e^{x}$$ Поэтому к этой функции нужно применить формулу Маклорена. Вычислим значение функции $e^{x}$ и ее $n-1$ первых производных в точке $x=0$, а значение $n$-й производной в точке $\xi=\theta x\; \left(0<\theta<1\right) $. Будем иметь $$f\left(0\right)=f{}’\left(0\right)=f{}"{}’\left(0\right)=\dots=f^{\left(n-1\right)}\left(0\right)=1,$$ $$f^{\left(n\right)}\left(\xi \right)=e^{\xi}=e^{\theta x}.$$ Отсюда $$f\left(x \right)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\dots+\frac{x^{n-1}}{\left(n-1\right)!}+R_{n}\left(x\right),$$ где $$R_{n}\left(x\right)=\frac{x^{n}}{n!}e^{\theta x}.$$ Так как, по условию, $\left | x \right |\leqslant 1$ и $0<\theta<1$, то $$\left | R_{n}\left(x\right) \right |=\frac{\left | x \right |^{n}}{n!}e^{\theta x}<\frac{1}{n!}e<\frac{3}{n!}.$$ Следовательно, если выполняются неравенство $$\frac{3}{n!}\leqslant 0,001,$$ то заведомо будет выполняться неравенство $$\left | R_{n}(x) \right |\leqslant 0,001.$$ Для этого достаточно взять $n\geqslant 7\; \left(7!=5040\right)$. Таким образом, в формуле Маклорена достаточно взять $7$ членов.

  3. Доказать неравенство при $x>0$ $$x-\frac{x^{2}}{2}<\ln \left(1+x\right)По формуле Маклорена с остаточным членом $R_{2}\left(x\right)$ имеем $$\ln \left(1+x\right)=x-\frac{x^{2}}{2(1+\xi)^{2}},$$ где $0<\xi0$ и $\frac{x^{3}}{3(1+\xi _{1})^{3}}>0$ при $x>0$, то отсюда следует, что $$x-\frac{x^{2}}{2}<\ln \left(1+x\right)
  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. - С. 158-161.
  2. Кудрявцев Л. Д. Курс математического анализа: учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. - 5-е изд., перераб. и доп. - Москва: Дрофа, 2003. - 703 с. - С. 339-344.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. - 5-е изд., стереотип. - Москва: Физматгиз, 1962. - 607 с. - С. 254-257.

Формула Тейлора с остатком в форме Лагранжа

Лимит времени: 0

Навигация (только номера заданий)

0 из 5 заданий окончено

Информация

Пройдите этот тест, чтобы проверить свои знания по прочитанной теме.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается...

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Результаты

Правильных ответов: 0 из 5

Ваше время:

Время вышло

Вы набрали 0 из 0 баллов (0 )

  1. С ответом
  2. С отметкой о просмотре

  1. Задание 1 из 5

    1 .
    Количество баллов: 1

    Перечислите известные приложения остатка в форме Лагранжа.

    Правильно

    Неправильно

  2. Задание 2 из 5

    2 .
    Количество баллов: 1

    Установить соответствие между функциями на $\left$ и их остатками в форме Лагранжа $R_{4}\left(x\right)$.
    $$\xi \in\left (0,x \right)$$

    Элементы сортировки
    • $\frac{\sin \xi}{4!}x^{4}$
    • $\frac{\cos \xi}{4!}x^{4}$
    • $\frac{x^{4}}{4\left (\xi+1 \right)^{4}}$
    • $\frac{e^{\xi}}{4!}x^{4}$

    Правильно

    Неправильно