Найдем связь между оптической характеристикой и расстояниями, определяющими положение предмета и его изображения.

Пусть предметом служит некоторая точка А, располагающаяся на оптической оси. Используя законы отражения света, построим изображение этой точки (рис. 2.13).

Обозначим расстояние от предмета до полюса зеркала (АО), а от полюса до изображения(ОА).

Рассмотрим треугольник АРС, получаем, что

Из треугольника АРА, получаем, что
. Исключим из этих выражений угол
, так как единственный который не опирается на ОР.

,
или

(2.3)

Углы ,,опираются на ОР. Пусть рассматриваемые пучки параксиальны, тогда эти углы малы и, следовательно, их значения в радианной мере равно тангенсу этих углов:

;
;
, гдеR=OC, является радиусом кривизны зеркала.

Подставим полученные выражения в уравнение (2.3)

Так как мы ранее выяснили, что фокусное расстояние связано с радиусом кривизны зеркала, то

(2.4)

Выражение (2.4) называется формулой зеркала, которая используется лишь с правилом знаков:

Расстояния ,,
считаются положительными, если они отсчитываются по ходу луча, и отрицательными – в противном случае.

Выпуклое зеркало .

Рассмотрим несколько примеров на построение изображений в выпуклых зеркалах.

1) Предмет расположен на расстоянии большем радиуса кривизны. Строим изображение концевых точек предмета А и В. Используем лучи: 1) параллельный главной оптической оси; 2) луч, проходящий через оптический центр зеркала. Получим изображение мнимое, уменьшенное, прямое.(рис.2.14)

2) Предмет расположен на расстоянии равном радиусу кривизны. Изображение мнимое, уменьшенное, прямое (рис.2.15)

Фокус выпуклого зеркала мнимый. Формула выпуклого зеркала

.

Правило знаков для d и f остается таким же, как и для вогнутого зеркала.

Линейное увеличение предмета определяется отношением высоты изображения к высоте самого предмета

. (2.5)

Таким образом, независимо от расположения предмета относительно выпуклого зеркала изображение оказывается всегда мнимым, прямым, уменьшенным и расположенным за зеркалом. В то время как изображения в вогнутом зеркале более разнообразны, зависят от расположения предмета относительно зеркала. Поэтому вогнутые зеркала применяются чаще.

Рассмотрев принципы построения изображений в различных зеркалах, мы подошли к пониманию действия столь различных приборов, как астрономические телескопы и увеличивающие зеркала в косметических приборах и медицинской практике, мы способны сами спроектировать некоторые приборы.

Зеркальное отражение, диффузное отражение

Плоское зеркало.

Простейшей оптической системой является плоское зеркало. Если параллельный пучок лучей, падающий на плоскую поверхность раздела двух сред, после отражения остается параллельным, то отражение называется зеркальным, а сама поверхность называется плоским зеркалом (рис. 2.16).

Изображения в плоских зеркалах строятся на основании закона отражения света. Точечный источник S (рис.2.17) дает расходящийся пучок света, построим отраженный пучок. Восстановим перпендикуляр в каждую точку падения и отраженный луч изображаем из условияÐa=Ðb(Ða 1 =Ðb 1, Ða 2 =b 2 и т.д.) Получаем расходящийся пучок отраженных лучей, продолжаем эти лучи до пересечения, точка их пересечения S ¢ является изображением точки S, это изображение будет мнимым.

Изображение прямой линии AB можно построить, соединяя прямой изображения двух концевых точек А¢и В¢. Измерения показывают, что это изображение находится на таком же расстоянии за зеркалом, на каком предмет находится перед зеркалом, и, что размеры его изображения такие же, как и размеры предмета. Изображение, обра­зующееся в плоском зеркале, обращенное и мнимое (см. рис.2.18).

Если отражающая поверхность шероховата, то отражение неправильное и свет рассеивается, или диффузно отражается (рис.2.19)

Диффузное отражение гораздо более приятно для глаза, чем отражение гладкими поверхностями, называемое правильным отражением.

Линзы.

Линзы, также как и зеркала являются оптическими системами, т.е. способны изменять ход светового луча. Линзы по форме могут быть различными: сферическими, цилиндрическими. Мы остановимся только на сферических линзах.

Прозрачное тело, ограниченное двумя сферическими поверхностями, называется линзой .

Прямую линию, на которой лежат центры сферических поверхностей, называют главной оптической осью линзы. Главная оптическая ось линзы пересекает сферические поверхности в точках М и N – это вершины линзы. Если расстоянием MN можно пренебречь по сравнению с R 1 и R 2 , то линза называется тонкой. В этом случае (×)М совпадает с (×)N и тогда (×)М будет называться оптическим центром линзы. Все прямые, проходящие через оптический центр линзы, кроме главной оптической оси называются побочными оптическими осями (рис.2.20).

Собирающие линзы . Фокусом собирающей линзы называется точка, в которой пересекаются параллельные оптической оси лучи после преломления в линзе. Фокус собирающей линзы – действительный. Фокус, лежащий на главной оптической оси, называется главным фокусом. Любая линза имеет два главных фокуса: передний (со стороны падающих лучей) и задний (со стороны преломленных лучей). Плоскость, в которой лежат фокусы, называется фокальной плоскостью. Фокальная плоскость всегда перпендикулярна главной оптической оси и проходит через главный фокус. Расстояние от центра линзы до главного фокуса называется главным фокусным расстоянием F (рис.2.21).

Для построения изображений какой- либо светящейся точки следует проследить ход любых двух лучей, падающих на линзу и преломленных в ней до их пересечения (или пересечения их продолжения). Изображение протяженных светящихся предметов представляет собой совокупность изображений отдельных его точек. Наиболее удобными лучами, используемыми при построении изображений в линзах, являются следующие характерные лучи:

1) луч, падающий на линзу параллельно какой-либо оптической оси, после преломления пройдет через фокус, лежащий на этой оптической оси

2) луч, идущий вдоль оптической оси, не меняет своего направления

3) луч, проходящий через передний фокус, после преломления в линзе пойдет параллельно главной оптической оси;

На рисунке 2.25 продемонстрировано построение изображения точки А предмета АВ.

Кроме перечисленных лучей при построении изображений в тонких линзах используют лучи, параллельные какой-либо побочной оптической оси. Следует иметь в виду, что лучи, падающие на собирающую линзу пучком, параллельным побочной оптической оси, пересекают заднюю фокальную поверхность в той же точке, что и побочная ось.

Формула тонкой линзы:

, (2.6)

где F - фокусное расстояние линзы; D - оптическая сила линзы; d - расстояние от предмета до центра линзы; f - расстояние от центра линзы до изображения. Правило знаков будет таким же, как и для зеркала: все расстояния до действительных точек считаются положительными, все расстояния до мнимых точек считаются отрицательными.

Линейное увеличение, даваемое линзой,

, (2.7)

где H - высота изображения; h - высота предмета.

Рассеивающие линзы . Лучи, падающие на рассеивающую линзу параллельным пучком, расходятся так, что их продолжения пересекаются в точке, называемоймнимым фокусом.

Правила хода лучей в рассеивающей линзе:

1) лучи, падающие на линзу параллельно какой-нибудь оптической оси, после преломления пойдут так, что их продолжения пройдут через фокус, лежащий на оптической оси (рис. 2.26):

2)луч, идущий вдоль оптической оси, не меняет своего направления.

Формула рассеивающей линзы:

(правило знаков остается прежним).

На рисунке 2.27 приведен пример построения изображений в рассеивающих линзах.

Формула сферического зеркала

Найдем связь между расстоянием d светящейся точки от зеркала, расстоянием f изображения этой точки от зеркала и радиусом R сферы, частью которой является зеркало. Рассмотрим сначала вогнутое зеркало (рис. 3.26).

Пусть светящаяся точка S расположена на главной оптической оси ОР вогнутого зеркала. Из точки S на зеркало падает множество лучей, один из которых SP после отражения в точке Р идет вдоль главной оси. Для этого луча угол падения, а следовательно, и угол отражения равен нулю, так как радиус ОР является перпендикуляром (нормалью) к сферической поверхности. Построим ход произвольного луча SB , вышедшего из точки S и отразившегося от зеркала в точке В . Будем рассматривать лишь узкие, приосевые пучки лучей. Тогда точка В окажется на небольшом расстоянии h от главной оптической оси (h << R ).

При выполнении этого условия падающий луч SB и отраженный луч BS 1 , а также радиус ОВ , проведенный в точку падения В , составляют с главной осью углы столь малые, что их синусы можно заменить тангенсами, а также самими углами, выраженными в радианах. В точке S 1 луч BS 1 пересечется с лучом PS 1 , отразившимся в полюсе зеркала. Если остальные лучи после отражения также пройдут через точку S 1 , то эта точка будет являться действительным изображением точки S .

Радиус ОВ перпендикулярен к отражающей поверхности. По закону отражения угол падения a равен углу отражения g. Для треугольника SBO можно по теореме о внешнем угле треугольника записать:

Точно так же для треугольника OBS 1:

Учитывая, что g = a, из (2) получим

Найдем связь между углами g, b и q. Для этого выразим угол a из (1) и подставим в (3):

a = b – j Þ q = b + (b – j) Þ

Теперь рассмотрим прямоугольные треугольники SBM , OBM и S 1 ВМ и выразим значения углов j, b и q через катеты этих треугольников:

DSBM : ;

DОBM : ;

DS 1 BM : .

Подставляя эти значения g, b и q в формулу (4), получим

Формула (3.2) называется формулой сферического зеркала.

Поскольку h не входит в формулу (3.2), то получается, что любой луч, вышедший из точки S и отразившийся от зеркала, пройдет через точку S 1 , т.е. точка S 1 является действительным изображением точки S .

Если в формуле (3.2) положить d ® ¥, т.е. источник бесконечно удаляется от зеркала, и лучи, падающие на зеркало, параллельны главной оптической оси (рис. 3.27, а ), то из формулы (3.2) получим

.

Эта величина является фокусным расстоянием зеркала, т.е. расстоянием зеркала до главного фокуса, и обозначается буквой F :

Другими словами, фокусное расстояние равно половине радиуса! Мы с вами теоретически обосновали формулу (3.1), которую в начале параграфа приняли к сведению как экспериментальный факт. С учетом того, что F = R/ 2, формула (3.2) имеет вид

Из принципа обратимости световых лучей следует, что если в главном фокусе вогнутого зеркала расположить точечный источник, то лучи, выходящие из этого источника, после отражения от зеркала будут параллельны главной оптической оси (рис. 3.27, б ).

А вот когда все вроде бы стало ясно, давайте посмотрим, как пойдут отраженные от вогнутого зеркала лучи в случае, показанном на рис. 3.27, б ), если рассматривать не только малые, а все возможные углы, которые падающие лучи составляют с главной оптической осью.

Рис. 3.28

Рассмотрим луч SB , падающий на зеркало из точки S , расположенной в главном фокусе (рис. 3.28). Луч SB составляет с главной оптической осью угол 90°. В прямоугольном DSBO катет SO = R /2, а гипотенуза ОВ = R , следовательно, ÐSBO = a лежит против катета, который в 2 раза меньше гипотенузы, а значит, a = 30°. Тогда, как видно из рис. 3.28, отраженный луч ВО вовсе не параллелен главной оптической оси, а пересекает ее под углом BS 1 О = 90° – 2×30° = 30°.

Читатель : Из формулы (3.3) следует, что , значит, если d < F , то и , т.е. f < 0. Что бы это значило?

Для удобства дальнейших расчетов договоримся, что величину f в формуле (3.3) будем считать алгебраической. Если f > 0, то изображение действительное, а если f < 0 – изображение мнимое.

Задача 3.6. Вогнутое зеркало с радиусом кривизны R = 1,0 м дает мнимое изображение предмета, расположенное на расстоянии 3,0 м от зеркала. На каком расстоянии d от зеркала находится предмет?

Ответ : 0,43 м.

СТОП! Решите самостоятельно: А7, А8, В9, С4, С5, D1.

Читатель : А как быть, если зеркало выпуклое? Ведь формула (3.3) получена для вогнутого зеркала?

Рис. 3.29

Автор : Когда зеркало выпуклое, то главный фокус расположен за зеркалом (рис. 3.29). Можно показать (мы это делать не будем), что формула сферического зеркала в этом случае также будет справедлива, если величину F в формуле (3.3) взять со знаком «минус». А это значит, что величину F в формуле (3.3) тоже следует рассматривать как величину алгебраическую:

1) если зеркало вогнутое, то ;

2) если зеркало выпуклое, то .

Задача 3.7. Радиус кривизны выпуклого зеркала R = 1,6 м. На каком расстоянии d перед зеркалом должен находиться предмет, чтобы его изображение получилось в п = 1,5 раза ближе к зеркалу, чем сам предмет?

чи , а с учетом того, что f < 0, получаем

. (1)

Формула зеркала в данном случае имеет вид

Подставим (1) в (2):

м.

Ответ : м.

СТОП! Решите самостоятельно: А9, А10, В10, С6, D2.

Мнимый источник

Рис. 3.30

Читатель : Допустим, в вогнутом зеркале 1 получено действительное изображение (рис. 3.30). Если мы поставим второе сферическое зеркало (выпуклое или вогнутое) на пути сходящихся лучей, то, наверное, эти лучи, отразившись от второго зеркала, дадут изображение (действительное или мнимое). Как нам тогда узнать, где находится это изображение?

Цель работы: ознакомление с принципом определения фокусного расстояния сферического зеркала.

Оборудование: оптическая скамья со шкалой, осветителем, экраном, ползунками; набор сферических зеркал, плоское зеркало, спица, линейка.

Теория метода.

Сферическим называют зеркало, отражающая поверхность которого имеет форму части сферы.

Рис 1. Сферическое зеркало

Радиус сферы (рис.1) является радиусом кривизны зеркала. Круг, ограничиваемый краями зеркала, называют апертурой. Прямая MN, проходящая через центр апертуры B и центр кривизны C зеркала, называется

главной оптической осью зеркала. Другие прямые, проходящие через центр кривизны, но не проходящие через центр апертуры, называются побочными оптическими осями зеркала. Точка A пересечения зеркала с главной оптической осью называют вершиной зеркала. Если отражающей является вогнутая поверхность зеркала, то его называют вогнутым, если же выпуклая – выпуклым. Вогнутое зеркало может дать как действительное, так и мнимое изображение, выпуклое - только мнимое. Главным фокусом вогнутого зеркала называют точку F, лежащую на главной оптической оси, в которой пересекаются после отражения от зеркала лучи, падающие на него параллельно главной оптической оси.

Расстояние AF от главного фокуса до вершины зеркала называют главным фокусным расстоянием зеркала. Приблизительно оно равно половине радиуса кривизны зеркала.

Непосредственное измерение фокусного расстояния зеркала оказывается недостаточно точным, так как создание точечного источника или вполне параллельного пучка лучей трудно осуществимо.

Для более точного определения фокусного расстояния сферического зеркала пользуются либо соотношением:

где F - фокусное расстояние,

f - расстояние от предмета до зеркала,

d – расстояние от изображения до зеркала,

либо формулой:

(2),

связывающей отношение размера предмета и его изображения с F; d и f. Формулы (1) и (2) справедливы только в тех случаях, когда падающие лучи составляют с осью зеркала лишь небольшие углы.

1.Определение главного фокусного расстояния вогнутого сферического зеркала.

Описание установки.

Вогнутое зеркало и экран для получения действительного изображения предмета укрепляются каждый на специальном держателе. Держатель может передвигаться по оптической скамье. Имеется шкала или линейка, дающая возможность довольно точно фиксировать положение держателя.

В качестве предмета можно использовать стрелку, начерченную на матовом стекле, а в качестве источника – электрическую лампочку.


Стрелка, служащая предметом, помещена выше экрана для того, чтобы экран

не преграждал лучам путь к зеркалу (рис.2).

Рис.2 Схема хода лучей.

Порядок выполнения работы.

1. Поставив предмет на расстоянии от зеркала заведомо большем, чем удвоенное фокусное расстояние, подбирают такое положение экрана, чтобы изображение было наиболее резким.

2. Отсчитав на шкале расстояния d и f и измерив линейкой величину стрелки (её длину) – x и величину её изображения на экране y, вносят данные в отчетную таблицу.

3. Изменив d на 1,0-1,5 см, вновь находят положение экрана, соответствующее наибольшей резкости и измеряют d, f, и x, y, и т.д.

4. Из данных каждого опыта вычисляют F, воспользовавшись выражениями:

вытекающими из равенств (1) и (2).

Таблица 1.

Расстояния F 1 F ср. ∆F ср. ∆F c р. /F ср.
d f
Среднее

Таблица 2.

Длина F 2 F ср. ∆F ср. ∆F c р. /F ср.
предмета x изображения y
Среднее

6. Сравнить полученные результаты.

2.Определение главного фокусного расстояния выпуклого сферического зеркала.

Описание установки.

Выпуклое зеркало не дает действительного изображения, главный фокус его является мнимым. Чтобы найти главное фокусное расстояние такого зеркала можно снова воспользоваться формулой зеркала (1), учтя при этом, что F , f будут мнимыми, т.е. войдут в формулу (1) со знаком «-». Основную трудность использования формулы (1) составляет определение величины f – расстояния от зеркала до мнимого изображения предмета. Определить f можно с помощью плоского зеркала методом отсутствия параллакса, сущность которого состоит в следующем: если два предмета не наложены друг на друга, а разделены пространственно, то, рассматривая их и перемещая при этом голову вправо или влево, можно обнаружить смещение одного предмета относительно другого (параллактическое смещение). Если же предметы наложены друг на друга, то такого смещения нет.

Если между рассматриваемым предметом и выпуклым зеркалом поместить еще плоское зеркало так, чтобы его верхний край был ниже верхней части выпуклого зеркала, то можно одновременно рассматривать изображение одного и того же предмета сразу в двух зеркалах: плоском и выпуклом.

Перемещая плоское зеркало, можно добиться такого его положения, при котором мнимые изображения предмета в плоском и выпуклом зеркалах при перемещении головы наблюдателя вправо или влево не будут смещаться друг относительно друга, т.е. будут находиться в одной плоскости. Так как изображение в плоском зеркале находится на таком же расстоянии от зеркала, что и предмет, то, измерив расстояние между рассматриваемым предметом и плоским зеркалом (рис.3) найдем, что

f + d = 2b ; f = 2b – d. (3)

Рис.3 Ход лучей и построение изображения, даваемое выпуклым зеркалом.

Порядок выполнения работы.

1.Расположить на оптической скамье рассматриваемый предмет (спицу), выпуклое и плоское зеркало. Измерить расстояние от спицы до выпуклого зеркала.

2.Перемещая плоское зеркало, определить местоположение мнимого изображения спицы. Повторить измерение не менее пяти раз и результаты внести в таблицу.

Таблица 3.

d b f F ∆F ∆F/F
Среднее

Контрольные вопросы.

1.Каковы основные характеристики сферических зеркал?

2.Почему при проведении опытов нужно предмет ставить на расстоянии, превышающем 2F?

3.Какое и где получилось бы изображение при F

4.Где надо поместить перед вогнутым зеркалом предмет, чтобы обратное и действительное изображение его было в 3 раза больше предмета?

5.Вывести соотношения данные в равенствах (2).

Список литературы:

1. Матвеев А.Н. Оптика: Учебное пособие для физ. спец. вузов. – М.: Высш. шк., 1985.-351с.

2.Савельев И.В. Курс общей физики 3-е изд., испр.-м.: Наука, - т.2: Электричество и магнетизм. Волны. Оптика. 1988. 496с.

3. Элементарный учебник физики: в трех томах, т.3:Колебание и волны. Оптика. Атомная и ядерная физика./Под ред. Г.С.Ландсберга – 12-е изд.-М.: ФИЗМАТХИТ, 2000.-656с.

    Эта точка называется фокальной точкой или фокусом . Расстояние от полюса Р до фокуса F известно как ƒ вогнутого зеркала.

    Проведем ряд исследований, чтобы выяснить основные свойства вогнутого зеркала.

    Исследование. Показать, что параллельные лучи сходятся в фокусе F и точечный источник света, помещенный в F, создает в вогнутом зеркале параллельный пучок света

    При помощи проектора с тремя щелями направьте три параллельных луча на вогнутое зеркало (рис., а). Измерьте линейкой расстояние FP, чтобы получить фокусное расстояние. Для иллюстрации принципа обратимости света поместите «точечный» источник света в F, фокус зеркала (см. рис., б). Образуется параллельный пучок света.

    Если на зеркало падают параллельные лучи, которые не параллельны главной оптической оси, то они сфокусируются в точке F1, которая лежит прямо под F.

    Исследование. Измерить фокусное расстояние вогнутого зеркала

    Направьте вогнутое зеркало на ярко освещенное окно в солнечный день. Держите белую картонку между зеркалом и окном, как показано на рисунке.

    Перемещайте картонку (или зеркало), пока на ней не образуется четкое перевернутое изображение окна. Это изображение появится на картонке, когда она окажется в фокальной плоскости. Измерьте линейкой расстояние от зеркала до картонки.

    Повторите несколько раз фокусирование изображения окна, чтобы получить различные значения.

    Подсчитайте среднее значение фокусного расстояния вогнутого зеркала.

    На главной оптической оси существует точка С, все лучи, исходящие из нее, падают на зеркало нормально (перпендикулярно) и отражаются через эту же точку (рис., а). Эта точка называется центром кривизны С зеркала и является центром сферы, частью которой является это зеркало. Расстояние от полюса Р зеркала до центра кривизны С известно как радиус кривизны вогнутого зеркала (рис., б).

    Увеличить интенсивность света, идущего направо от источника, возможно помещением источника света в точку С, поскольку свет слева от лампы после падения на зеркало будет отражен обратно через С.

    Может быть показано теоретически и экспериментально, что r = 2ƒ, это означает, что фокусное расстояние вогнутого зеркала также может быть подсчитано по формуле ƒ = r/2.

    Исследование. Измерить радиус кривизны r вогнутого зеркала

    Маленький освещенный объект, помещенный в центр кривизны С вогнутого зеркала, посылает лучи света к зеркалу, которое затем отражает их обратно к точке С и образует перевернутое изображение рядом с объектом. Установите прибор и вогнутое зеркало, как показано на рисунке а. Необходимо слегка наклонить зеркало на его подставке так, чтобы пятно света оказалось на «экране» рядом с объектом.

    Двигайте источник света по направлению к зеркалу (или от него), пока не образуется четкое перевернутое изображение рядом с объектом. Измерительной линейкой отмерьте расстояние от полюса Р зеркала до объекта, который теперь находится в точке С.

    Запишите значение r в таблицу результатов. Повторите эксперимент, но на этот раз оставьте источник света неподвижным и двигайте зеркало на подставке, пока изображение снова точно не сфокусируется. Измерьте и запишите второе значение r. Подсчитайте среднее значение радиуса кривизны r.

    Вывод формулы сферического зеркала

    Рассмотрим узкий приосевой пучок световых лучей (u - малый угол), падающий на вогнутое сферическое зеркало. В этом случае можно положить: h/r « 1 и h/a « 1 , тогда имеем:

    по закону отражения: i = i" (1)

    из треугольника ΔSMC: i + u = α (2)

    из треугольника ΔCMS": u" + α = i" (3)

    Из (1), (2) и (3), находим: u + u" = 2α (4)

    Для малых углов можем написать соотношения:

    u ≈ sin u = h/a

    u" ≈ sin u" = h/a" (5)

    α ≈ sin α = h/r

    Подставляя (5) в (4) и сокращая на h, получаем формулу сферического зеркала:

    (6)

    То, что h и u не входят в (6) означает, что любой луч, выходящий из S (и принадлежащий к достаточно узкому пучку), после отражения пройдет через точку S" на расстоянии a" от полюса. Таким образом, точка S" есть изображение точки S. Точки S и S" сопряжены между собой, т. е. поместив источник в точку S", мы получим изображение в точке S (правило обратимости световых лучей).

    Для выпуклого сферического формула (6) остается в силе, однако a" < 0 и 2/r < 0, тогда

    (6")

    Фокус и фокусное расстояние

    Фокусом F называется точка на главной оптической оси зеркала, в которой сходится параллельный пучок лучей, отраженных от зеркала. Расстояние от фокуса до полюса зеркала называется фокусным расстоянием f.

    Для вычисления фокусного расстояния f, в (6) полагаем a = ∞ и находим a" = r/2 = f

    Подставляя (7) в (6), получим формулу сферического зеркала в виде:

    (8)

    В случае выпуклого зеркала фокус f < 0, т. е. является мнимым.

    Увеличение

    Отношение линейных размеров изображения y" к линейным размерам предмета y называется линейным или поперечным увеличением β.

    Из подобия треугольников Δ S 1 PS и Δ S" 1 PS" , находим поперечное увеличение сферического зеркала.