Само по себе тело вверх, как известно, не движется. Его нужно «бросить», т. е. сообщить ему некоторую начальную скорость направленную по вертикали вверх.

Брошенное вверх тело движется, как показывает опыт, с таким же ускорением, как и свободно падающее тело. Это ускорение равно и направлено вертикально вниз. Движение тела, брошенного вверх, - это тоже прямолинейное равноускоренное движение, и формулы, которые были написаны для свободного падения тела, годны и для описания движения тела, брошенного вверх. Но при написании формул надо учесть, что вектор ускорения направлен против вектора начальной скорости: скорость тела по абсолютному значению не увеличивается, а уменьшается. Поэтому, если ось координат направить вверх, проекция начальной скорости будет положительна, а проекция ускорения - отрицательна, и формулы примут вид:

Так как тело, брошенное вверх, движется с уменьшающейся скоростью, то наступит такой момент, когда скорость станет равной нулю. В этот момент тело будет находиться на максимальной высоте. Подставив в формулу (1) значение получим:

Отсюда можно найти время, которое требуется для того, чтобы тело поднялось до максимальной высоты:

Максимальную высоту определяем из формулы (2).

Подставив в формулу получим

После того как тело достигнет высоты оно начнет падать вниз; проекция его скорости станет отрицательной, а по абсолютной величине будет возрастать (см. формулу 1), высота же будет уменьшаться со временем согласно формуле (2) при

Пользуясь формулами (1) и (2), легко убедиться в том, что скорость тела в момент его падения на землю или вообще туда, откуда оно было брошено (при h = 0), равна по абсолютной величине начальной скорости а время падения тела равно времени его подъема.

Падение тела можно рассматривать и отдельно как свободное падение тела с высоты Тогда мы можем воспользоваться формулами, приведенными в предыдущем параграфе.

Задача. Тело брошено вертикально вверх со скоростью 25 м/сек. Какова скорость тела через 4 сек? Какое перемещение совершит тело и какова длина пути, пройденного телом за это время? Решение. Скорость тела вычисляется по формуле

К исходу четвертой секунды

Знак означает, что скорость направлена против координатной оси, направленной вверх, т. е. в конце четвертой секунды тело уже двигалось вниз, пройдя через высшую точку своего подъема.

Величину перемещения тела найдем по формуле

Это перемещение отсчитывается от того места, откуда тело было брошено. Но в этот момент тело уже двигалось вниз. Поэтому длина пройденного телом пути равна максимальной высоте подъема плюс расстояние, на которое оно успело опуститься вниз:

Значение вычислим по формуле

Подставив значения получаем: сек

Упражнение 13

1. Стрела выпущена из лука вертикально вверх со скоростью 30 м/сек. На какую высоту она поднимется?

2. Тело, брошенное с земли вертикально вверх, упало через 8 сек. Найдите, на какую высоту оно поднялось и какова была его начальная скорость?

3. Из пружинного пистолета, находящегося на высоте 2 м над землей, вылетает вертикально вверх шарик со скоростью 5 м/сек. Определите, на какую максимальную высоту он поднимется и какую скорость шарик будет иметь в момент падения на землю. Сколько времени шарик находился в полете? Каково его перемещение за первые 0,2 сек полета?

4. Тело брошено вертикально вверх со скоростью 40 м/сек. На какой высоте оно окажется через 3 и 5 сек и какие при этом у него будут скорости? Принять

5 Два тела брошены вертикально вверх с различными начальными скоростями. Одно из них достигло вчетверо большей высоты, чем другое. Во сколько раз его начальная скорость была больше начальной скорости другого тела?

6. Брошенное вверх тело пролетает мимо окна со скоростью 12 м/сек. С какой скоростью оно будет пролетать мимо того же окна вниз?

Высота полета – один из важнейших авиационных параметров. От нее зависят, в частности, скорость и расход топлива. Иногда от выбора высоты зависит и безопасность полета. Так, например, пилотам приходится менять высоту при резком изменении метеоусловий, из-за густого тумана, плотной облачности, обширного грозового фронта или турбулентной зоны.

Какой должна быть высота полета

В отличие от скорости самолета (когда чем быстрее, тем лучше), высота полета должна быть оптимальной. Причем у каждого типа самолетов она своя. Никому в голову не придет сравнивать высоты, на которых летают, к примеру, спортивные, пассажирские или многоцелевые боевые самолеты. И все же и здесь есть свои рекордсмены.


Первый рекорд высоты полета равнялся… трем метрам. Именно на такую высоту впервые поднялся самолет Wright Flyer братьев Уилбура и Орвилла Райт 17 декабря 1903 года. Спустя 74 года, 31 августа 1977 года советский летчик-испытатель Александр Федотов на истребителе МиГ-25 установил мировой рекорд высоты — 37650 метров. До настоящего времени она остается максимальной высотой полета истребителя.

На какой высоте летают пассажирские самолеты

Самолеты гражданских воздушных линий по праву составляют самую большую группу современной авиации. По данным на 2015 год в мире насчитывалось 21,6 тыс. многоместных летающих аппаратов, из которых треть – 7,4 тыс. – это крупные широкофюзеляжные пассажирские лайнеры.

При определении оптимальной высоты полета (эшелона) диспетчер или командир экипажа руководствуются следующим. Как известно, чем больше высота, тем более разряжен воздух и тем легче лететь самолету – поэтому есть смысл подняться выше. Однако крыльям самолета нужна опора, а на предельно большой высоте (например, в стратосфере) ее явно недостаточно, и машина начнет «заваливаться», а двигатели глохнуть.


Вывод напрашивается сам собой: командир (а сегодня и бортовой компьютер) выбирает «золотую середину» – идеальное соотношение силы трения и подъемной силы. В результате, у каждого типа пассажирских лайнеров (с учетом метеоусловий, технических характеристик, продолжительности и направления полета) своя оптимальная высота.

Почему самолеты летают на высоте 10000 метров?

В целом, высота полета гражданских самолетов варьируется в пределах от 10 до 12 тыс. метров при полете на запад и от 9 до 11 тыс. метров – на восток. 12 тыс. метров – это максимальная высота для пассажирских самолетов, выше которой двигатели начинают «задыхаться» от нехватки кислорода. Из-за этого высота 10000 метров считается наиболее оптимальной.


На какой высоте летают истребители

Высотные критерии истребителей несколько иные, что объясняется их предназначением: в зависимости от поставленной задачи вести боевые действия приходится на различных высотах. Техническая оснащенность современных истребителей позволяет им действовать в диапазоне от нескольких десятков метров до десятков километров.

Однако запредельные высоты у истребителей нынче «не в моде». И этому есть свое объяснение. Современные средства ПВО и ракеты истребителей класса «воздух-воздух» способны уничтожать цели на любых высотах. Поэтому главная проблема для истребителя – раньше обнаружить и уничтожить противника, а самому остаться незамеченным. Оптимальная высота полета истребителя 5-го поколения (практический потолок) – 20000 метров.

Подобно тому, как места в театре позволяют по-разному взглянуть на представление, различные орбиты спутников дают перспективу, каждая из которых имеет свое назначение. Одни кажутся висящими над точкой поверхности, они обеспечивают постоянный обзор одной стороны Земли, в то время как другие кружат вокруг нашей планеты, за день проносясь над множеством мест.

Типы орбит

На какой высоте летают спутники? Различают 3 типа околоземных орбит: высокие, средние и низкие. На высокой, наиболее удаленной от поверхности, как правило, находятся многие погодные и некоторые спутники связи. Сателлиты, вращающиеся на средней околоземной орбите, включают навигационные и специальные, предназначенные для мониторинга конкретного региона. Большинство научных космических аппаратов, в том числе флот системы наблюдения за поверхностью Земли НАСА, находится на низкой орбите.

От того, на какой высоте летают спутники, зависит скорость их движения. По мере приближения к Земле гравитация становится все сильнее, и движение ускоряется. Например, спутнику НАСА Aqua требуется около 99 минут, чтобы облететь вокруг нашей планеты на высоте около 705 км, а метеорологическому аппарату, удаленному на 35 786 км от поверхности, для этого потребуется 23 часа, 56 минут и 4 секунды. На расстоянии 384 403 км от центра Земли Луна завершает один оборот за 28 дней.

Аэродинамический парадокс

Изменение высоты спутника также изменяет его скорость движения по орбите. Здесь наблюдается парадокс. Если оператор спутника хочет повысить его скорость, он не может просто запустить двигатели для ускорения. Это увеличит орбиту (и высоту), что приведет к уменьшению скорости. Вместо этого следует запустить двигатели в направлении, противоположном направлению движения спутника, т. е. совершить действие, которое на Земле бы замедлило движущееся транспортное средство. Такое действие переместит его ниже, что позволит увеличить скорость.

Характеристики орбит

В дополнение к высоте, путь движения спутника характеризуется эксцентриситетом и наклонением. Первый относится к форме орбиты. Спутник с низким эксцентриситетом движется по траектории, близкой к круговой. Эксцентричная орбита имеет форму эллипса. Расстояние от космического аппарата до Земли зависит от его положения.

Наклонение - это угол орбиты по отношению к экватору. Спутник, который вращается непосредственно над экватором, имеет нулевой наклон. Если космический аппарат проходит над северным и южным полюсами (географическими, а не магнитными), его наклон составляет 90°.

Все вместе - высота, эксцентриситет и наклонение - определяют движение сателлита и то, как с его точки зрения будет выглядеть Земля.

Высокая околоземная

Когда спутник достигает ровно 42164 км от центра Земли (около 36 тыс. км от поверхности), он входит в зону, где его орбита соответствует вращению нашей планеты. Поскольку аппарат движется с той же скоростью, что и Земля, т. е. его период обращения равен 24 ч, кажется, что он остается на месте над единственной долготой, хотя и может дрейфовать с севера на юг. Эта специальная высокая орбита называется геосинхронной.

Спутник движется по круговой орбите прямо над экватором (эксцентриситет и наклонение равны нулю) и относительно Земли стоит на месте. Он всегда расположен над одной и той же точкой на ее поверхности.

Орбита «Молния» (наклонение 63,4°) используется для наблюдения в высоких широтах. Геостационарные спутники привязаны к экватору, поэтому они не подходят для дальних северных или южных регионов. Эта орбита весьма эксцентрична: космический аппарат движется по вытянутому эллипсу с Землей, расположенной близко к одному краю. Так как спутник ускоряется под действием силы тяжести, он движется очень быстро, когда находится близко к нашей планете. При удалении его скорость замедляется, поэтому он больше времени проводит на вершине орбиты в самом дальнем от Земли краю, расстояние до которого может достигать 40 тыс. км. Период обращения составляет 12 ч, но около двух третей этого времени спутник проводит над одним полушарием. Подобно полусинхронной орбите сателлит проходит по одному и тому же пути через каждые 24 ч. Используется для связи на крайнем севере или юге.

Низкая околоземная

Большинство научных спутников, многие метеорологические и космическая станция находятся на почти круговой низкой околоземной орбите. Их наклон зависит от того, мониторингом чего они занимаются. TRMM был запущен для мониторинга осадков в тропиках, поэтому имеет относительно низкое наклонение (35°), оставаясь вблизи экватора.

Многие из спутников системы наблюдения НАСА имеют почти полярную высоконаклонную орбиту. Космический аппарат движется вокруг Земли от полюса до полюса с периодом 99 мин. Половину времени он проходит над дневной стороной нашей планеты, а на полюсе переходит на ночную.

По мере движения спутника под ним вращается Земля. К тому времени, когда аппарат переходит на освещенный участок, он находится над областью, прилегающей к зоне прохождения своей последней орбиты. За 24-часовой период полярные спутники покрывают большую часть Земли дважды: один раз днем и один раз ночью.

Солнечно-синхронная орбита

Подобно тому как геосинхронные спутники должны находиться над экватором, что позволяет им оставаться над одной точкой, полярно-орбитальные имеют способность оставаться в одном времени. Их орбита является солнечно-синхронной - при пересечении космическим аппаратом экватора местное солнечное время всегда одно и то же. Например, спутник Terra пересекает его над Бразилией всегда в 10:30 утра. Следующее пересечение через 99 мин над Эквадором или Колумбией происходит также в 10:30 по местному времени.

Солнечно-синхронная орбита необходима для науки, так как позволяет сохранять угол падения солнечного света на поверхность Земли, хотя он будет меняться в зависимости от сезона. Такое постоянство означает, что ученые могут сравнивать изображения нашей планеты одного времени года в течение нескольких лет, не беспокоясь о слишком больших скачках в освещении, которые могут создать иллюзию изменений. Без солнечно-синхронной орбиты было бы сложно отслеживать их с течением времени и собирать информацию, необходимую для изучения изменений климата.

Путь спутника здесь очень ограничен. Если он находится на высоте 100 км, орбита должна иметь наклон 96°. Любое отклонение будет недопустимым. Поскольку сопротивление атмосферы и сила притяжения Солнца и Луны изменяют орбиту аппарата, ее необходимо регулярно корректировать.

Выведение на орбиту: запуск

Запуск спутника требует энергии, количество которой зависит от расположения места старта, высоты и наклона будущей траектории его движения. Чтобы добраться до удаленной орбиты, требуется затратить больше энергии. Спутники со значительным наклоном (например, полярные) более энергозатратны, чем те, которые кружат над экватором. Выведению на орбиту с низким наклоном помогает вращение Земли. движется под углом 51,6397°. Это необходимо для того, чтобы космическим челнокам и российским ракетам было легче добраться до нее. Высота МКС - 337-430 км. Полярные спутники, с другой стороны, от импульса Земли помощи не получают, поэтому им требуется больше энергии, чтобы подняться на такое же расстояние.

Корректировка

После запуска спутника необходимо приложить усилия, чтобы удержать его на определенной орбите. Поскольку Земля не является идеальной сферой, ее гравитация в некоторых местах сильнее. Эта неравномерность, наряду с притяжением Солнца, Луны и Юпитера (самой массивной планеты Солнечной системы), изменяет наклон орбиты. На протяжении всего своего срока службы положение спутников GOES корректировалось три или четыре раза. Низкоорбитальные аппараты НАСА должны регулировать свой наклон ежегодно.

Кроме того, на околоземные спутники оказывает воздействие атмосфера. Самые верхние слои, хотя и достаточно разрежены, оказывают достаточно сильное сопротивление, чтобы притягивать их ближе к Земле. Действие силы тяжести приводит к ускорению спутников. Со временем они сгорают, по спирали опускаясь все ниже и быстрее в атмосферу, или падают на Землю.

Атмосферное сопротивление сильнее, когда Солнце активно. Так же, как воздух в воздушном шаре расширяется и поднимается при нагревании, атмосфера поднимается и расширяется, когда Солнце дает ей дополнительную энергию. Разреженные слои атмосферы поднимаются, а их место занимают более плотные. Поэтому спутники на орбите Земли должны изменять свое положение примерно четыре раза в год, чтобы компенсировать сопротивление атмосферы. Когда солнечная активность максимальна, положение аппарата приходится корректировать каждые 2-3 недели.

Космический мусор

Третья причина, вынуждающая менять орбиту - космический мусор. Один из коммуникационных спутников Iridium столкнулся с нефункционирующим российским космическим аппаратом. Они разбились, образовав облако мусора, состоящее из более чем 2500 частей. Каждый элемент был добавлен ​​в базу данных, которая сегодня насчитывает свыше 18000 объектов техногенного происхождения.

НАСА тщательно отслеживает все, что может оказаться на пути спутников, т. к. из-за космического мусора уже несколько раз приходилось менять орбиты.

Инженеры отслеживают положение космического мусора и сателлитов, которые могут помешать движению и по мере необходимости тщательно планируют маневры уклонения. Эта же команда планирует и выполняет маневры по регулировке наклона и высоты спутника.

Путешествия

На какой высоте летает пассажирский самолет? Скорость полета лайнера

9 апреля 2016

Глядя из иллюминатора небесного лайнера на далекую землю внизу, на рябые участки полей, на россыпь огней, которые являются городами, невольно задаешься вопросом: а на какой высоте летает пассажирский самолет? Мы попробуем ответить на этот, казалось бы, простой вопрос. Все дело в том, что на фактор высоты, которую набирает лайнер при полете, влияют несколько факторов. И первый из них - модель машины. Мы часто наблюдаем самолеты в небе. Одни из них выглядят, как сверкающая звездочка, оставляющая за собой газовый след. Это реактивные самолеты. Они двигаются по небосклону бесшумно. А есть и такие лайнеры, которые, громко и утробно рыча, проносятся так низко, что можно разглядеть эмблему компании на фюзеляже. Почему такая разница в набирании высоты при полете? Об этом читайте ниже.

Идеальная высота. Что это такое

Из школьной науки мы помним, что чем выше поднимаешься вверх, тем разреженнее становится атмосфера. От этого снижается и трение бортов самолета о воздух. А значит - и уменьшается расход топлива, необходимого, чтобы преодолеть сопротивление атмосферы. Казалось бы, что все лайнеры должны, исходя из этого принципа, летать на максимальной высоте. Где-то в стратосфере, где почти совсем нет воздуха, нет и трения. Но ведь крылья у лайнеров рассчитаны на то, что машину в какой-то мере поддерживают воздушные потоки. А если их нет, самолет начинает «заваливаться». Вот поэтому пилоты и говорят об идеальном коридоре. Это пространство между девятью и двенадцатью тысячами метров над землей. На какой высоте летает пассажирский самолет данной конструкции - рассчитывает пилот, исходя из его технических характеристик. Это должна быть «золотая середина» между трением и поддержанием машины воздушными массами.

Направление маршрута

Может показаться странным, что фактором, влияющим на то, на какой высоте летает пассажирский самолет, является его маршрут. Диспетчеры, чтобы предотвратить сталкивание в небе воздушных лайнеров (ведь при такой аварии не выживет никто) установили следующее правило. Все самолеты, следующие в восточном направлении, с различными отклонениями на юг или север, занимают нечетные воздушные коридоры. Это, как правило, девять и одиннадцать километров от поверхности земли. А лайнеры, летящие на запад, следуют в четных «диапазонах» высот (десять и двенадцать тысяч метров). Исходя из технических параметров машины, пилоты рассчитывают, какой коридор им избрать, и сообщают об этом наземным диспетчерам. А они уже предупреждают экипаж судна о метеорологических условиях на пути следования. Иногда, чтобы избежать зоны турбулентности, лайнеру приходится снижать или набирать высоту. Диспетчеры контролируют весь ход борта и держат непрерывную связь с пилотом.

Видео по теме

Некоторые страны закрывают воздушное пространство над своей территорией (или ее частью) из-за вооруженных конфликтов. Высокие горы служат причиной турбулентности на высоте. Все эти причины пилот должен учитывать при прокладывании маршрута. Согласованный с диспетчерами путь борта, а также средняя высота, на которой будет совершаться полет, называется «эшелоном». А вот природные катаклизмы в виде высоких грозовых туч нельзя предвидеть заранее. Обширная облачность приводит к большой турбулентности. И пилоту следует обогнуть тучи, чтобы избежать опасности. И лучше это сделать поверху, где никакие капризы погоды не страшны. Максимальная высота полета пассажирских самолетов зависит только от типа машины. Например, ТУ-204 может подняться лишь на 7200 м. Новый ИЛ-62 - на одиннадцать километров. Такая же максимальная высота и у «Аэробуса А310». А какой самолет способен подняться в небо на двенадцать километров? Это машины с реактивными двигателями. Из пассажирских бортов на наибольшую высоту способен забраться «Боинг 737-400».

Наибольшее количество топлива расходуется при старте лайнера. Ведь тяжелой машине следует хорошенько разогнаться, чтобы оторваться от земли и набрать высоту, преодолевая сильное трение воздуха. Поэтому несмотря на то, на какой высоте летает пассажирский самолет, подъем происходит максимально быстро. Тогда пассажирам говорят пристегнуть ремни безопасности, поскольку лайнер развивает крейсерскую скорость. У «Боинга 737-400» эта техническая характеристика составляет почти восемьсот километров в час. Когда самолет выходит на свою среднюю высоту, в салоне объявляют, что ремни безопасности можно снять.

В пассажирской авиации высота полета определяется техническими возможностями воздушного судна и установленными правилами. Высота может быть максимальной и идеальной. Выбор высоты не зависит от решения командира, он ограничен в своих действиях наземными службами.

Почему 10 тысяч?

Идеальные десять километров лайнер набирает за 20 минут. Если полет не превышает получаса, такой необходимости не возникает. Решение, сохранять коридор или подниматься еще на одну — две тысячи зависит от ситуации. Чем выше поднимается воздушное судно, тем разреженнее становится атмосфера. Она создает меньшее лобовое сопротивление, что снижает количество топлива, сжигаемого на его преодоление. В атмосфере на высоте 10 тысяч сохраняется количество кислорода, необходимое для обеспечения процесса горения керосина. На этой высоте не летают птицы, столкновение с которыми станет причиной аварии.

Решение о высоте полета принимается наземными диспетчерскими службами.

Они дают команду пилотам, основываясь на объективных факторах:

  • погоде;
  • скорости ветра у поверхности земли;
  • вес судна и технических характеристиках;
  • времени и расстоянии полета;
  • направление: запад или на восток.

Выбранная высота определяется в полетных правилах как эшелон. Воздушное право определяет единые эшелоны полета для воздушного пространства всех стран. Если судно летит на восток, диспетчер вправе выбрать нечетные эшелоны в 35, 37, 39 тысяч фунтов (от 10 до 12 километров ). Для самолетов, следующих в обратном направлении, предлагаются четные эшелоны. Это 30, 36, 40 тысяч фунтов над уровнем моря (от 9 до 11 километров ). Эта тактика направлена на избежание столкновений. Эшелон рассчитывается еще до вылета транспортного средства.

Влияет на высоту и дальность полета , на небольших маршрутах набор высоты нецелесообразен. Командир судна определяет высоту с помощью, установленного на борту барометра.

В данном видеоматериале рассказано почему самолеты летают:

Максимальная высота

Максимальная высота находится в прямой зависимости от максимальной скорости. При скорости в 950-1000 километров в час высота достигает 10 километров. Для небольших частных самолетов соотношение будет 300 км в час и 2000 тысячи метров.

Не только модель самолета определяет его максимально возможную высоту, но и физические характеристики атмосферы. Технические характеристики самолета различны для пассажирских и военных воздушных транспортных средств.

Максимальная высота определяется:

  • техническими характеристиками, это мощность двигателя и подъемная сила крыла;
  • маркой и типом судна;
  • массой самолета.

Российский ТУ-204 может набрать высоту не более 7200 метров. ИЛ-62 поднимется на 11 километров, столько же наберет Аэробус А310. Новейший Иркут МС-21, впервые поднявшийся в небо 28 мая 2017 года, за счет небольшой массы сможет набрать 11,5 километров. Лидер среди новинок отрасли, Сухой Суперджет SSJ 100SV, поднимается уже на 12 200 метров.

До выхода на рынок разработки Сухого предел в 12 тысяч удавалось превысить только Боингам.

Существуют пределы высоты, связанные с количеством кислорода в атмосфере. Они зависят от типа двигателя. Самолет с турбореактивным двигателем может набрать 32 тысячи метров, для прямоточного воздушно-реактивного самолета предел будет выше, он составит 45 тысяч метров.

Максимальная высота турбореактивного военного судна может превышать 35 тысяч метров, ее удалось набрать российскому МИГ-25.

Смотрите видео о том как Миг 25 поднимается в стратосферу

Идеальная высота

Определение относится к той же высоте в диапазоне 10-12 тысяч метров, где соблюдается идеальная плотность воздушных потоков. Они достаточно разряжены для того, чтобы снизить трение бортов о воздух и расход топлива. Их плотность при этом остается достаточной для поддержки крыльев самолета. При переходе в стратосферу уровень поддержки падает и воздушное судно начинает «заваливаться».

С учетом этих параметров, пилотами выработано определение «идеального» коридора. Выход из него вниз увеличивает потребление топлива, экономическая эффективность полета снижается вместе с его высотой, поэтому в любой ситуации пилот скорее увеличит высоту, чем снизит ее.

В рамках выделенного эшелона пилот сам принимает решение о высоте, учитывая текущее соотношение трения и поддержки с учетом технических характеристик судна. Часто изменение высоты связано с турбулентностью, но и оно согласовывается с наземными службами. Тучи чаще преодолеваются при подъеме над их уровнем, также причиной изменения высоты может стать закрытие пространства над регионом из-за военных действий или горных пиков.

Запомните. Смена эшелона возможна только при сходе с маршрута на расстоянии в 20 километров и при согласовании с наземными службами.

Высота Боингов 747 и 737?

Модели американской корпорации летают и на российских рейсах. Среди широкофюзеляжных пассажирских самолетов он наиболее часто состоит на вооружении авиакомпаний за счет рентабельности массовых перевозок. Пять Боингов-747 принадлежат авиакомпании «Россия». Максимальная скорость судна составляет 988 км в час для модификации 747-8, максимальная высота, на которую он может подняться, 13 700 метров.

Боинг 737 набирает меньшую высоту, потолок составляет 12 500 метров для модели 737-800 и 11300 метров для Боинг 737-500. Возможность набора такой высоты обеспечивает топливную эффективность полетов. Конструкторы предполагают выпуск Boeing 737 MAX 8, который должен еще улучшить эти характеристики.

В авиации рассчитаны оптимальные высоты воздушных коридоров для всех типов самолетов. Пилоты должны придерживаться указаний диспетчерских служб, оставляя за собой свободу маневра и право принять самостоятельное решение в критической ситуации. Безопасность воздушного пространства зависит от согласованных действий команды и наземных диспетчеров при выборе максимальной высоты.