Одним из самых важных методов математических доказательств по праву является метод математической индукции . Подавляющее большинство формул, относящихся ко всем натуральным числам n , могут быть доказаны методом математической индукции (к примеру, формула суммы n первых членов арифметической прогрессии , формула бинома Ньютона и т.п.).

В этой статье сначала остановимся на основных понятиях, далее рассмотрим сам метод математической индукции и разберем примеры его применения при доказательстве равенств и неравенств.

Навигация по странице.

Индукция и дедукция.

Индукцией называют переход от частных утверждений к общим. Напротив, переход от общих утверждений к частным называется дедукцией.

Пример частного утверждения: 254 делится на 2 без остатка.

Из этого частного утверждения можно сформулировать массу более общих утверждений, причем как истинных так и ложных. К примеру, более общее утверждение, что все целые числа, оканчивающиеся четверкой, делятся на 2 без остатка, является истинным, а утверждение, что все трехзначные числа делятся на 2 без остатка, является ложным.

Таким образом, индукция позволяет получить множество общих утверждений на основе известных или очевидных фактов. А метод математической индукции призван определить справедливость полученных утверждений.

В качестве примера, рассмотрим числовую последовательность: , n – произвольное натуральное число. Тогда последовательность сумм первых n элементов этой последовательности будет следующая

Исходя из этого факта, по индукции можно утверждать, что .

Доказательство этой формулы приведем .

Метод математической индукции.

В основе метода математической индукции лежит принцип математической индукции .

Он заключается в следующем: некоторое утверждение справедливо для всякого натурального n , если

  1. оно справедливо для n = 1 и
  2. из справедливости утверждения для какого-либо произвольного натурального n = k следует его справедливость для n = k+1 .

То есть, доказательство по методу математической индукции проводится в три этапа:

  1. во-первых, проверятся справедливость утверждения для любого натурального числа n (обычно проверку делают для n = 1 );
  2. во-вторых, предполагается справедливость утверждения при любом натуральном n=k ;
  3. в-третьих, доказывается справедливость утверждения для числа n=k+1 , отталкиваясь от предположения второго пункта.

Примеры доказательств уравнений и неравенств методом математической индукции.

Вернемся к предыдущему примеру и докажем формулу .

Доказательство.

Метод математической индукции предполагает доказательство в три пункта.

Таким образом, выполнены все три шага метода математической индукции и тем самым доказано наше предположение о формуле .

Давайте рассмотрим тригонометрическую задачу.

Пример.

Докажите тождество .

Решение.

Во-первых, проверяем справедливость равенства при n = 1 . Для этого нам понадобятся основные формулы тригонометрии.

То есть, равенство верно для n = 1 .

Во-вторых, предположим, что равенство верно для n = k , то есть справедливо тождество

В-третьих, переходим к доказательству равенства для n = k+1 , основываясь на втором пункте.

Так как по формуле из тригонометрии

то

Доказательство равенства из третьего пункта завершено, следовательно, исходное тождество доказано методом математической индукции.

Может быть доказана методом математической индукции.

Пример доказательства неравенства методом математической индукции можете посмотреть в разделе метод наименьших квадратов при выводе формул для нахождения коэффициентов аппроксимации.

Список литературы.

  • Соминский И.С., Головина Л.И., Яглом И.М. О математической индукции.

Министерство образования Саратовской области

Саратовский государственный социально - экономический университет

Областной конкурс математических и компьютерных работ школьников

«Вектор будущего – 2007»

«Метод математической индукции.

Его применение к решению алгебраических задач»

(секция «математика»)

Творческая работа

ученицы 10«А» класса

МОУ «Гимназии №1»

Октябрьского района г. Саратова

Арутюнян Гаянэ.

Руководитель работы:

учитель математики

Гришина Ирина Владимировна.

Саратов

2007

Введение…………………………………………………………………………………3

Принцип математической индукции и его

доказательство…………………………………………………………………………..4

Примеры решений задач………………………………………………………………..9

Заключение……………………………………………………………………………..16

Литература………………………...……………………………………………………17

Введение.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно и подкреплять свою мысль доказательством, проведённым по всем правилам логики.
В настоящее время выросла область применения метода математической индукции, но в школьной программе ему, к сожалению, отводится мало времени. А ведь это так важно - уметь размышлять индуктивно.

Принцип математической индукции и его доказательство

Обратимся к существу метода математической индукции. Рассмотрим различные утверждения. Их можно подразделить на общие и частные.Приведем примеры общих утверждений.

Все граждане России имеют право на образование.

Во всяком параллелограмме диагонали в точке пересечения делятся пополам.

Все числа, оканчивающиеся нулем, делятся на 5 .

Соответствующие примеры частных утверждений:

Петров имеет право на образование.

В параллелограмме ABCD диагонали в точке пересечения делятся пополам.

140 делится на 5.

Переход от общих утверждений к частным называется дедукцией (от латинского deductio - вывод по правилам логики).

Рассмотрим пример дедуктивного вывода.

Все граждане России имеют право на образование. (1)

Петров – гражданин России. (2)

Петров имеет право на образование. (3)

Из общего утверждения (1) при помощи (2) получено частное утверждение (3).

Обратный переход от частных утверждений к общим называется индукцией (от латинского inductio - наведение).

Индукция может привести как к верным, так и к неверным выводам.

Поясним это двумя примерами.

140 делится на 5. (1)

Все числа, оканчивающиеся нулем, делятся на 5 . (2)

140 делится на 5. (1)

Все трехзначные числа делятся на 5. (2)

Из частного утверждения (1) получено общее утверждение (2). Утверждение (2) верно.

Второй пример показывает, как из частного утверждения (1) может быть получено общее утверждение (3) , притом утверждение (3) не является верным.

Зададимся вопросом, как пользоваться в математике индукцией, чтобы получать только верные выводы. Рассмотрим несколько примеров индукции, недопустимой в математике.

Пример 1 .

Рассмотрим квадратный трехчлен следующего вида Р(x )= x 2 + x + 41, на который обратил внимание еще Леонард Эйлер.

Р(0) = 41, Р(1) = 43, Р(2) = 47, Р(3) = 53, Р(4) = 61, Р(5) = 71, Р(6) = 83, Р(7) = 97, Р(8) = 113, Р(9)=131, Р(10) = 151.

Мы видим, что всякий раз значение трехчлена - простое число. На основании полученных результатов утверждаем, что при подстановке в рассматриваемый трехчлен вместо x любого целого неотрицательного числа всегда в результате получается простое число.

Однако сделанный вывод не может считаться достоверным. В чем же дело? Дело в том, что в рассуждениях высказаны общие утверждения относительно любого х только на основании того, что это утверждение оказалось справедливым для некоторых значений х.

В самом деле, при более внимательном изучении трехчлена Р(х) числа Р(0), Р(1), …, Р(39) - простые числа, но Р(40) = 41 2 – составное число. И совсем явно: Р(41) = 41 2 +41+41 кратно 41.

В этом примере мы встретились с утверждением, справедливым в 40 частных случаях и все же вообще оказавшимся несправедливым.

Рассмотрим еще несколько примеров.

Пример 2.

В 17 веке В.Г. Лейбниц доказал, что при всяком натуральном n числа вида n 3 - n кратны 3, n 5 - n кратны 5, n 7 - n кратны 7. На основании этого, он предложил, что при всяком нечетном k и натуральном n число n k - n кратно k , но скоро сам заметил, что 2 9 –2=510, которое, очевидно, не делится на 9 .

Рассмотренные примеры позволяют сделать важный вывод: утверждение может быть справедливым в целом ряде частных случаев и в то же время несправедливым вообще.

Естественно возникает вопрос: имеется утверждение, справедливое в нескольких частных случаях; все частные случаи рассмотреть невозможно; как же узнать, справедливо ли это утверждение вообще?

Этот вопрос иногда удается решить посредством применения особого метода рассуждений, называемого методом математической индукции. В основе этого метода лежит принцип математической индукции , заключенный в следующем: утверждение справедливо для любого натурального n , если:

    оно справедливо для n = 1;

    из справедливости утверждения для какого-то произвольного натурального n =k , следует его справедливость для n = k +1.

Доказательство.

Предположим противное, то есть пусть утверждение справедливо не для всякого натурального n . Тогда существует такое натуральное число m , что

    утверждение для n =m несправедливо,

    для всех n

Очевидно, что m >1, так как при n =1 утверждение справедливо (условие 1). Следовательно, m -1 - натуральное число. Для натурального числа m -1 утверждение справедливо, а для следующего натурального числа m оно несправедливо. Это противоречит условию 2. Полученное противоречие показывает неверность предположения. Следовательно, утверждение справедливо для всякого натурального n, ч. т. д.

Доказательство, основанное на принципе математической индукции, называется доказательством методом математической индукции. Такое доказательство должно состоять из двух частей, из доказательства двух самостоятельных теорем.

Теорема 1 . Утверждение справедливо для n =1.

Теорема 2 . Утверждение справедливо для n =k +1, если оно справедливо для n=k, где k-произвольное натуральное число.

Если обе эти теоремы доказаны, то на основании принципа математической индукции утверждение справедливо для любого
натурального n .

Необходимо подчеркнуть, что доказательство методом математической индукции, безусловно, требует доказательства обеих теорем 1 и 2. Пренебрежительное отношение к теореме 2 приводит к неверным выводам (примеры 1-2). Покажем на примере, сколь обязательно доказательство теоремы 1.

Пример 3 . «Теорема»: всякое натуральное число равно следующему за ним натуральному числу.

Доказательство проведем методом математической индукции.

Предположим, что k =k +1 (1).

Докажем, что k +1=k +2 (2). Для этого к каждой части «равенства» (1) прибавим 1.Получаем «равенство» (2). Выходит, что если утверждение справедливо для n =k , то оно справедливо и для n =k +1., ч.т.д.

Очевидное «следствие» из «теоремы»: все натуральные числа равны.

Ошибка заключается в том, что теорема 1, необходимая для применения принципа математической индукции не доказана и не верна, а доказана только вторая теорема.

Теоремы 1 и 2 имеют особое значение.

Теорема 1 создает базу для проведения индукции. Теорема 2 дает право неограниченного автоматического расширения этой базы, право перехода от данного частного случая к следующему, от n к n +1.

Если не доказана теорема 1 , а доказана теорема 2 , то, следовательно, не создана база для проведения индукции, и тогда бессмысленно применять теорему 2 ,так как и расширять-то, собственно, нечего.

Если не доказана теорема 2 , а доказана только теорема 1, то, хотя база для проведения индукции и создана, право расширения этой базы отсутствует.

Замечания .

    Иногда вторая часть доказательства опирается на справедливость утверждения не только для n =k , но и для n =k -1. В этом случае утверждение в первой части должно быть проверено для двух последующих значений n .

    Иногда утверждение доказывается не для всякого натурального n , а для n > m , где m – некоторое целое число. В этом случае в первой части доказательства утверждение проверяется для n =m +1, а если это необходимо, то для нескольких последующих значений n .

Подытожив сказанное, имеем: метод математической индукции позволяет в поисках общего закона испытывать возникающие при этом гипотезы, отбрасывать ложные и утверждать истинные.

Всем известна роль процессов обобщения результатов отдельных наблюдений и опытов (т.е. индукции) для эмпирических, экспериментальных наук. Математика же издавна считалась классическим образцом осуществления чисто дедуктивных методов, так как явно или неявно всегда подразумевается, что все математические предложения (кроме принятых за исходные - аксиом) доказываются, а конкретные применения этих предложений выводятся из доказательств, пригодных для общих случаев (дедукция).

Что же значит индукция в математике? Следует ли ее понимать как не вполне надежный способ, и как искать критерий надежности таких индуктивных методов? Или достоверность математических заключений той же природы, что и опытные обобщения экспериментальных наук, таких, что любой доказанный факт неплохо было бы еще и «проверить»? В действительности дело обстоит не так.

Индукции (наведение) на гипотезу играет в математике очень большую, но чисто эвристическую роль: она позволяет догадываться, каким должно быть решение. Но устанавливаются же математические предложения только дедуктивно. И метод математической индукции есть чисто дедуктивный метод доказательства. В самом деле, доказательство, проводимое этим методом, состоит из двух частей:

    так называемый «базис» – дедуктивное доказательство искомого предложения для одного (или нескольких) натурального числа;

    индукционный шаг, состоящий в дедуктивном доказательстве общего утверждения. Теорема именно доказывается для всех натуральных чисел. Из базиса, доказанного, например, для числа 0, мы получаем, по индукционному шагу, доказательство для числа 1, затем таким же образом для 2, для 3 …- и так утверждение может быть обосновано для любого натурального числа.

Иначе говоря, название «математическая индукция» обусловлено тем, что этот метод просто ассоциируется в нашем сознании с традиционными индуктивными умозаключениями (ведь базис действительно доказывается только для частного случая); индукционный шаг, в отличие от основанных на опыте критериев правдоподобности индуктивных умозаключений в естественных и общественных науках, есть общее утверждение, не нуждающееся ни в какой частной посылке и доказываемое по строгим канонам дедуктивных рассуждений. Поэтому математическую индукцию называют «полной» или «совершенной», так как она есть дедуктивный, совершенно надежный метод доказательства.

Примеры решений задач

Индукция в алгебре

Рассмотрим несколько примеров алгебраических задач, а также доказательство различных неравенств, решаемых с применением метода математической индукции.

Задача 1 . Угадать формулу для суммы и доказать её.

А(n )= 2  1 2 + 3 2 2 + …..+(n +1) n 2 .

Решение.

1. Преобразуем выражение для суммы А(n ):

A(n)= 2  1 2 + 3  2 2 + ….+ (n+1) n 2 = (1+1) 1 2 + (2+1) 2 2 + …. + (n+1) n 2 = =1  1 2 + 2  2 2 + …+n  n 2 + 1 2 + 2 2 +… +n 2 =1 3 + 2 3 +… +n 3 +1 2 + 2 2 +… +n 2 = В(n) + C(n), где B(n) = 1 3 + 2 3 + …..+ n 3 , C(n)= 1 2 + 2 2 +…+ n 2 .

2. Рассмотрим суммы C (n ) и B (n ).

а) С(n ) = 1 2 + 2 2 +…+ n 2 . Одна из часто встречающихся задач на метод математической индукции, доказать, что для любого натурального n , выполняется равенство

1 2 + 2 2 +…+ n 2 = (1)

Предположим, что (1) верно при всех n N .

б) B(n) = 1 3 + 2 3 + …..+ n 3 . Пронаблюдаем, как изменяются значения B (n ) в зависимости от n .

B(1) = 1 3 = 1 .

B(2) = 1 3 + 2 3 = 9 = 3 2 = (1 + 2) 2

B (3) = 1 3 + 2 3 + 3 3 = 36 =

Таким образом, можно предположить, что
B (n ) = (1 + 2 + ….+ n ) 2 =
(2)

в) В результате для суммы А(n ) получаем

А(n ) = =

= (*)

3. Докажем полученную формулу (*) методом математической индукции.

а) проверим справедливость равенства (*) при n = 1.

А(1) = 2=2,

Очевидно, что формула (*) при n = 1 верна.

б) предположим, что формула (*) верна при n=k , где k N, то есть выполняется равенство

A(k)=

Исходя из предположения, докажем справедливость формулы при n =k +1. Действительно,

A (k+1 )=

Так как формула (*) верна при n =1, и из предположения, что она верна при некотором натуральном k , следует ее справедливость при n =k +1, на основании принципа математической индукции заключаем, что равенство


выполняется при всяком натуральном n .

Задача 2.

Вычислить сумму 1-2 + 3-4 +…(-1) n -1 n .

Решение.

    Выпишем последовательно значения сумм при различных значениях n .

A(1)=1, A(2)=1-2= -1, A(3)=1-2+3=2, A(4)=1-2+3-4= -2,

A (5)=1-2+3-4+5=3, A (6)=1-2+3-4+5-6= -3.

Наблюдая закономерность, можем предположить, что A (n )= - при четных n и A (n )=
при нечетных n . Объединим оба результата в единую формулу:

A (n ) =
, где r – остаток от деления n на 2.

Иr , очевидно, определяется следующим правилом

0, если n – чётное,

r =

1, если n – нечётное.

Тогда r (можно догадаться) представимо в виде:

Окончательно получим формулу для A (n ):

A (n )=

(*)

Докажем выполнение равенства (*) при всех n N методом математической индукции.

2. а) Проверим равенство (*) при n =1. А(1) = 1=

Равенство справедливо

б) Предположим, что равенство

1-2+3-4+…+(-1) n-1 n =

верно при n =k . Докажем, что оно справедливо и при n =k +1, то есть

A (k +1)=

В самом деле,

A(k+1)=A(k)+(-1) k (k+1) =

=

Что и требовалось доказать.

Метод математической индукции применяется также для решения задач на делимость.

Задача 3.

Доказать, что число N (n )=n 3 + 5n делится на 6 при любом натуральном n.

Доказательство.

    При n =1 число N (1)=6 и потому утверждение справедливо.

    Пусть при некотором натуральном k число N (k )=k 3 +5k делится на 6. Докажем, что N (k +1)= (k +1) 3 + 5(k +1) делится на 6. Действительно, имеем
    N (k +1)= (k +1) 3 + 5(k +1)=(k 3 +5k )+3k (k +1)+6.

Поскольку k и k +1 - рядом стоящие натуральные числа, то одно из них обязательно четно, поэтому выражение 3k (k +1) делится на 6. Таким образом, получаем, что N (k +1) также делится на 6. Вывод число N (n )=n 3 + 5n делится на 6 при любом натуральном n.

Рассмотрим решение более сложной задачи на делимость, когда метод полной математической индукции приходится применять несколько раз.

Задача 4.

Доказать, что при любом натуральном n число
не делится нацело на число 2 n +3 .

Доказательство.


Представим
в виде произведения
=

= (*)

По предположению первый множитель в (*) не делится нацело на число 2 k +3 , то есть в представлении составного числа
в виде произведения простых чисел число 2 повторяется не более чем (k +2) раза. Таким образом, чтобы доказать, что число
не делится нацело на 2 k +4 , надо доказать, что
не делится на 4.

Для доказательства этого утверждения докажем вспомогательное утверждение: для любого натурального n число 3 2 n +1 не делится на 4. Для n =1 утверждение очевидно, так как 10 не делится на 4 без остатка. При предположении, что 3 2 k +1 не делится на 4, докажем, что и 3 2(k +1) +1 не делится
на 4. Представим последнее выражение в виде суммы:

3 2(k+1) +1=3 2k+2 +1=3 2k * 9+1=(3 2k +1)+8 * 3 2k . Второе слагаемое суммы делится на 4 нацело, а первое не делится. Следовательно, вся сумма не делится на 4 без остатка. Вспомогательное утверждение доказано.

Теперь ясно, что
не делится на 4, так как число 2 k является четным числом.

Окончательно получаем, что число
не делится нацело на число 2 n +3 ни при каком натуральном n .

Рассмотрим теперь пример применения индукции к доказательству неравенств.

Задача 5.

При каких натуральных n справедливо неравенство 2 n > 2n + 1?

Решение.

1. При n =1 2 1 < 2*1+1,

при n =2 2 2 < 2*2+1,

при n =3 2 3 > 2*3+1,

при n =4 2 4 > 2*4+1.

По-видимому, неравенство справедливо при любом натуральном n 3. Докажем это утверждение.

2. При n =3 справедливость неравенства уже показана. Пусть теперь неравенство справедливо при n =k , где k - некоторое натуральное число, не меньшее 3, т.е.

2 k > 2k +1 (*)

Докажем, что тогда неравенство справедливо и при n =k +1, то есть 2 k +1 >2(k +1)+1. Умножим (*) на 2, получим 2 k +1 >4k +2. Сравним выражения 2(k +1)+1 и 4k +2.

4k+2-(2(k+1)+1)=2k-1. Очевидно, что 2k -1>0 при любом натуральном k . Тогда 4k +2>2(k +1)+1, т.е. 2 k +1 >2(k +1)+1. Утверждение доказано.

Задача 6.

Неравенство для среднего арифметического и среднего геометрического n неотрицательных чисел (неравенство Коши). , получим =

Если хотя бы одно из чисел
равно нулю, то неравенство (**) также справедливо.

Заключение.

При выполнении работы я изучила суть метода математической индукции и его доказательство. В работе представлены задачи, в которых большую роль сыграла неполная индукция, наводящая на правильное решение, и затем проведено доказательство, полученное с помощью метода математической индукции.

Литература.

    Болтянский В.Г., Сидоров Ю.В., Шабурин М.И. Лекции и задачи по элементарной математике; Наука, 1974.

    Виленкин Н.Я. , Шварцбурд С.И. Математический анализ.-
    М.: Просвещение, 1973.

    Галицкий М.Л., Мошкович М.М, Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа.- М.: Просвещение, 1990.

    Потапов М.К., Александров В.В., Пасиченко П.И. Алгебра и анализ элементарных функций.- М.: Наука, 1980.

    Соминский И.С., Головина М.Л., Яглом И.М. О математической индукции.- М.: Наука, 1967.

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k) Ю А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k) Ю A(k+1)

Доказать, что 1+3+5+…+(2n-1)=n 2 .

  • 1) Имеем n=1=1 2 . Следовательно, утверждение верно при n=1, т.е. А(1) истинно
  • 2) Докажем, что А(k) Ю A(k+1)

Пусть k-любое натуральное число и пусть утверждение справедливо для n=k, т.е

1+3+5+…+(2k-1)=k 2

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

  • 1+3+5+…+(2k+1)=(k+1) 2 В самом деле,
  • 1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2

Итак, А(k) Ю А(k+1). На основании принципа математической индукции заключаем, что предположение А(n) истинно для любого n О N

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х № 1

  • 1) При n=1 получаем
  • 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) истинно

  • 2) Пусть k-любое натуральное число и пусть формула верна при n=k,
  • 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1)

Докажем, что тогда выполняется равенство

  • 1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1) В самом деле
  • 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1)

Итак, А(k) Ю A(k+1). На основании принципа математической индукции заключаем, что формула верна для любого натурального числа n

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2

Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике

А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно

2) Предположим, что во всяком выпуклом k-угольнике имеет А 1 ся А k =k(k-3)/2 диагоналей. А k Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы подсчитать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k

Таким образом,

G k+1 =G k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2

Итак, А(k) Ю A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утверждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2

=(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого натурального n

Доказать, что для любого натурального n справедливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4

Решение: 1) Пусть n=1

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1. Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4

3) Докажем истинность этого утверждения для n=k+1, т.е

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4

Из приведённого доказательства видно, что утверждение верно при n=k+1, следовательно, равенство верно при любом натуральном n

Доказать, что

((2 3 +1)/(2 3 -1)) ґ ((3 3 +1)/(3 3 -1)) ґ … ґ ((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2

Решение: 1) При n=2 тождество выглядит:

  • (2 3 +1)/(2 3 -1)=(3 ґ 2 ґ 3)/2(2 2 +2+1), т.е. оно верно
  • 2) Предположим, что выражение верно при n=k
  • (2 3 +1)/(2 3 -1) ґ … ґ (k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1)
  • 3) Докажем верность выражения при n=k+1
  • (((2 3 +1)/(2 3 -1)) ґ … ґ ((k 3 +1)/(k 3 -1))) ґ (((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1)) ґ ((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2 ґ

ґ ((k+1) 2 +(k+1)+1)

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3) для любого натурального n

Решение: 1) Пусть n=1, тогда

  • 1 3 -2 3 =-1 3 (4+3); -7=-7
  • 2) Предположим, что n=k, тогда
  • 1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3)
  • 3) Докажем истинность этого утверждения при n=k+1
  • (1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3)

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для любого натурального n.

Доказать верность тождества

(1 2 /1 ґ 3)+(2 2 /3 ґ 5)+…+(n 2 /(2n-1) ґ (2n+1))=n(n+1)/2(2n+1) для любого натурального n

  • 1) При n=1 тождество верно 1 2 /1 ґ 3=1(1+1)/2(2+1)
  • 2) Предположим, что при n=k
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1) ґ (2k+1))=k(k+1)/2(2k+1)
  • 3) Докажем, что тождество верно при n=k+1
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1)) ґ ((k/2)+((k+1)/(2k+3)))=(k+1)(k+2) ґ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1)

Из приведённого доказательства видно, что утверждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23 ґ 133

Но (23 ґ 133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

  • 2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка
  • 3) Докажем, что в таком случае (11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле
  • 11 k+3 +12 2л+3 =11 ґ 11 k+2 +12 2 ґ 12 2k+1 =11 ґ 11 k+2 +

+(11+133) ґ 12 2k+1 =11(11 k+2 +12 2k+1)+133 ґ 12 2k+1

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без остатка по предположению, а во втором одним из множителей выступает 133. Итак, А(k) Ю А(k+1). В силу метода математической индукции утверждение доказано

Доказать, что при любом n 7 n -1 делится на 6 без остатка

  • 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно
  • 2) Предположим, что при n=k 7 k -1 делится на 6 без остатка
  • 3) Докажем, что утверждение справедливо для n=k+1

X k+1 =7 k+1 -1=7 ґ 7 k -7+6=7(7 k -1)+6

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном натуральном n делится на 11.

1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остатка.

Значит, при n=1 утверждение верно

  • 2) Предположим, что при n=k X k =3 3k-1 +2 4k-3 делится на 11 без остатка
  • 3) Докажем, что утверждение верно для n=k+1

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3 ґ 3 3k-1 +2 4 ґ 2 4k-3 =

27 ґ 3 3k-1 +16 ґ 2 4k-3 =(16+11) ґ 3 3k-1 +16 ґ 2 4k-3 =16 ґ 3 3k-1 +

11 ґ 3 3k-1 +16 ґ 2 4k-3 =16(3 3k-1 +2 4k-3)+11 ґ 3 3k-1

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположению, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма делится на 11 без остатка при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 11 2n -1 при произвольном натуральном n делится на 6 без остатка

  • 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утверждение верно
  • 2) Предположим, что при n=k 1 2k -1 делится на 6 без остатка
  • 11 2(k+1) -1=121 ґ 11 2k -1=120 ґ 11 2k +(11 2k -1)

Оба слагаемых делятся на 6 без остатка: первое содержит кратное 6-ти число 120, а второе делится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка

Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка

  • 1. При n=0
  • 3 3 -1=26 делится на 26
  • 2. Предположим, что при n=k
  • 3 3k+3 -1 делится на 26
  • 3. Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -1=27 ґ 3 3k+3 -1=26 ґ 3 3л+3 +(3 3k+3 -1) -делится на 26

Теперь проведём доказательство утверждения, сформулированного в условии задачи

  • 1) Очевидно, что при n=1 утверждение верно
  • 3 3+3 -26-27=676
  • 2) Предположим, что при n=k выражение 3 3k+3 -26k-27 делится на 26 2 без остатка
  • 3) Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27)

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода математической индукции утверждение доказано

Доказать, что если n>2 и х>0, то справедливо неравенство (1+х) n >1+n ґ х

  • 1) При n=2 неравенство справед-ливо, так как
  • (1+х) 2 =1+2х+х 2 >1+2х

Значит, А(2) истинно

  • 2) Докажем, что А(k) Ю A(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство
  • (1+х) k >1+k ґ x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1) ґ x

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k ґ x)(1+x)

Рассмотрим правую часть последнего неравенства; имеем

(1+k ґ x)(1+x)=1+(k+1) ґ x+k ґ x 2 >1+(k+1) ґ x

В итоге получаем, что (1+х) k+1 >1+(k+1) ґ x

Итак, А(k) Ю A(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого n> 2

Доказать, что справедливо неравенство (1+a+a 2) m > 1+m ґ a+(m(m+1)/2) ґ a 2 при а> 0

Решение: 1) При m=1

  • (1+а+а 2) 1 > 1+а+(2/2) ґ а 2 обе части равны
  • 2) Предположим, что при m=k
  • (1+a+a 2) k >1+k ґ a+(k(k+1)/2) ґ a 2
  • 3) Докажем, что при m=k+1 не-равенство верно
  • (1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k ґ a+

+(k(k+1)/2) ґ a 2)=1+(k+1) ґ a+((k(k+1)/2)+k+1) ґ a 2 +

+((k(k+1)/2)+k) ґ a 3 +(k(k+1)/2) ґ a 4 > 1+(k+1) ґ a+

+((k+1)(k+2)/2) ґ a 2

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математической индукции, неравенство справедливо для любого натурального m

Доказать, что при n>6 справедливо неравенство 3 n >n ґ 2 n+1

Перепишем неравенство в виде (3/2) n >2n

  • 1. При n=7 имеем 3 7 /2 7 =2187/128>14=2 ґ 7 неравенство верно
  • 2. Предположим, что при n=k (3/2) k >2k
  • 3) Докажем верность неравенства при n=k+1
  • 3 k+1 /2 k+1 =(3 k /2 k) ґ (3/2)>2k ґ (3/2)=3k>2(k+1)

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравенство справедливо для любого натурального n

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n)

  • 1) При n=3 неравенство верно
  • 1+(1/2 2)+(1/3 2)=245/180
  • 2. Предположим, что при n=k
  • 1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k)
  • 3) Докажем справедливость неравенства при n=k+1
  • (1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1) Ы

Ы (1/(k+1) 2)+(1/k+1)<1/k Ы (k+2)/(k+1) 2 <1/k Ы

Ы k(k+2)<(k+1) 2 Ы k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1)

В силу метода математической индукции неравенство доказано.

Метод доказательства, основанный на аксиоме Пеано 4, используют для доказательства многих математических свойств и различных утверждений. Основой для этого служит следующая теорема.


Теорема . Если утверждение А(n) с натуральной переменной n истинно для n = 1 и из того, что оно истинно для n = k , следует, что оно истинно и для следующего числа n=k, то утверждение А(n) n .


Доказательство . Обозначим через М множество тех и только тех натуральных чисел, для которых утверждение А(n) истинно. Тогда из условия теоремы имеем: 1) 1М ; 2) k M k M . Отсюда, на основании аксиомы 4, заключаем, что М = N , т.е. утверждение А(n) истинно для любого натурального n .


Метод доказательства, основанный на этой теореме, называется методом математической индукции, а аксиома - аксиомой индукции. Такое доказательство состоит из двух частей:


1) доказывают, что утверждение А(n) истинно для n = А(1);


2) предполагают, что утверждение А(n) истинно для n = k , и, исходя из этого предположения, доказывают, что утверждение A(n) истинно и для n = k + 1, т.е. что истинно высказывание A(k) A(k + 1).


Если А(1) А(k) A(k + 1) - истинное высказывание, то делают вывод о том, что утверждение A(n) истинно для любого натурального числа n .


Доказательство методом математической индукции можно начинать не только с подтверждения истинности утверждения для n = 1, но и с любого натурального числа m . В этом случае утверждение А(n) будет доказано для всех натуральных чисел nm .


Задача.Докажем, что для любого натурального числа истинно равенство 1 + 3 + 5 … + (2n - 1) = n.


Решение. Равенство 1 + 3 + 5 … + (2n - 1) = n представляет собой формулу, по которой можно находить сумму первых последовательных нечетных натуральных чисел. Например, 1 + 3 + 5 + 7 = 4= 16 (сумма содержит 4 слагаемых), 1 + 3 + 5 + 7 + 9 + 11 = 6= 36 (сумма содержит 6 слагаемых); если эта сумма содержит 20 слагаемых указанного вида, то она равна 20= 400 и т.д. Доказав истинность данного равенства, получим возможность находить по формуле сумму любого числа слагаемых указанного вида.


1) Убедимся в истинности данного равенства для n = 1. При n = 1 левая часть равенства состоит из одного члена, равного 1, правая часть равна 1= 1. Так как 1 = 1, то для n = 1 данное равенство истинно.


2) Предположим, что данное равенство истинно для n = k , т.е. что 1 + 3 + 5 + … + (2k - 1) = k. Исходя из этого предположения, докажем, что оно истинно и для n = k + 1, т.е. 1 + 3 + 5 + … + (2k - 1) + (2(k + 1) - 1) = (k + 1).


Рассмотрим левую часть последнего равенства.


По предположению, сумма первых k слагаемых равна k и потому 1 + 3 + 5 + … + (2k - 1) + (2(k + 1) - 1) = 1 + 3 + 5 + … + (2k - 1) + (2k + 1)=



= k+ (2k + 1) = k+ 2k + 1. Выражение k+ 2k + 1 тождественно равно выражению (k + 1).


Следовательно, истинность данного равенства для n = k + 1 доказана.


Таким образом, данное равенство истинно для n = 1 и из истинности его для n = k следует истинность для n = k + 1.


Тем самым доказано, что данное равенство истинно для любого натурального числа.


С помощью метода математической индукции можно доказывать истинность не только равенств, но и неравенств.


Задача. Доказать, что , где nN.


Решение. Проверим истинность неравенства при n = 1. Имеем - истинное неравенство.


Предположим, что неравенство верно при n = k, т.е. - истинное неравенство. Докажем, исходя из предположения, что оно верно и при n = k + 1,т.е. (*).


Преобразуем левую часть неравенства (*), учитывая, что : .


Но , значит и .


Итак, данное неравенство истинно для n = 1, и, из того, что неравенство верно для некоторого n = k , мы получили, что оно верно и для n = k + 1.


Тем самым, используя аксиому 4, мы доказали, что данное неравенство истинно для любого натурального числа.


Методом математической индукции можно доказать и иные утверждения.


Задача. Доказать, что для любого натурального числа истинно утверждение .


Решение . Проверим истинность утверждения при n = 1: -истинное высказывание.


Предположим, что данное утверждение верно при n = k : . Покажем, используя это, истинность утверждения при n = k + 1: .


Преобразуем выражение: . Найдем разность k и k+ 1 членов. Если окажется, что полученная разность кратна 7, а по предположению вычитаемое делится на 7, то и уменьшаемое также кратно 7:



Произведение кратно 7, следовательно, и .


Таким образом, данное утверждение истинно для n = 1 и из истинности его для n = k следует истинность для n = k + 1.


Тем самым доказано, что данное утверждение истинно для любого натурального числа.


Задача. Доказать, что для любого натурального числа n 2 истинно утверждение (7- 1)24.


Решение. 1) Проверим истинность утверждения при n = 2: - истинное высказывание.

Математическая индукция лежит в основе одного из самых распространенных методов математических доказательств. С его помощью можно доказать большую часть формул с натуральными числами n , например, формулу нахождения суммы первых членов прогрессии S n = 2 a 1 + n - 1 d 2 · n , формулу бинома Ньютона a + b n = C n 0 · a n · C n 1 · a n - 1 · b + . . . + C n n - 1 · a · b n - 1 + C n n · b n .

В первом пункте мы разберем основные понятия, потом рассмотрим основы самого метода, а затем расскажем, как с его помощью доказывать равенства и неравенства.

Понятия индукции и дедукции

Для начала рассмотрим, что такое вообще индукция и дедукция.

Определение 1

Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному.

Например, у нас есть утверждение: 254 можно разделить на два нацело. Из него мы можем сделать множество выводов, среди которых будут как истинные, так и ложные. Например, утверждение, что все целые числа, которые имеют в конце цифру 4 , могут делиться на два без остатка – истинное, а то, что любое число из трех знаков делится на 2 – ложное.

В целом можно сказать, что с помощью индуктивных рассуждений можно получить множество выводов из одного известного или очевидного рассуждения. Математическая индукция позволяет нам определить, насколько справедливы эти выводы.

Допустим, у нас есть последовательность чисел вида 1 1 · 2 , 1 2 · 3 , 1 3 · 4 , 1 4 · 5 , . . . , 1 n (n + 1) , где n обозначает некоторое натуральное число. В таком случае при сложении первых элементов последовательности мы получим следующее:

S 1 = 1 1 · 2 = 1 2 , S 2 = 1 1 · 2 + 1 2 · 3 = 2 3 , S 3 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 = 3 4 , S 4 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 + 1 4 · 5 = 4 5 , . . .

Используя индукцию, можно сделать вывод, что S n = n n + 1 . В третьей части мы докажем эту формулу.

В чем заключается метод математической индукции

В основе этого метода лежит одноименный принцип. Он формулируется так:

Определение 2

Некое утверждение будет справедливым для натурального значения n тогда, когда 1) оно будет верно при n = 1 и 2) из того, что это выражение справедливо для произвольного натурального n = k , следует, что оно будет верно и при n = k + 1 .

Применение метода математической индукции осуществляется в 3 этапа:

  1. Для начала мы проверяем верность исходного утверждения в случае произвольного натурального значения n (обычно проверка делается для единицы).
  2. После этого мы проверяем верность при n = k .
  3. И далее доказываем справедливость утверждения в случае, если n = k + 1 .

Как применять метод математической индукции при решении неравенств и уравнений

Возьмем пример, о котором мы говорили ранее.

Пример 1

Докажите формулу S n = 1 1 · 2 + 1 2 · 3 + . . . + 1 n (n + 1) = n n + 1 .

Решение

Как мы уже знаем, для применения метода математической индукции надо выполнить три последовательных действия.

  1. Для начала проверяем, будет ли данное равенство справедливым при n , равном единице. Получаем S 1 = 1 1 · 2 = 1 1 + 1 = 1 2 . Здесь все верно.
  2. Далее делаем предположение, что формула S k = k k + 1 верна.
  3. В третьем шаге нам надо доказать, что S k + 1 = k + 1 k + 1 + 1 = k + 1 k + 2 , основываясь на справедливости предыдущего равенства.

Мы можем представить k + 1 в качестве суммы первых членов исходной последовательности и k + 1:

S k + 1 = S k + 1 k + 1 (k + 2)

Поскольку во втором действии мы получили, что S k = k k + 1 , то можно записать следующее:

S k + 1 = S k + 1 k + 1 (k + 2) .

Теперь выполняем нужные преобразования. Нам потребуется выполнить приведение дроби к общему знаменателю, приведение подобных слагаемых, применить формулу сокращенного умножения и сократить то, что получилось:

S k + 1 = S k + 1 k + 1 (k + 2) = k k + 1 + 1 k + 1 (k + 2) = = k (k + 2) + 1 k + 1 (k + 2) = k 2 + 2 k + 1 k + 1 (k + 2) = (k + 1) 2 k + 1 (k + 2) = k + 1 k + 2

Таким образом, мы доказали равенство в третьем пункте, выполнив все три шага метода математической индукции.

Ответ: предположение о формуле S n = n n + 1 является верным.

Возьмем более сложную задачу с тригонометрическими функциями.

Пример 2

Приведите доказательство тождества cos 2 α · cos 4 α · . . . · cos 2 n α = sin 2 n + 1 α 2 n sin 2 α .

Решение

Как мы помним, первым шагом должна быть проверка верности равенства при n , равном единице. Чтобы это выяснить, нам надо вспомнить основные тригонометрические формулы.

cos 2 1 = cos 2 α sin 2 1 + 1 α 2 1 sin 2 α = sin 4 α 2 sin 2 α = 2 sin 2 α · cos 2 α 2 sin 2 α = cos 2 α

Следовательно, при n , равном единице, тождество будет верным.

Теперь предположим, что его справедливость сохранится при n = k , т.е. будет верно, что cos 2 α · cos 4 α · . . . · cos 2 k α = sin 2 k + 1 α 2 k sin 2 α .

Доказываем равенство cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = sin 2 k + 2 α 2 k + 1 sin 2 α для случая, когда n = k + 1 , взяв за основу предыдущее предположение.

Согласно тригонометрической формуле,

sin 2 k + 1 α · cos 2 k + 1 α = = 1 2 (sin (2 k + 1 α + 2 k + 1 α) + sin (2 k + 1 α - 2 k + 1 α)) = = 1 2 sin (2 · 2 k + 1 α) + sin 0 = 1 2 sin 2 k + 2 α

Следовательно,

cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = = cos 2 α · cos 4 α · . . . · cos 2 k α · cos 2 k + 1 α = = sin 2 k + 1 α 2 k sin 2 α · cos 2 k + 1 α = 1 2 · sin 2 k + 1 α 2 k sin 2 α = sin 2 k + 2 α 2 k + 1 sin 2 α

Пример решения задачи на доказательство неравенства с применением этого метода мы привели в статье о методе наименьших квадратов. Прочтите тот пункт, в котором выводятся формулы для нахождения коэффициентов аппроксимации.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter